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A knowledge graph is a collection of fact triples, a semantic network composed of nodes and edges. Link prediction from
knowledge graphs is used to reason about missing parts of triples. Common knowledge graph link prediction models include
translation models, semantics matching models, and neural network models. However, the translation models and semantic
matching models have relatively simple structures and poor expressiveness. Te neural network model can easily ignore the
overall structural characteristics of triples and cannot capture the links between entities and relations in low-dimensional space. In
response to the above problems, we propose a knowledge graph embedding model based on a relational memory network and
convolutional neural network (RMCNN). We encode triple embedding vectors using a relational memory network and decode
using a convolutional neural network. First, we will obtain entity and relation vectors by encoding the latent dependencies
between entities and relations and some critical information and keeping the translation properties of triples. Ten, we compose a
matrix of head entity encoding embedding vector, relation encoding embedding vector, and tail entity embedding encoding vector
as the input of the convolutional neural network. Finally, we use a convolutional neural network as the decoder and a dimension
conversion strategy to improve the information interaction capability of entities and relations in more dimensions. Experiments
show that our model achieves signifcant progress and outperforms existing models and methods on several metrics.

1. Introduction

Te knowledge graph [1] is a structured semantic knowledge
base, which is stored in the form of triples (h, r, t), where h is
a head entity, t is a tail entity, and r is the relation between
them. Many large knowledge graphs, such as YAGO [2],
Freebase [3], and DBpedia [4], use triples to store the entities
and relations of the knowledge base. With the advent of the
era of artifcial intelligence, knowledge graphs have been
heavily used, such as critical resources for intelligent ap-
plications such as intelligent question answering [5], web
search [6], recommender system [7], and sentiment analysis
[8, 9]. Figure 1 is an example of a simple knowledge graph.

Although knowledge graphs are widely used, the
knowledge graphs are still incomplete; that is, it lacks a large
number of efective triples. To make the content of the
knowledge graphmore complete concept of knowledge graph
link prediction is valued by the majority of researchers. An

excellent knowledge graph link prediction method is
knowledge graph embedding [10]. Knowledge graph em-
bedding aims to learn embedded representations of entities
and relations and perform inference and prediction. Typical
knowledge graph embedding models include the translation
models [11–14] and semantic matching models [15–17],
which are easy to train, simple and efcient. However, due to
their simple structure, these two models capture fewer fea-
tures than some deep models, which signifcantly limits their
expressive power. Convolutional neural networks shine in the
feld of imagery and NLP [18] with their excellent feature
extraction capabilities and performance. Recently, researchers
have applied CNN to the feld of KGE, and some CNN-based
models [19–22] have also achieved good results on most
datasets.Tese models generate embedded representations by
computing latent connections between entities and relations
through convolutional neural networks’ powerful nonlinear
feature extraction capabilities.
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Translation models and semantic matching models
have relatively simple structures.Tey only focus on triples’
structural information, cannot efectively infer complex
semantic connections between entities and relations and
perform poorly on datasets with complex relations.
Mainstream neural network models cannot capture the
connection between entities and relations in low-dimen-
sional space and ignore the translation characteristics
between triples. In order to solve the above problems,
improve the efciency of knowledge graph link prediction,
increase the ftting ability of the model, and have better
performance in dealing with complex relationships, we
combine relational memory network and convolutional
neural network to enhance the generalization ability of the
model. Te core of the relational memory network [23] is
shown in Figure 2. Specifcally, we add positional encoding
to the input sequence of head entities, relations, and tail
entities. We then use the Transformer self-attention
mechanism [24] to interact with the memory matrix to
produce encoded vectors. At the same time, in the con-
volutional decoder part, we propose a dimension con-
version strategy, which dramatically increases the feature
interaction of entities and relations in more dimensions.
Experiments show that our model outperforms the baseline
model on most metrics. In summary, the main contribu-
tions of this paper are as follows:

(i) We propose a new knowledge graph embedding
model (RMCNN), which uses relational memory
networks to encode relations between relations and
entities. It can efectively reason about the complex
semantic relationships between entities and rela-
tions and capture the deep relation between entities
and relation embedding vectors.

(ii) We use a dimension conversion strategy on the
encoded embedding matrix to increase the number
of sliding steps of the convolution kernel and im-
prove the information interaction capabilities of
entities and relations in the triple in more
dimensions.

(iii) We use four datasets to evaluate themodel results by
link prediction task. Te experiments show that our
model has better prediction accuracy than other
models.

2. Related Work

We introduce the partial translationmodel in Section 2.1, the
semantic matching model in Section 2.2, and the con-
volutional neural networkmodel in Section 2.3.We compare
the entity embedding representation with the relation em-
bedding representation and the scoring function of some
models in detail as shown in Table 1.

2.1. Translation Models. Te TransE [11] model maps the
head entity vector, the relation vector, and the tail entity
vector to a low-dimensional dense vector space and regards
the relation vector as a translation operation from the head
entity vector to the tail entity vector. Te TransE model has
the advantages of fewer parameters and convenient calcu-
lation. It performs well on large-scale sparse knowledge
graphs.Te TransH [12] model defnes a hyperplane for each
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Figure 1: An example of a knowledge graph.
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Figure 2: Te core of relational memory networks. PM stands for
previous memory, NM for next memory, MDPHA for multihead
dot product attention, MLP for multilayer perceptron, G for
memory gating, and RN for residual network.
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relation. Two entities in the entity space are projected to the
hyperplane through the relation mapping matrix. Te
TransR [13] model defnes a relation r and the projection
matrix Mr of the relation and projects the entity from the
entity space to the subspace of the relation r. Te essence of
TransR is to turn the projection vector into a projection
matrix, the entity is represented by a vector, and a matrix
represents the relation.Te TransD [14] model adopts a dual
vector design strategy for each entity or relation. Each entity
and relation is represented by two vectors (meaning vector
and projection vector), one representing its embedding and
the other used to construct the projection matrix. Te
projection matrix used for each entity-relation pair is dif-
ferent, with head and tail entities projected separately.
However, the translation model structure is too simplistic to
capture the underlying connections between entities and
relations.

2.2. Semantic Matching Models. RESCAL [15] is the frst
model to do knowledge graph embedding based on semantic
matching, which uses tensor decomposition to build the
model.Temodel represents entities as vectors and relations
as matrices and proposes the frst scoring function consisting
of bilinear products. DistMult [16] improves on RESCAL by
restricting its relational matrix to diagonal matrices.
ComplEx (Complex Embedding) [17] introduces complex-
valued embedding based on DistMult, and the embedding of
entities and relations is no longer in the real-valued space but
in the complex space. ANALOGY [25] extends RESCAL
better to model the reasoning properties of entities and
relations. It uses the same bilinear function as RESCAL as
the triplet scoring function. RotatE (Rotation Embedding)
[26], the main idea is to represent the entity as a complex
vector, and the relation is regarded as a rotation from the
head entity to the tail entity. However, although the semantic
matching model is easy to train, it is straightforward to
overft due to its redundancy, which is a fatal disadvantage
for embedding large knowledge graphs.

2.3. Convolutional Neural Network Models. Te ConvE [19]
model is the frst model to use CNN to complete the
knowledge graph. It reorganizes the head entity vector and
the relation vector and combines them into a matrix as the
input of the convolutional layer of CNN. ConvE uses

diferent convolution kernels for convolution and outputs
feature maps. It maps these feature maps to a vector and uses
that vector to do a dot product with the tail entity to get the
triple score. 1D convolution can only capture the interaction
at the splicing of vectors. ConvE uses 2D convolution in the
image domain to obtain more interactions than 1D con-
volution. However, 2D convolution can only capture part of
the interaction, so the interaction between entities and re-
lations is still insufcient. Terefore, to maximize the in-
teraction between entities and relations, the researchers
proposed the ConvR [21] model, which uses the embedding
of the relation as a convolution flter and performs con-
volution operations on the embedding of the head entity,
which can fully interact between the entity and the relation.
the InteractE model focuses on how to increase the inter-
action between entities and relations. InteractE [27] mainly
increases the interaction between entities and relations
through feature replacement, rashape operations, and cir-
cular convolution. JointE [28] combines 1D and 2D con-
volutions to embed the knowledge map, where 1D
convolution is used to obtain explicit knowledge and 2D
convolution is used to obtain deep knowledge. However,
these convolutional neural network models ignore triples’
translation properties and do not pay attention to the global
features of triples.

3. Methods

Tis section introduces the symbols we use and their def-
nitions in Section 3.1, our model framework in Section 3.2,
and the loss function we use in Section 3.3.

3.1. Defnition. Te knowledge graph Gr is a set of valid
triples in the form of (head entity, relation, tail entity)
expressed as (h, r, t). Among them, h, t ∈ E and r ∈ R, where
E is the set of entities and R is the set of relations. We defne
vh, vr, vt ∈ RD to represent the embedding representation of
the head entity, the relation, and the tail entity, respectively.
We defne f(h, r, t) as the scoring function. If the triple is
valid, the corresponding score will be higher.

3.2. Te Framework of the Proposed Model. Te model
structure of this paper is shown in Figure 3, mainly consists
of two parts: the relational memory module and the

Table 1: Summary of link prediction model of knowledge graph.

Models Entity embedding Relation embedding Score function
TransE vh, vt ∈ RD vr ∈ RD − ||vh + vr − vt||1/2
TransR vh, vt ∈ RD vr ∈ RK,Mr ∈ RK×D − ||Mrvh + vr − Mrvt||

2
2

RESCAL vh, vt ∈ RD Mr ∈ RD×D vhTMrvt
DistMult vh, vt ∈ RD vr ∈ RD vhTdiag M( r)vt
ComplEx vh, vt ∈ CD vr ∈ CD Re[vhTdiag M( )r)vt]
RotatE vh, vt ∈ CD vr ∈ CD − ||vh ⊙ vr − vt||
ConvE Mh ∈ RD1×D2 , vt ∈ RD Mr ∈ RD1×D2 σ(vec(σ([Mh;Mr]∗ω))W)vt
ConvR vh, vt ∈ RD ωr ∈ Rm×n g(Wg([vh]∗ωr) + b)vt
HypER vh, vt ∈ RD ωr ∈ RDr σ v( ec(vh ∗ vec− 1(ωrH)))W)vt]
InteractE Mh ∈ RD1×D2 , vt ∈ RD Mr ∈ RD1×D2 σ(vec(σ([Mh;Mr]∗ ∗ω))W)vt
RMCNN vh, vt ∈ RD vr ∈ RD vec(g(B∗ Ω)) × W · w
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convolutional neural network module. Te relational
memory module, which is composed of multilayer per-
ceptrons and memory gates, encodes the potential depen-
dencies and important parts of the information between
entities and relations and forms a coded embedding vector.
Te convolutional neural network module needs to go
through fve processes, dimensional conversion, convolution
operation, feature map vectorization, linear mapping, and
dot product operation.

We believe that the relative positions of the head entity,
relation, and tail entity are of great signifcance for reasoning
about fact triples. Terefore, we add the corresponding
position embedding codes to the head entity vector, relation
vector, and tail entity vector. Given a triple (h, r, t), the
vector representation of xh, xr, xt can be obtained as shown
in the following equations:

xh � W vh + ph( 􏼁 + b1, (1)

xr � W vr + pr( 􏼁 + b2, (2)

xt � W vt + pt( 􏼁 + b3, (3)

where ph, pr, pt ∈ RD represent the position encoding
embedding vector of head entity, relation, and tail entity,
W ∈ RN×D is a projection weight matrix. Position coding is
used to determine the potential semantic connection of
entities and relations in the low-dimensional representation
space.D represents the embedding dimension of entities and
relations, N stands the size of memory.

In this paper, the memory matrix is defned as
M ∈ RU×N consisting of U rows and N columns, where each
row represents a memory slot. In our research, we use M(e)

to represent the memory matrix at time e, and Me
i ∈ R

N to
represent the i-th memory slot at time e. Te attention
mechanism in Transformer uses the multihead attention
mechanism to update the vector to make the input vector
interact with the memory matrix. We use x(e) to update Me

i

according to the proposal made by the relational memory
network, and efectively capture the potential dependencies
between triples, where 􏽢M

e+1
i and 􏽢M

e+1,c

i is shown by the
following equations:

􏽢M
(e+1)

i � 􏽢M
(e+1),1
i ⊕ 􏽢M

(e+1),1
i ⊕ . . . ⊕ 􏽢M

(e+1),C

i􏼔 􏼕, (4)

􏽢M
(e+1),c

i � αi,U+1,c Wc,Vx(e)
􏼐 􏼑 + 􏽘

U

j�1
αi,j,c Wc,V

M
(e)
j􏼐 􏼑, (5)

where 􏽢M
e+1
i represents the i-th memory slot at the e+ 1-th

time, 􏽢M
e+1,c

i represents c-th head of the multihead attention
mechanism, C is the number of heads in the multihead
attention mechanism, and ⊕ represents the splicing opera-
tion, which stitches the results of each head of the multihead
attention mechanism. Wc,V∈ Rn×N is a value projection
matrix, in which n is the head size and N � nC, α is the
weight value of the attention mechanism calculated by the
softmax function, β is the scalar value obtained by the dot
product of the query matrix and the key matrix, as shown in
the following equations:

αi,j,c �
exp βi,j,c􏼐 􏼑

􏽐
U+1
m�1 exp βi,m,c􏼐 􏼑

, (6)

αi,U+1,c �
exp βi,U+1,c􏼐 􏼑

􏽐
U+1
m�1 exp βi,m,c􏼐 􏼑

, (7)

βi,j,c �
Wc,Q

M
(e)
i􏼐 􏼑

T
Wc,K

M
(e)
j􏼐 􏼑

�
n

√ , (8)

βi,U+1,c �
Wc,Q

M
(e)
i􏼐 􏼑

T
Wc,Kx(e)

􏼐 􏼑
�
n

√ , (9)
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Figure 3: Te detailed structure diagram of our model. p stands for position code, (M) stands for memory,MLP for multilayer perceptron,
G for memory gating, DC stands for dimension conversion, Conv for convolution operation, Vec for vectorization operation, and MM
stands for matrix multiplication.
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where Wc,Q ∈ Rn×N and Wc,K ∈ Rn×N are the query pro-
jection matrix and the key projection matrix. In this paper,
the residual network is connected between x(e) and 􏽢Me+1

i to
ensure its good performance, and the results of the residual
network are fed to the multilayer perceptron and memory
gating. Ten, it generates N-dimensional encoded embed-
ding vectors h′, r′, t′ ∈ RN for time e and the next memory
slots 􏽢M

e+1
i for time e + 1.

As a result, we obtain a sequence of 3 encoded vectors
(h′, r′, t′) for the triple (h, r, t). We use a convolutional
neural network and a matrix A � [h′, r′, t′] ∈ RN×3 of
encoded embedding vectors output by the relational
memory network as the input of the convolutional neural
network. RMCNN performs a dimension conversion
strategy on A matrix. Specifcally, assuming that the vector
dimension of each element in the triple is 100, using a
convolution kernel of shape 3× 3 will slide 98 times on the
triple matrix of shape 100× 3. Te RMCNN model adopts a
dimension conversion strategy, which can convert a 100× 3
triple matrix into a 10× 30 shape. Assuming that 3× 3
convolution kernels are also used, the number of times each
convolution kernel slides on the convolution kernel is 224,
and the number of sliding times of the convolution kernel on
the triple matrix increases signifcantly. Due to the triple
matrix dimension conversion strategy, our model improves
the information interaction ability of entities and relations in
the triple matrix in more dimensions. Our specifc di-
mension conversion strategy is shown in the following
Figure 4.

Te RMCNN model performs a dimension conversion
strategy on the A matrix to obtain the B matrix, B ∈ Rm×s,
m × s � k × 3. We use diferent 2D convolution kernels ω to
convolve the matrix B to extract the features. |Ω| is used to
represent the set of convolution flters ω, τ � |Ω| represents
the number of convolution kernels. And, it is assumed that
the dimension of the feature maps obtained by the con-
volution operation is d1 × d2. Our model combines these
feature matrices and reshapes them into a vector
dvec ∈ Rd1d2τ×1. Te vector dvec is frst multiplied by the
weight matrix W ∈ Ru×d1d2τ and mapped into the u-di-
mensional vector space, and then the dot product operation
is performed with the weight vector w ∈ Ru×1 to obtain the
score of the triple. Terefore, our scoring function is defned
as shown in the following equation:

f(h, r, t) � vec(g(B∗ Ω)) × W · w, (10)

where ∗ represents convolution operation,× represents the
multiplication operation of the matrix, · represents the dot
product operation between vectors, vec represents the
vectorization operation of the combined characteristic
matrix, g represents the activation function, Ω represents
the set of convolution kernels, W is the projection weight
matrix, and w is the weight vector.

3.3.LossFunction. After we get the scoring function for the
triples, the RMCNNmodel can calculate the score for each
triple. Usually, vaild triples will get higher scores than
invalid triples. Te nonconvex relaxations usually achieve

better performance than the convex case since the former
can achieve a nearly unbiased solver [29–31]. Terefore,
we choose the log logistic regression function as our loss
function. Furthermore, we employ the Adam optimizer to
train our model by minimizing the following loss
function:

%

L � 􏽘

(h,r,t)∈ Gr ∪Gr
′{ }

log 1 + exp − δ(h,r,t) · f(h, r, t)􏼐 􏼑􏼐 􏼑,

δ(h,r,t) �
1 (h, r, t) ∈ Gr

− 1 (h, r, t) ∈ Gr
′

⎧⎨

⎩

(11)

where Gr and Gr
′ are the sets of valid and invalid triples,

respectively. Gr is generated by destroying valid triples in Gr
′.

4. Experiment

In this section, we evaluate the performance of RMCNN.Te
experimental results show that our model has a good im-
provement in performance compared with the previous
models. We use classic link prediction experiments to val-
idate our model. In Section 4.1, we introduce the dataset
used; in Section 4.2, we illustrate the hyperparameters used;
in Section 4.3, we clarify our experimental metrics; in
Section 4.4, we perform the empirical analysis; in Section 4.5,
we conduct ablation experiments.

4.1. Datasets. We execute many experiments on link pre-
diction tasks on the following benchmark datasets: YAGO3-
10 [2], Kinship [32], FB15k-237 [27], andWN18RR [19].Te
details of these datasets are shown in Table 2. Since there are
many reversible relations in FB15k and WN18, it is easier to
predict most triples, so we adopt FB15k-237 and WN18RR
with the reversible relation removed. Kinship is a small
dataset with kinship relations. YAGO3-10 is the largest of
the four datasets and it is a subset of YAGO3.

4.2. Hyperparameters. In our experiments, we acquired the
best accuracy on the validation set when using a single
memory slot (i.e., U� 1). Tis paper sets the following:

dimension conversion

(10, 3)

(5, 6)

B

A = [h´, r´, t´]

Figure 4: Our dimension conversion strategy. Te fgure is to
change the matrix of 10 rows and 3 columns into 5 rows and 6
columns.
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the number of heads in the multihead attention mechanism
C � 1, 2, 3, 4, 5{ }, the size of the head in the multihead at-
tention mechanism n � 128, 256, 512, 1024{ }, the number of
layers of the multilayer perceptron l � 1, 2, 3, 4{ }, the
number of convolution flter |Ω| � 256, 512, 1024{ }, the
memorymatrix sizeN � nC. Tomaximize the learning efect
of our model learning parameters, we use Adam’s initial
learning rate c. Te specifc hyperparameters we use are
shown in Table 3.

4.3.EvaluationMetrics. Link prediction predicts the relation
between entities and entities that are missing triples in the
knowledge graph. For example, given a triple
(Ronald, born in, ?), where the head entity is Ronald, the
relation is born in, and the tail entity is missing, completing
the triple, add Portugal to the triple.

In this study, we use standard metrics to evaluate our
model, similar to previous work: mean reciprocal rank
(MRR) and percentage of entering top k (Hit@k). MRR is
the average of the reciprocal scores of predicted correct
samples in all test samples. Hits@k refers to the proportion
that the score of the predicted correct sample is higher than
the k-th or equal to the k-th among all test samples. Given
triples (h, r, t) in the test set, we use a scoring function to
score them and randomly generated negative triples and sort
their scores in descending order. Te specifc calculation
steps are shown in the following equations:

MRR �
1

|NS|
􏽘

|NS|

i�1

1
ranki

, (12)

Hit@k �
1

|NS|
􏽘

|NS|

i�1
Indi ranki ≤ k( 􏼁, (13)

where |NS| denotes the number of triples and ranki denotes
the link prediction rank of the i − th triple. Indi() is an
indicator function (if the condition is true, the function
value is 1. Otherwise, it is 0), and the value of k generally
takes 1, 3, or 10.

4.4. Analysis of Results. We demonstrate the performance of
diferent models on four benchmark datasets and give
further analysis. Te results of our specifc link predictions
are shown in Tables 4 and 5, where the highest score is shown
in bold and the second highest score is underlined. However,
the semantic matching model is prone to overftting, causing
its performance to lag behind the convolutional neural
network model. MRR is the ability of our model to correctly
represent triple relations. Te improvement in this metric
indicates that our model is able to learn triple vectors well.

On the WN18RR dataset, compared with ConvE, our model
has a good improvement in various metrics, with MRR
increasing by 10% and Hit@10 increasing by 3.8%. Com-
pared with the best baseline model InteractE, MRR is im-
proved by 1.2%, and Hit@10 is improved by 2.1%. On the
FB15k-237 dataset, compared with InteractE, which also
uses a convolutional neural network, RMCNN improves
MRR by 1.4% and Hit@3 by 1.1%. InteractE also shows
excellent performance on the FB15k-237 dataset with many
relations and few entities. Even compared with the latest
JoinE, our model has good advantages in two datasets.

In addition, we also adopt a large dataset YAGO3-10 and
a smaller dataset, Kinship, to evaluate our model. We use
two classic semantic matching models, DisMult, and
ComplEx, and three typical convolutional neural network
models, ConvE, HypER, and InteractE, as our baseline
models. After experiments, our results are shown in Table 4.
On the YAGO3-10 dataset, our model outperforms other
models on all metrics, compared with InteractE, RMCNN
achieves 1.5%, 1.9%, 2%, and 2.3% improvement on MRR,
Hit@10, Hit@3, and Hit@1, respectively. We found that
models based on convolutional neural networks out-
performed semantic matching models due to the nonlinear
nature of convolutional neural networks. To better verify the
performance of our model, we also conduct experiments on
a small dataset, Kinship. After comparison, our model
performance far outperforms other baseline models. After
comparison, our model performance far outperforms other
baseline models.Tis also shows that our model can perform
excellent modeling of knowledge graphs, whether it is a large
dataset or a small dataset.

After the experimental results of the above four datasets,
we can see that our model has surpassed the KGE models
ConvE, InteractE, and JointE, which are also based on
convolutional neural networks, in many metrics and have
shown in various datasets. Te excellent performance re-
fects the good robustness of our model.

4.5. Ablation Experiments. We adopt ablation experiments
in order to prove the efectiveness of the relational memory
network and dimension conversion strategy. Tables 6 and 7
show the results of our ablation experiments. RMCNN (RM)
uses only a relational memory network; RMCNN (DC) uses
only a dimensional conversion strategy. RMCNN (RM)
achieves excellent performance using only the relational
memory network, showing that the relational memory
network can encode and remember latent dependencies
between entities and relations well. Te performance of
RMCNN cannot be fully achieved using only the relational
memory network, where MRR drops from 0.358 to 0.349 on

Table 2: Datasets.

Datasets Entities Relations Train Vaild Test
FB15k-237 14541 237 272115 17535 20466
WN18RR 10943 11 86835 3034 3134
YAGO3-10 123182 37 1079040 5000 5000
Kinship 104 25 8544 1068 1074

Table 3: Hyperparameters.

Datasets C n l |Ω| c

FB15k-237 2 1024 4 512 0.03
WN18RR 4 512 4 256 0.03
YAGO3-10 4 1024 4 1024 0.03
Kinship 3 1024 4 256 0.03
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FB15k-237, 0.473 to 0.463 on WN18RR, 0.557 to 0.521 on
YAGO3-10, 0.872 to 0.854 on Kinship; Hit@10 drops from
0.535 to 0.529 on FB15k-237, and drop from 0.540 to 0.531
on WN18RR. Scrutinizing these changes, we can verify that
our dimensional transformation strategy improves the in-
teraction between entities and relations in more dimensions.

In conclusion, the results of our ablation experiments
demonstrate that high performance can be achieved using
only relational memory networks. However, its link pre-
diction performance is still inferior to our RMCNN model.
Tese experimental analyses demonstrate that the relational
memory network encoding entity and relation embeddings
signifcantly contribute signifcantly to the link prediction
task. In contrast, the dimension conversion strategy that
captures the interactions of entities and relations in more
dimensions plays an auxiliary role. Terefore, only by
combining the two can we fully grasp the potential links

between entities and relations, improve the interaction
between entities and relations, and obtain better link pre-
diction capabilities.

5. Conclusion

Tis paper proposes a model based on relational memory
networks and convolutional neural networks. Te model
uses the relational memory network to encode triples and
uses the convolutional neural network to decode, which
improves the efciency of knowledge graph link prediction.
Firstly, the relational memory network is used to encode the
entity and relation vector, so as to fully retain the important
information of entities and relations. Ten, in the con-
volutional neural network decoding part, we use a dimen-
sional conversion strategy to add interactions between
entities and relations in more dimensions. A limitation of

Table 4: Results of the link prediction on WN18RR and FB15k-237 datasets.

Models
WN18RR FB15k-237

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1
TransE [11] 0.182 0.444 0.295 0.027 0.257 0.420 0.284 0.174
DisMult [16] 0.430 0.490 0.440 0.390 0.241 0.419 0.263 0.155
ComplEx [17] 0.440 0.410 0.460 0.353 0.249 0.428 0.275 0.158
ConvE [19] 0.430 0.520 0.440 0.400 0.325 0.501 0.356 0.237
HypER [33] 0.468 0.526 0.482 0.438 0.336 0.514 0.367 0.248
InteractE [27] 0.467 0.529 0.482 0.435 0.353 0.541 0.390 0.260
JointE [28] 0.471 0.537 0.483 0.438 0.356 0.543 0.393 0.262
RMCNN 0.473 0.540 0.479 0.440 0.358 0.535 0.394 0.255

Table 5: Results of the link prediction on YAGO3-10 and kinship.

Models
YAGO3-10 Kinship

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1
TransE [11] 0.501 0.673 0.392 0.405 0.309 0.809 0.643 0.841
DisMult [16] 0.340 0.540 0.380 0.240 0.685 0.943 0.766 0.553
ComplEx [17] 0.360 0.550 0.400 0.560 0.861 0.977 0.935 0.780
ConvE [19] 0.440 0.620 0.490 0.350 0.830 0.980 0.920 0.740
HypER [33] 0.533 0.678 0.580 0.455 0.879 0.810 0.942 0.986
InteractE [27] 0.549 0.685 0.595 0.472 0.867 0.792 0.932 0.664
RMCNN 0.557 0.698 0.607 0.483 0.872 0.984 0.942 0.803

Table 6: Ablation experiments on FB15K-237 and WN18RR.

Model
FB15k-237 WN18RR

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1
RMCNN (RM) 0.349 0.529 0.385 0.248 0.467 0.531 0.472 0.432
RMCNN (DC) 0.331 0.518 0.371 0.236 0.456 0.492 0.465 0.428
RMCNN 0.358 0.535 0.394 0.255 0.473 0.540 0.479 0.440

Table 7: Ablation experiments on YAGO3-10 and Kinship.

Model
YAGO3-10 Kinship

MRR Hit@10 Hit@3 Hit@1 MRR Hit@10 Hit@3 Hit@1
RMCNN (RM) 0.521 0.654 0.584 0.396 0.854 0.942 0.933 0.765
RMCNN (DC) 0.545 0.598 0.577 0.461 0.866 0.958 0.921 0.786
RMCNN 0.557 0.698 0.607 0.483 0.872 0.984 0.942 0.803
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the current work is that the proposed neural network
structure needs to be designed manually. In future work, we
will consider using neural network architecture search
methods to search for optimal convolutional neural network
structures for a specifc data set, which will be a worthwhile
direction to explore.
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