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Te integration of a decision maker’s preferences in evolutionary multi-objective optimization (EMO) has been a common
research scope over the last decade. In the published literature, several preference-based evolutionary approaches have been
proposed. Te reference point-based non-dominated sorting genetic (R-NSGA-II) algorithm represents one of the well-known
preference-based evolutionary approaches. Tis method mainly aims to fnd a set of the Pareto-optimal solutions in the region of
interest (ROI) rather than obtaining the entire Pareto-optimal set. Tis approach uses Euclidean distance as a metric to calculate
the distance between each candidate solution and the reference point. However, this metric may not produce desired solutions
because the fnal minimal Euclidean distance value is unknown. Tus, determining whether the true Pareto-optimal solution is
achieved at the end of optimization run becomes difcult. In this study, R-NSGA-II method is modifed using the recently
proposed simplifed Karush–Kuhn–Tucker proximity measure (S-KKTPM) metric instead of the Euclidean distance metric,
where S-KKTPM-based distance measure can predict the convergence behavior of a point from the Pareto-optimal front without
prior knowledge of the optimum solution. Experimental results show that the algorithm proposed herein is highly competitive
compared with several state-of-the-art preference-based EMO methods. Extensive experiments were conducted with 2 to 10
objectives on various standard problems. Results show the efectiveness of our algorithm in obtaining the preferred solutions in
the ROI and its ability to control the size of each preferred region separately at the same time.

1. Introduction

Most real-world optimization problems usually contain two
or more conficting objective functions. Tese objective
functions must be optimized simultaneously. Tis type of
problem is known as amulti-objective optimization problem
(MOP).

In MOPs with contradictory objectives, a single solution
that can be considered the best does not always exist. Instead,
a set of solutions represents the best compromises among the
diferent objectives. Tis set, which belongs to the search
space, is known as the Pareto set (or efcient set), whereas its
images, which belong to the objective space, are known as
Pareto front (PF) [1, 2]. Several evolutionary multi-objective

optimization (EMO) algorithms, such as NSGA-II [3],
SPEA2 [4], and MOEA/D [5], have been suggested in the
past two decades or more. Classical EMO mainly aims to
obtain a set of well-converged and well-distributed non-
dominated solutions that approach the entire PF [6, 7].
Researchers have devoted their efort to developing algo-
rithms in recent years [8–14].

Te proportion of non-dominant solutions rises as the
number of objectives increases, which is one of the fun-
damental problems with all EMO approaches. Due to the
insufcient selection pressure caused by a high percentage of
non-dominant solutions, the EMO approach cannot ad-
vance in fnding the optimal spots. Incorporating the de-
cision maker’s preferences into the algorithm is a practical
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way to deal with this issue. A new kind of ranking mech-
anism [9] can be used to make selection pressure stronger
and steer the optimization approach to search in a specifed
region.

In real life, the DM is always focused on some specifed
subsets of the obtained solutions. Te techniques of pref-
erence-based MCDM aim to fnd a part of the PF, whereas
EMO algorithms aim to obtain a well-distributed set of
points close to the whole PF. We call the part of the optimal
solutions that is near to or lies on the PF a region of interest
(ROI) [15]. Solutions within the ROI satisfy the DM’s need.
However, this scenario does not mean that any efcient
solutions outside the ROI are not the optimal solutions to
the problem.Te preference information given by the DM in
the EMO can enable a highly efcient search. Many diferent
approaches to preference information given by DMs exist,
such as reference point (RP), preference angle, and reference
weights. One of the most utilized approaches in preference-
based EMO algorithms is the RP. As mentioned above, EMO
tries to fnd well-distributed multiple efcient solutions
across the whole PF, as displayed in Figure 1(a). Also, this
fgure illustrates the feasible objective region and the un-
feasible objective region. On the contrary, preference-based
EMO algorithms concentrate on a certain part of the true PF
based on a preference point (reference point) determined by
DM. Te non-dominated points cluster near the RP, as
shown in Figure 1(b).

Te following is a typical classifcation of methods based
on preferences, depending on how they are expressed by the
DM [16–18]: (i) a priori methods, where preferences are
expressed before calculating PO solutions, for example,
through a utility function [19] or by an RP [20]; (ii) a
posteriori methods, in which the DM chooses the solution of
her/his preference after a set of efcient solutions has been
calculated (for example, [21, 22]); (iii) interactive methods,
where the DM guides the search with a utility function, and
this function may change during the optimization process
because of the new information acquired (for example,
[23, 24]); and fnally, (iv) methods not based on preferences,
where additional information on preferences is not available,
and the idea is to fnd a balance between the objectives [25].

Over the past two decades, researchers have focused their
attention on preference-based EMO approaches. Tese
approaches have been actively developed, and they mainly
focus on specifc parts of the PF. Depending on the pref-
erence information supplied by the DM, these algorithms
seek to fnd an ROI that is close to/on the true PF.

Numerous algorithms of preference-based EMO have
been introduced. Deb and Sundar [26] suggested the RP-
based NSGA-II (R-NSGA-II), which focuses on obtaining a
preferred ROI during the evolutionary process. By including
the RP’s location information in the Pareto dominance,
Molina et al. [27] initiated a concept of Pareto dominance
termed g-dominance. Ben Said et al. [28] presented a novel
variant of the Pareto-dominant relationship, called
r-dominance, with which we can obtain good convergence
to the PF. Ruiz et al. [29] proposed WASF-GA, another
variant of the preference-based MOEA algorithm. Yu et al.
[30] suggested a diferent representative preference-based

decomposition MOEA by decomposing the preference in-
formation into several scalar optimization problems. Re-
cently, new R-NSGA-II modifed methods have been
proposed to assist DMs in convergent to Pareto-dominance
compliant solutions in a specifc area of interest [31–33].

Although many preference-based algorithms use various
metrics to select preferred solutions, some of these metrics
require prior knowledge of the PF while others require
specifc parameters [34, 35]. S-KKTPM does not require
prior knowledge of the PF or any parameters.

Herein, we introduce a novel preference-based NSGA-II
algorithm. Te Euclidean distance was utilized in the
original R-NSGA-II study as a metric between two trade-of
solutions. In our study, we use the simplifed Kar-
ush–Kuhn–Tucker proximity metric (S-KKTPM) instead of
the Euclidean distance metric. S-KKTPM can anticipate the
convergence behavior of a point from PF without prior
knowledge of the optimum solution [36, 37]. Te Kar-
ush–Kuhn–Tucker (KKT) conditions occupy a signifcant
role in optimization theory. KKT proximity measure was
proposed through these conditions. Incorporating
S-KKTPM within the R-NSGA-II provides theoretical
convergence properties for the fnal preferred points. Te
main contributions of the introduced algorithm are listed
below:

(i) We introduce a new RP-based algorithm called RS-
KKTPM, based on the S-KKPM metric, by inte-
grating S-KKPM with NSGA-II to obtain the PO
solutions in ROI.

(ii) Obtaining diferent ranges of ROI in a single run.
(iii) Adding fexibility for several RPs at the same time.
(iv) Obtaining excellent performance when the RP is

located in diferent regions.
(v) Obtaining a good balance between convergence and

diversity aspects around the RP.
(vi) Solving diferent shapes of PF (e.g., convex, con-

cave, concave, and discontinuous) with a diferent
number of objective functions (up to 10 objectives).

(vii) Making the results competitive compared with
those of the other preference mechanisms on
many-objective problems.

Te layout of this work is as follows. Section 2 reviews
some fundamental defnitions. An overview of the works
relevant to this paper is mentioned in Section 3. In Section 4,
the R-NSGA-II algorithm is combined with the S-KKTPM
metric. In the following section, the obtained experiments
and the results are discussed and described. Section 6
summarizes the paper’s achievements and presents some
upcoming works. Table 1 displays the nomenclature/ab-
breviations used in this study.

2. Basic Definitions

An MOP contains a set of n decision variables, M objective
functions, J constraints of inequality, and P constraints of
equality. MOP can be defned as follows [28].
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Minimize(x)f x( ) � f1( ( ( x), . . . , fM(x)
T

subject  togj(x)≤ 0, j � 1, 2, . . . , J,

hi(x) � 0, i � 1, 2, . . . , P,

(1)

where x � (x1, . . . , xn)T is an n-dimensional decision var-
iable vector, fk: Rn⟶ R(k � 1, 2, . . . , M) are the objec-
tive functions, and gj and
hi: R

n⟶ R(j � 1, 2, . . . , J; i � 1, 2, . . . , P) are the con-
straints of the problem.

In an MOP with contradictory objectives, the search
space is only partially ordered, and two solutions may be
indiferent to each other. A single decision variable simul-
taneously optimizing all the objectives is unusual. Conse-
quently, for MOPs, the 〈, 〉, and� operators are extended as
follows.

Defnition 1 (Pareto dominance relation). Given two solu-
tions x, y ∈ Rn, x is said to dominate y in the Pareto sense
(denoted by f(x)≺f(y)) if and only if
fi(x) ≤fi(y)∀i ∈ 1, . . . , M{ } and ∃j ∈ 1, . . . , M{ } where
fj(x)<fj(y).

Defnition 2 (non-dominated solution). A solution
x ∈ Ω⊆Rn (Ω is the feasible space) is said to be non-dom-
inated if and only if there does not exist another solution
y ∈ Ω such that f(x)≺f(y).

Defnition 3 (Pareto-optimal (PO)). A solution x ∈ Ω is said
to PO if f(x) is non-dominated with respect to Ω.

Te set of solutions in the search space is called the
Pareto solution set (PS). In contrast, the set of all non-

dominated vectors in the objective space corresponding to
the PS is called the PF [38].

Defnition 4 (PS and PF). Te PS is defned as follows:

PS � x ∈ Ω ∣ x isPO{ }. (2)

Te corresponding PF is defned as follows:

PF � u � f(x) ∈ RM ∣ x ∈ PS , R
Mis the objective space . (3)

Defnition 5 (RP). An RP f(xRP) is defned in objective
space, where f(xRP) is provided by the DM.

Defnition 6 (ROI). Te ROI is the projection of the set of
preferred efcient solutions in the objective space, i.e.,
ROI � f(x) ∣ ‖(f x( ) − f(xC)‖< δ, x ∈ PS , where f(xC) is
the closest to the RP f(xRP). δ denotes the radius of the ROI,
which is determined by DM.

3. Related Works

In Section 3.1, KKT optimality conditions are briefy
reviewed. Section 3.2 presents R-NSGA-II in detail.

3.1.KKTConditions. KKTconditions play an important role
in optimization theory. Trough these conditions, it is
possible to know if the solution produced by the EMO al-
gorithm is the PO solution or not. For the MOP with in-
equality constraints, KKT conditions are defned as follows
[39]:

Feasible region

Front
Unfeasible region

f2

f1

Non-dominated
solutions

True Pareto

(a)

Reference point

ROI

f2

f1

(b)

Figure 1: Objective space: (a) evenly distributed across the entire PF; (b) crusting near an RP.
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M

i�1
βi∇fi(x) + 

J

j�1
cj∇gj(x) � 0, (4)

gj(x)≤ 0, j � 1, 2, . . . , J, (5)

cjgj(x) � 0, j � 1, 2, . . . , J, (6)

cj ≥ 0, j � 1, 2, . . . , J, (7)

βi ≥ 0, i � 1, 2, . . . , M,

β≠ 0.
(8)

Te parameters βi and cj are called the Lagrange mul-
tipliers for the ith objective function and jth inequality

Table 1: List of nomenclature and abbreviations.

Nomenclature
n Number of decision variables
M Number of objective functions
J Number of inequality constraints
P Number of equality constraints
≺ Pareto-dominance relation
Ω Feasible search space
δ Radius of the ROI
RM Objective space
N Population size
Rn Decision variable space
βi Lagrange multiplier of ith objective function
cj Lagrange multiplier if jth inequality constraint
ξk KKTPM value
ξk S-KKTPM value
Pc Crossover probability
Pm Mutation probability
ϵ Size of the preferred region
Abbreviations
BNH Constrained bi-objective test problem by Binh and Korn
DM Decision maker
DTLZ Deb–Tiele–Laumanns–Zitzler test problem set
EMO Evolutionary multi-objective optimization
g-NSGA-II g-Dominance relation-based non-dominated sorting genetic algorithm-II
KKT Karush–Kuhn–Tucker
KKTPM KKT proximity metric
S-KKTPM Simplifed KKT proximity metric
MCDM Multi-criteria decision making
MOP Multi-objective optimization problem
MOEA/D Multi-objective evolutionary algorithm based on decomposition
MOEA/D-PRE MOEA/D based on preference information
NSGA-II Non-dominated sorting genetic algorithm-II
NSGA-III Non-dominated sorting genetic algorithm-III
OSY Constrained bi-objective test problem by Osyczka and Kundu
PF Pareto front
PO Pareto-optimal
PS Pareto set
R-IGD R-metric based on inverse generational distance
R-HV R-metric based on hypervolume
r-NSGA-II r-Dominance relation-based NSGA-II
R-NSGA-II Reference point-based NSGA-II
R-NSGA-III Reference point-based NSGA-III
ROI Region of interest
RP Reference point
RS-KKTPM Reference point based on S-KKTPM
SBX Simulated binary crossover
SRN A constrained bi-objective test problem by Srinivas and Deb
SPEA2 Improved version of strength Pareto evolutionary algorithm
TNK A constrained bi-objective test problem by Tanaka
WV-MOEA-P Weight vector-based multi-objective optimization algorithm with preference
ZDT Zitzler–Deb–Tiele test problem set
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constraint, respectively. Any solution x that satisfes each the
above conditions is called a KKTpoint. Equations (4) and (6)
are called the equilibrium and complimentary slackness
equations, respectively.Te conditions stated in equation (5)
ensure feasibility for x while the conditions stated in
equation (7) ensure that the parameters cj are non-negative.
Te conditions stated in equation (8) also ensure that the
parameters βi are non-negative, but at least one of them
must be non-zero. In the following section, we briefy discuss
R-NSGA-II algorithm.

3.2.R-NSGA-IIAlgorithm. Asmentioned in Section 1, classical
EMO algorithms mainly aim to develop a fnite number of
random solutions into a set of non-dominant solutions that
converge and distribute across the entire PF over several gen-
erations. On the contrary, preference-based algorithms aim to
produce non-dominated solutions centered around the desired
part (s) of the PF based on the preference information supplied
by the DM.Tis information can be given in several techniques:
RPs, aspiration levels, weights, and reference direction [2]. RPs
are one of the most used techniques in preference-based EMO
algorithms. Usually, an RP is said to be achievable if it lies in the
feasible objective space; otherwise, it is said to be unachievable.

In 2006, Deb and Sundar [26] put forward R-NSGA-II
method, which presents the DM’s preferences as one or
more RPs. Te method is based on the benchmark manner,
which is based on preference information [40]. It is a
modifcation of the widely used EMO approach NSGA-II,
in which an Euclidean distance metric is applied instead of
the crowding distance metric from the RP that indicates
DM’s preference. Te primary notion behind R-NSGA-II is
to give preference to parents who have short Euclidean
distances to the RP. Te following is the description of the
R-NSGA-II procedure: Pt (of size N) is a randomly gen-
erated parent population. A new ofspring population Qt

(of size N) is generated using the number of operations
(binary tournament selection, recombination, and muta-
tion). Tereafter, the populations Pt and Qt are combined,
and the resulting population Rt � Pt + Qt (size 2N) is
classifed according to dominance in fronts. Te new
population Pt+1 is built starting with the fronts with the
lowest rank until reaching a front Fi, which cannot be
accepted without making the size of population to exceed
N. Next, the preference operator is applied to the front Fi to
maintain the size of the new population. Te fnal front Fi,
which cannot be fully accepted, is then considered, and the
remaining slots are flled according to an environmental
selection approach. Te Euclidean distance for each RP is
calculated with respect to each solution of the front Fi. For
each RP, the solution closest to the said point takes the
preferred distance value of 1. Te solutions that are closest
to all of the RPs are given the shortest preferred distance.
Te preferred distance value of 2 is then applied to the
solutions with the next smallest distance to each RP, and
the process is repeated for the remaining Fi solutions. In
the generation of the new population of descendants, the
preferred solutions in the selection by the tournament are
those with a lower value of preferred distance.

Te idea of ϵ-based  selection  strategy is utilized to
maintain diversity in the solutions close to each RP. First, a
solution of the front Fi is randomly chosen. Next, the Eu-
clidean distance in the objective space of all the solutions is
computed with respect to the chosen solution. After that, the
points that have a sum of the normalized diference in the
objective search space values less than or equal to ϵ from the
selected point are given an artifcial large distance to remove
them from the competition; in this method, only a solution
within ϵ-neighborhood is relevant. Te process continues by
randomly choosing another solution diferent from the
previous one, to which the concept of ϵ−based selection
strategy described above is applied again.

3.2.1. Advantages and Disadvantages. Compared with
classical RP-based algorithms, R-NSGA-II works well for
high-dimensional MOPs; it is suitable for any frontier shape,
several objectives, and variables. It also shows some ad-
vantages: the classical methods depend on the reference
direction (weight vector); however, R-NSGA-II is inde-
pendent of the weight vector. Moreover, the classical
methods in most cases can only fnd efcient solutions for
diferent RPs by applying the algorithm to each RP for
several times, whereas R-NSGA-II can produce a set of
efcient points for diferent RPs in a single simulation. RPs
can exist anywhere in the objective space (achievable or
unachievable). However, it requires a parameter ϵ to
maintain a diversity of selected solutions near the RPs.

As mentioned above, the crowding distance metric of
NSGA-II has been replaced using the Euclidean distance
metric in R-NSGA-II to obtain the solutions closest to the
RPs assigned by DMs. However, the fnal minimal Euclidean
distance value is unbeknown.Tus, ascertaining whether the
efcient solution is accomplished at the end of an optimi-
zation run is difcult. In other words, the Euclidean distance
metric does not have any information about the proximity of
a solution to the PF. Additionally, in the case of achievable
RPs, the Euclidean distance metric may not be monotoni-
cally reduced to its minimum value. Onemajor disadvantage
of this method is that the DM cannot control the size of each
preferred region separately. Furthermore, the DM cannot
smoothly control the obtained PO solutions within each
desired region. Below, we introduce a new approach that is
based on integrating the S-KKTPM metric with the
R-NSGA-II algorithm.

4. The Introduced R-NSGA-II with S-KKTPM

In Section 4.1, the development of the KKT-proximity
measure is introduced. Section 4.2 presents the proposed RS-
KKTPM in detail.

4.1. S-KKTPM. KKT conditions are necessary to know
whether the solution obtained by the EMO algorithm is a
KKT point. Hence, they play an important role in optimi-
zation theory [39, 41]. During the last decade, a KKT-
proximity measure has been developed utilizing KKT op-
timality theory. In 2013, a KKT-based proximity metric
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(KKTPM) was suggested by Dutta et al. [42] to calculate a
KKTPM value for any iteration (or solution) xk for a single-
objective optimization problem. Deb and Abouhawwash
et al. [37, 43] extended the above KKTPM for MOPs. Teir
expansion, which is based on the incorporation of the
KKTPM metric via scalarization approaches, aims to relate
the convergence property of a solution from a specifc

optimal solution. Other information on KKTPM for MOPs
can be found in [37, 43].

In 2021, Eichfelder and Warnow [44] proposed a new
KKTPM metric for MOPs without using any scalarization
approach. Te authors defned the following methodology
for calculating the KKTPM value for any solution xk ∈ Rn,
for the MOP mentioned in equation (1):

minimize ξk,β,c( )ξk,

subject to 
M

i�1
βi∇fi xk

  + 

J

j�1
cj∇gj xk

 

����������

����������

2

≤ ξk,



J

j�1
cjgj xk

 ≥ − ξk,

gj xk
 ≤ ξk,∀j,



M

j�1
βi � 1,

βi ≥ 0,∀i and cj ≥ 0,∀j,

(9)

where J and M, respectively, are the numbers of constraint
and objective functions. Te value ξk obtained after the
optimization is the KKTPM at the point xk. First-order
derivatives of constraint and objective functions are nec-
essary to solve this problem. KKTPM metric can be utilized

to single, multi, and many-objective optimization problems.
Te above problem has (M + J + 1) variables, (M + 2J + 2)

inequality constraints, and one equality constraint. To re-
duce the number of constraints in the optimization problem
mentioned above, we propose to redefne it as follows:

minimize
ξk

∧
,β
∧
,cj

∧
 

ξk

∧
,

subject to 
M

i�1
βi

∧
∇fi xk

  + 

J

j�1
cj

∧ ∇gj xk
 

����������

����������

2

≤ ξk

∧
,



J

j�1
cj

∧
gj xk

 ≥ − ξk

∧
,



M

j�1
βi

∧
� 1,

βi

∧
≥ 0,∀i and cj

∧ ≥ 0,∀j,

(10)

where the variable vector of the above optimization problem

is (ξk

∧
, β
∧
, c
∧
). Te value of ξk

∧
, which solves the above problem,

is referred to as the simplifed KKTPM (S-KKTPM). Te
primary goal of reducing the number of constraints is to save
the computational cost of an optimization problem. Te
above problem has (M + J + 1) variables, (M + J + 2) in-
equality constraints, and one equality constraint. Te
number J of inequality constraints has been reduced
compared to the optimization problem mentioned in

equation (9) without afecting the optimization process. To

ensure that values of both ξk

∧
and ξk obtained after the

optimization are identical at point xk, frst we consider the
ZDT1 unconstrained problem with thirty variables [45]. We
ran NSGA-II for 200 generations in this problem, with a

population size of 40. Figures 2 and 3 illustrate the ξk

∧
and ξk

values versus generation numbers for efcient solutions to
the unconstrained ZDT1 problem. Te minimum, 25th
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percentile, 50th percentile, 75th percentile, and maximum ξk

∧

and ξk values are also plotted for all PO solutions at each
generation. Both fgures show a constant reduction as the
generation number increases. With a correlation coefcient
of 0.9996, both fgures show that the values and patterns of

ξk

∧
and ξk are identical. Second, we consider the SRN un-

constrained problem with two variables and two constraints
[46]. In this problem, we also ran NSGA-II until generation

500, with a population size of 200. ξk

∧
and ξk values versus

Minimum
25th Percentile
50th Percentile

75th Percentile
Maximum

ξ k

100

10-1

10-2

10-3

10-4

10-5

10-6

10050 1500 200
Generation Number

Figure 2: ξk values versus generations for unconstrained ZDT1
problem.

Minimum
25th Percentile
50th Percentile

75th Percentile
Maximum

10-6

10-4

10-2

100

ξ k

10050 1500 200
Generation Number

Figure 3: ξk values versus generations for unconstrained ZDT1
problem.

Minimum
25th Percentile
50th Percentile

75th Percentile
Maximum

10-3

10-2

10-1

100

101

ξ k^

400200 300 5000 100
Generation Number

Figure 4: ξk values versus generations for constrained SRN
problem.

Minimum
25th Percentile
50th Percentile

75th Percentile
Maximum

10-3

10-2

10-1

101

100

ξ k

0 200100 500300 400
Generation Number

Figure 5: ξk values versus generations for constrained SRN
problem.
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generations for obtained solutions are displayed in Figures 4

and 5. Both fgures also show that the values and patterns of ξk

∧

and ξk are congruent, with a correlation coefcient of 0.9999.
An advantage of S-KKTPMmetric given in equation (10)

is that it predicts the convergence behavior of a point from
the PF without prior knowledge of the PO solution. Now, we
describe several features of the S-KKTPM [37, 43, 44]:

(i) It can be utilized as a termination condition for the
algorithm of optimization.

(ii) It is applicable in high-dimensional MOPs;
S-KKTPM is suitable for any frontier shape, large
number of objectives, and variables.

(iii) It provides a monotonous characteristic of the
S-KKTPM surface over the objective space. S-KKTPM
value decreases monotonously almost to zero as the
iterate approaches the efcient solution. Figure 6
displays the S-KKTPM values for a set of efcient
solutions located at diferent positions in objective
space; for example, S-KKTPM value is zero in the true
PO solutions (marked by blue circles), which lie on the
PF. For efcient solutions, which are close to the PF
(marked by green circles), S-KKTPM value is small.
For far-away solutions from the PF (marked by white
circles), S-KKTPM value is large.

(iv) Calculating S-KKTPM value does not require any
parameters, such as weight vector and ideal point,
unlike when calculating values in other versions of
KKT proximity measure.

In this study, we use S-KKTPM optimization problem to
calculate ξk

∧
value at iterate xk. We used MATLAB fmin-

con() algorithm optimization to solve S-KKTPM optimi-
zation problem (see Algorithm 1).

4.2. Te Proposed RS-KKTPM. To make R-NSGA-II solu-
tions preferred and acceptable to DMs and to easily control
the size of each region, S-KKTPM metric is integrated with
the-NSGA-II algorithm.

In this study, we refer to the RP-based S-KKTPM as RS-
KKTPM.Te introduced algorithm allows DMs to apply any
number of RPs. RS-KKTPM also allows the DMs to control
the size of the preferred parts separately. In the introduced
algorithm, we replace the Euclidean distance metric, utilized
in R-NSGA-II, with S-KKTPM metric. Solutions with small
S-KKTPM values are chosen in the introduced method. Te
preference operator is utilized in this algorithm to select a
subset of solutions from the fnal front that cannot be ac-
commodated totally to maintain the size of population in the
novel population. Instead of using the preference distance as
in R-NSGA-II, this preference operator uses the preference
S-KKTPM metric.

We now characterize an iteration of the introduced
R-NSGA-II with S-KKTPM process in which the DM
provides one or more RPs in the following section (see
Algorithm 2). Both parents and children are merged as
usual, and the non-dominated sorting strategy is employed
to classify the merged population into non-domination
levels (so-called fronts).

Te following are the primary ideas underlying selecting
the preferred set of solutions within the preferred range:

(i) Solutions closest to RP are always prioritized.
(ii) Preferred-region sizing strategy is used to control

the preferred range near RP.
(iii) ϵ-based selection strategy is utilized to keep the

spread of solutions within the range assigned by the
DMs.

Te following changes are made to the original NSGA-II
niching approach to integrate the three notions mentioned
above:

Step 1. Generating a desired region for each RP. Te
Euclidean distance between all members from the
merged population and an RP is computed to specify
the desired region. Ten, the member that has the least
Euclidean distance to RP is identifed. Te specifed
member (or point) is called mid-point as illustrated in
Figure 7.
Step 2. Determining the size of the desired region for
each RP. Here, we introduce a new strategy to deter-
mine the size of each desired area as follows. Te so-
lution within δ distance of themid-point is chosen to be
in the desired area. Parameter δ is given by the DM,
which determines the size of the ROI, as illustrated in
Figure 7. Tis fgure also shows how to choose a
population of size eight from the merged population
containing 17 members. All solutions in the frst front
are selected, as shown in Figure 7. Ten, we need only
two solutions from the second front. Te remaining
two solutions are chosen (from the second front) as
follows. Te S-KKTPM value is calculated for each
solution (x) within the ROI. Ten, the minimum of the
appointed ranks is appointed as the S-KKTPM value to
a solution (x). If the solution (x) is not within the
preferred region, we set a high value for S-KKTPM (see
Algorithm 3). In this manner, the smallest S-KKTPM

f1

f2

True Pareto Front

Zero S-KKTPM

Small S-KKTPM

Large S-KKTPM

Front 3

Front 2

Front 1

Figure 6: S-KKTPM values for a set of non-dominated points.
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value of one is given to the points that are closest to the
PF. Te next-to-smallest S-KKTPM value of two is
given to the solutions with the next-to-smallest

S-KKTPM value to the true PF, and so on. Finally, the
solutions with the smallest S-KKTPM are preferred to
survive and transition to the new population.

Input: x
Output: S-KKTPM value

(1) begin
(2) Calculate ∇fi(x) and ∇gj(x), i � 1, . . . , M, j � 1, . . . , J.
(3) Solve equation (10) utilizing MATLAB’s fmincon() function to fnd ξk

(4) end

ALGORITHM 1: S-KKTPM pseudocode.

Input: Population size (N), set of reference points RP← RP1, RP2, . . . , RPL , Generation number, PCrossover, ϵ Parameter
Output: Children

(1) Create initial parent population Pt of size N;
(2) Repeat
(3) Generate ofspring population Qt from Pt by applying selection, crossover, and mutation operators;
(4) Combine Pt and Qt population (i.e., Rt � Pt + Qt);
(5) Classify Rt into diferent fronts (F1, F2, etc., where F1 is the best non-dominated front, F2 is the next best non-dominated front,

and so on) utilizing non-dominated sorting algorithm;
(6) Calculate the S-KKTPM metric values of each front individual using the updated niching strategy specifed in Algorithm 3;
(7) Create a new parent population by choosing individuals, which are closer to the better front and have the lowest S-KKTPM value;
(8) Until (maximum number of generations)

ALGORITHM 2: RS-KKTPM pseudocode.

Input: Population P← x1, x2, . . . , xN , set of reference points RP← RP1, RP2, . . . , RPL , set of preference radius
δ← δ1, δ2, . . . , δL 

Output: Ofspring solutions;
(1) begactin
(2) for i← 1 to Ldo
(3) for j← 1 to Ndo
(4) dis(RPi, xj) �Euclidean distance between RPi and xj;
(5) end for
(6) di sRPixmindisi

� min di s(RPi, xj) ;
(7) end for
(8) mid-pointMP← xmindis1

, xmindis2
, . . . , xmindisL

 ;
(9) for i← 1 to Ldo
(10) for j← 1 to Ndo
(11) di s(MPi, xj) �Euclidean distance between MPi and xj;
(12) end for
(13) end for
(14) for i← 1 to Ldo
(15) for j← 1 to Ndo
(16) ifdi s(xmindisi

, xj)< � δi, then
(17) Calculate S-KKTPM value at iterate xj//Algorithm 1;
(18) else
(19) Set S-KKTPM (xj) equal to 106;
(20) end if
(21) end for
(22) end for
(23) end

ALGORITHM 3: RS-KKTPM niching strategy.
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Step 3. Good distribution of the obtained solutions. Te
ϵ-clearing selection strategy, employed in the original
R-NSGA-II, is used in RS-KKTPM to control the di-
versity of chosen solutions near the RPs. A solution is
selected randomly from the set of non-dominated
solutions to implement this strategy.Ten, any solution
with a sum of normalized diferences in objective values
less than ϵ is selected and then given a high-preference
distance value to discourage it from remaining in the
next generations of the evolution process. Te way is
then repeated with a new solution picked from the set
of efcient points (excluding the one previously se-
lected). Te value of ϵ is selected according to the
application and can be diferent for each objective.
Tus, it is formed as a parameter provided by the DMs.

Figure 8 depicts how to determine the size of the ROI for
each RP using the mid-point strategy. As discussed in step 1
above, the mid-point is a member of the population that is
closest to the RP. As shown in Figure 8, RP can exist
anywhere in the objective region (feasible or unfeasible),
whereas the mid-point can exist anywhere in the feasible
objective domain only. Te purpose of the proposal of mid-
point strategy can be summarized as follows: (1) getting PO
solutions that are close to the given RP; (2) determining the
size of the ROI by calculating the Euclidean distance between
each solution and the mid-point (each distance value is
normalized using zero as the lower bound and one as the
upper bound to stay within the interval [0, 1]; the solutions
that lie within δ value are candidates to be within the ROI);
and (3) obtaining a good convergence of solutions towards
the ROI. As discussed in step 2 above, the S-KKTPM metric
acts as a diferentiator in selecting a solution that should
remain in the next generations of the optimization process.
Te solution with the smallest S-KKTPM value is prefer-
entially kept for the next generations because it is the closest
to the true PF. Tis way, the RS-KKTPM can obtain good

convergence of solutions towards the ROI. Te introduced
algorithm can well distribute solutions along the preferred
part. RS-KKTPM works well with diferent RPs (feasible or
infeasible) in the objective space, as displayed in Figure 8. In
real-world applications, objectives should be normalized
when they do not have the same units. Otherwise, δ is not a
meaningful parameter.

One of the essential advantages of the introduced
method is its ability to control the size of the preferred areas
separately by a single simulation run (see Figure 8). Tis is
done using the preferred-region sizing strategy discussed
above, based on the S-KKTPMmetric. Tis metric is used as
a preference operator to select a subset of solutions close to
the PF in order to move to the next population. As the
iteration approaches the PF, S-KKTPM value decreases
monotonically almost to the fnal minimum value (zero).
Tis means that the S-KKTPM metric can know the
proximity of a point in the search space to the PF. Trough
this strategy, the introduced algorithm can steer the solu-
tions during the optimization process towards the preferred
regions in proportion to the size of each area. In other words,
the large ROI gets more PO solutions compared to the
smaller preferred region.

On the other hand, the original R-NSGA-II algorithm
cannot control the size of the preferred regions separately
through a single run. Te reason is the preferred-region
sizing strategy used in this algorithm, which is based on the
Euclidean distance metric. Tis metric is utilized as a
preference operator in the R-NSGA-II algorithm. However,
the Euclidean distance metric does not have the unique
properties that the S-KKTPM metric does. For example, the
fnal minimal Euclidean distance value is unknown. In other
words, the Euclidean distance metric does not have any
information about the proximity of a point to the PF. So, the
R-NSGA-II algorithm cannot obtain diferent ranges of ROI
in a single run.
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S-KKTPM
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Deleted Points
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Figure 7: S-KKTPM-based metric in R-NSGA-II procedure.
Numbers indicate the assigned ranks of points.
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Figure 8: ROIs for DM with diferent ranges.
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5. Experimental Results and Discussion

Tis section uses a set of benchmark problems and engi-
neering design problems to test our introduced methodol-
ogy. Specifcally, we adopted fve two-objective
unconstrained problems taken from the ZDT test suite [45],
four bi-objective constrained problems (BNH, SRN, OSY,
and TNK) taken from [46], and seven test problems having
from three to ten objective functions taken from the DTLZ
test suite [47]. In addition, we adopted two engineering
design problems, the welded beam design problem with two

objective functions (taken from [48]) and the car side impact
design problem with three objective functions (taken from
[49]).Ten, we compare the performance of the RS-KKTPM
approach with six EMO preference approaches, including
R-NSGA-II, g-NSGA-II [27], r-NSGAII [28], R-NSGA-III
[50], WV-MOEA-P [51], and MOEA/D-PRE.

Te parameters of the suggested method are set as
follows:

(i) Reproduction operators: as suggested in original
study [26], simulated binary crossover (SBX)

Table 2: Parameters: columns from left to right represent problem name, number of objectives, number of variables, population size,
maximum number of generations, reference points, and size of region of interest.

Problem nobj nvar Popsize MaxGen Ref. point Size of ROI
M n N RP

��→
δ

ZDT1 2 30 40 200

RP1 � (0.0, 0.8) 0.05
RP2 � (0.2, 0.6) 0.05
RP3 � (0.3, 0.3) 0.05
RP4 � (0.7, 0.25) 0.05
RP5 � (0.9, 0.0) 0.05

ZDT2 2 30 40 200 RP1 � (0.9, 0.5) 0.1
RP2 � (0.3, 0.8) 0.1

ZDT3 2 30 40 200
RP1 � (0.1, 0.4) 0.1
RP2 � (0.5, 0.4) 0.1

RP3 � (0.7, −0.25) 0.1
ZDT4 2 10 80 500 RP1 � (0.6, 0.6) 0.15

ZDT6 2 10 40 200
RP1 � (0.3, 0.8) 0.03
RP2 � (0.9, 0.4) 0.05

RP3 � (0.64, 0.59) 0.1

BNH 2 2 40 200
RP1 � (10, 20) 0.1
RP2 � (60, 15) 0.1
RP3 � (90, 5) 0.1

SRN 2 2 40 200 RP1 � (170, −200) 0.1
RP2 � (100, −50) 0.1

OSY 2 6 40 200 RP1 � (−230, 40) 0.05
RP2 � (−100, 15) 0.1

TNK 2 2 20 200 RP1 � (0.1, 0.90) 0.1
RP2 � (0.6, 0.85) 0.1

Table 3: Parameters: columns from left to right represent the problem name, number of objectives, number of variables, population size,
maximum number of generations, reference points, and size of region of interest.

Problem nobj nvar Popsize MaxGen Ref. point Size of ROI
M n N RP

��→
δ

DTLZ1
3 5 80 300

RP1 � (0.0, 0.25, 0.3) 0.05
RP2 � (0.0, 0.4, 0.15) 0.05
RP3 � (0.0, 0.15, 0.4) 0.05

5 7 80 300 RP1 � (0.2, 0.3, 0.5, 0.3, 0.2) 0.05
10 12 80 300 RP1 � (0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5) 0.1

DTLZ2

3 8 60 300 RP1 � (0.6, 0.5, 0.8) 0.05
RP2 � (0.2, 0.2, 0.6) 0.05

5 14 60 300 RP1 � (0.4, 0.4, 0.4, 0.4, 0.4) 0.02
RP2 � (0.1, 0.1,0.1, 0.1, 0.7) 0.02

10 19 60 300 RP1 � (0.1, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.2, 0.1) 0.05

DTLZ5 3 12 60 300 RP1 � (0.6, 0.6, 0.65) 0.2
RP2 � (0.2, 0.3, 0.8) 0.1
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probability and SBX index are set to 0.9 and 10,
respectively, and the polynomial mutation proba-
bility and mutation index are set to 1/n and 20,
respectively.

(ii) Population size, maximum number of generations,
RPs, and size of ROI (δ): diferent parameters for a
set of diferent test instances are displayed in Tables 2
and 3.

For constraint handling in constraint test problems and
engineering design problems, we handled it by adding a
penalty proportional to the constraint violation to the ob-
jective function value as suggested in the original NSGA-II
algorithm. In minimization problems, this is a popular
approach to deal with constraints in evolutionary
algorithms.

Te proposed RS-KKTPM algorithm is implemented in
the MATLAB R2019a platform. Te source codes for the
comparison methods are provided by PlatEMO [51] or
downloaded from the authors’ home page. Te suggested
and compared methods are simulated on a personal com-
puter with an Intel(R)Core(TM)i7-7500 2.9GHzQuad-Core
Processor and 8GB RAM.

5.1. Experiments on Two-Objective Unconstrained ZDT
Problems. Now, we apply our proposed approach to ZDT1
unconstrained problem (it has a convex PF) with thirty
variables. Figure 9 illustrates the infuence of diferent values
of δ on the distribution of solutions obtained by RS-KKTPM
after 200 generations (i.e., 16000 evaluations, given that RS-
KKTPM evaluates 80 ofsprings per generation). Tree RPs
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Figure 9: Efect of δ in obtaining diferent sizes of desired regions on ZDT1. (a) δ1 � 0.05; δ2 � 0.15; and δ3 � 0.05. (b) δ1 � 0.05; δ2 � 0.05;
and δ3 � 0.15. (c) δ1 � 0.15; δ2 � 0.05; and δ3 � 0.05.
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are chosen: RP1 � (0.8, 0.05), RP2 � (0.55, 0.55), and RP3 �

(0.05, 0.7). Tese RPs are shown in the flled stars. RP1 and
RP3 lie in infeasible search space while RP2 lies in feasible
search space. Te diferent values of δ corresponding to the
RPs are detailed in Figures 9(a)–9(c).

Trough diferent values of δ, the proposed algorithm
can steer the solutions towards the preferred regions in
proportion to the size of each region. Parameter ϵ is still
required to ensure that the obtained solutions are well
distributed within preferred region. In this problem, the
parameter ϵ= 0.005 is chosen. Te solutions obtained are
clustered near the RPs, as shown in Figures 9(a)–9(c). Te
distribution of the obtained PO set depends on the range of
each desired region. In particular, the range of solutions

obtained is equally vast when the value of δ is large. One of
the advantages of RS-KKTPM is that it allows us to adjust the
ranges for the desired region in a single run. Tus, if the DM
wants to get a set of solutions (near each preferred region)
whose number varies depending on the size of each pre-
ferred region separately, diferent values of δ can be chosen.
In other words, the DM can control the spread of the
generated ROIs by changing the value of parameter δ. If δ
= 0.5, the RS-KKTPM provides an approximation of the
entire PF. On the contrary, Figure 10 shows the PO set
produced utilizing R-NSGA-II for the same three RPs on
ZDT1 problem. R-NSGA-II is also performed with ϵ= 0.005
and a population of size 80. It is run until 200 generations.
Figure 10 shows that the DM (by RNSGA-II) cannot obtain
diferent regions of desired regions in a single run. Also, R-

True PF
Ref. Point
R-NSGA-II

RP1 RP2

RP3

10.80.2 0.60 0.4
f1

0

0.2

0.4

0.6

0.8

1

f2

Figure 10: Efcient solutions obtained by R-NSGA-II for three RPs
on ZDT1.
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Figure 11: Efcient solutions obtained by RS-KKTPM on ZDT1
with fve RPs.
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Figure 12: Efcient solutions obtained by RS-KKTPM on ZDT2
with two RPs.
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Figure 13: Efcient solutions obtained by the RS-KKTPM on
ZDT3 with three RPs.
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NSGA-II cannot steer the solutions toward the preferred
regions in proportion to the size of each region.

Henceforth, the parameter ϵ� 0.001 is used in all
problems. First, we consider ZDT1 test problem with fve
RPs, of which three are infeasible and two are feasible, as
shown in Figure 11. Each RP and corresponding size of ROI
are shown in Table 2. RS-KKTPM is utilized for this
problem, where the population members and the maximum
number of generations are 40 and 200, respectively. Te
parameter is set to 0.05 for each ROI. Figure 11 also
demonstrates how easy the proposed algorithm can be
modifed to address multiple RPs. As a result, it discovers
various ROIs. Well-convergent non-dominated solutions
are obtained on PF near all the fve RPs.

ZDT2 is the next problem which has a non-convex PF.
Two RPs are chosen, of which one is feasible and the other is
infeasible, as presented in Table 2. Te range of each region
corresponding to an RP is also presented in Table 2. Te
population members and maximum number of generations,
respectively, are 40 and 200. Figure 12 displays the con-
vergence and distribution of the solutions near the two
chosen RPs. As shown in the fgure, RS-KKTPM algorithm
can easily deal with feasible and infeasible RPs.Te proposed
algorithm proves its ability to converge and distribute the
solutions obtained within the desired ranges provided by the
DMs, as illustrated in Figure 12. RS-KKTPM also showed
good distribution on this problem when RP is in the in-
feasible region.
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Figure 14: Efcient solutions obtained by R-NSGA-II on ZDT3
with three RPs.
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Figure 15: Efcient solutions obtained by RS-KKTPM on ZDT4
with one RP.
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Figure 16: Efcient solutions obtained by R-NSGA-II on ZDT4
with one RP.
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Figure 17: Efcient solutions obtained by RS-KKTPM on ZDT6
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Te test problem ZDT3, with 30 variables, has a dis-
connected set of PFs. Tree RPs are selected (see Table 2), of
which one is infeasible and two are feasible. Te desired
solutions produced by RS-KKTPM and R-NSGA-II are il-
lustrated in Figures 13 and 14. Te population members
were 40, and the maximum number of generations was 200.
Tese two fgures demonstrate that our approach is able to
steer solutions towards the PF in proportion to the size of
each ROI, while the R-NSGA-II cannot. As illustrated in
Figure 13, our approach does not get stuck in any locally PO
part, and all generated solutions are non-nominated and
global PO solutions.

Next, the test problem of ZDT4 with 10 variables is
solved utilizing RS-KKTPM and R-NSGA-II. Tis problem
has many local PFs. One RP is used with a range of ROI of

0.15, as displayed in Table 2. Te RP is (0.6, 0.6), and the
generations are 500. Te plot of the desired solutions pro-
duced by RS-KKTPM and R-NSGA-II is represented in
Figures 15 and 16, respectively. As illustrated by the two
fgures, the performance of RS-KKTPM is much better than
that of R-NSGA-II in terms of the distribution and con-
vergence of solutions from the PF. As shown in Figure 15,
the selected RP is somewhat far from the PF, which indicates
the ability of the introduced approach to work well in the
case of distant RPs.Tus, as shown in Figure 15, even though
the problem has more than 100 local fronts, the introduced
algorithm can converge well to the true PF.

Finally, we apply our proposed method to a ZDT6
problem that has a non-convex PF. Figures 17 and 18 display
the obtained PO solutions by RS-KKTPM and R-NSGA-II,
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Figure 18: Efcient solutions obtained by R-NSGA-II on ZDT6
with three RPs.
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Figure 19: Efcient solutions obtained by RS-KKTPM on BNH
with three RPs.
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Figure 20: Efcient solutions obtained by RS-KKTPM on SRN
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Figure 21: Efcient solutions obtained by RS-KKTPM on OSY
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respectively. Both techniques used the same RPs, the same
number of population members, and the same number of
generations (see Table 2).Tree RPs are chosen, of which the
frst lies in feasible search space, the second lies close to/on
PF, and the third lies in infeasible search space. For RS-
KKTPM, the sizes of ROIs corresponding to RPs (0.9, 0.4),
(0.3, 0.8), and (0.64, 0.59) are 0.03, 0.05, and 0.10. For
R-NSGA-II, the size of ROIs for all RPs is 0.10. Note that
R-NSGA-II cannot adjust the size of each ROI separately, as
in RS-KKTPM. As it is clear from Figure 17, the introduced
algorithm can seek solutions towards the ROI in proportion
to the size of each area separately, whereas R-NSGA-II
cannot. Te ROI corresponding to RP (0.64, 0.59), with δ �

0.1, contains a large number of points compared to the ROI
corresponding to RP (0.3, 0.8) with δ � 0.05, as shown in

Figure 17. Also, the ROI corresponding to RP (0.9, 0.4), with
δ � 0.03, contains a few number of solutions compared to
the ROIs corresponding to RPs (0.3, 0.8) and (0.64, 0.59).
Tis means that if the DM wants to get PO solutions of
diferent sizes for all regions, the introduced algorithm can
do that. In contrast, R-NSGA-II cannot control the number
of solutions for each desired area. Tis is because parameter
ϵ takes only one value for all preferred regions corre-
sponding to the given RPs. In other words, when multiple
RPs exist, R-NSGA-II cannot give diferent values for ϵ in a
single run. Tis means that if the DM wants to get PO
solutions of diferent sizes for all regions, the R-NSGA-II
algorithm cannot do that.

5.2. Experiments on Two-Objective Constraint Problems.
We now consider two-objective constraint problems: BNH,
SRN, OSY, and TNK [46]. RPs and some essential pa-
rameters used to solve these problems are shown in Table 2.
BNH, TNK, and SRN have only two constraints and two
variables. First, the efcient solutions obtained by the RS-
KKTPM on BNH with three RPs are illustrated in Figure 19.
It is clear from this fgure that our approach can fnd the
desired regions near the RPs. Second, the solutions obtained
on SRN with two RPs are displayed in Figure 20. Te RS-
KKTPM algorithm works well when the RP is in the feasible
or infeasible domain, as displayed in Figure 20. Next, we
consider the OSY test problem, which has six constraints
and six variables. Figures 21 and 22 show the obtained
solutions by RS-KKTPM and R-NSGA-II on OSY, respec-
tively. Two RPs are chosen with a range of ROIs and a
population� 40 (see Table 2). Although RS-KKTPM cannot
converge to the true PF, it converges slightly better than
R-NSGA-II, as shown in Figures 21 and 22.

Finally, the desired regions obtained by the RS-KKTPM
and R-NSGA-II on the TNK problem are illustrated in
Figures 23 and 24, respectively. Two RPs and population
members are chosen as displayed in Table 2. As shown in
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Figure 22: Efcient solutions obtained by R-NSGA-II on OSY with
two RPs.
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Figure 23: Efcient solutions obtained by RS-KKTPM on TNK
with two RPs.
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Figure 24: Efcient solutions obtained by R-NSGA-II on TNK
with two RPs.
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Figures 23 and 24, the performance of our approach is a little
similar to R-NSGA-II. In summary, the introduced ap-
proach balances diversity and convergence around ROI for
constraint test problems and handles any number of pre-
defned RPs.

5.3. Experiments onTree-Objective Problems. We will select
the original DTLZ1, DTLZ2, and DTLZ5 and their scaled
versions. Table 3 provides some information about these
problems and some parameters required. First, the DTLZ1
problem contains many local PFs, possibly causing some
points to stop. Tis scenario is a relatively complicated
problem to address for global optimality. Figure 25 shows
the obtained preferred PO solutions using RS-KKTPM and
R-NSGA-II algorithms on the three-objective DTLZ1
(DTLZ13) problem, and the parameter values are presented
in Table 3. Te three aspiration points are chosen. Te
distribution and convergence of solutions found by RS-

KKTPM are substantially superior to those by R-NSGA-II,
as displayed in Figure 25. Next, RS-KKTPM is utilized to
solve the three-objective DTLZ2 problem. Figure 26 shows
the obtained solutions with 60 population members with
two RPs. Figure 26 clearly illustrates that the RS-KKTPM
algorithm can access the efcient region of true PF with few
number of population sizes, thereby helping the DM de-
termine the required ROI easily. Finally, the RS-KKTPM is
utilized to solve the three-objective DTLZ5 problem. Te
two RPs, RP1 � (0.6, 0.6, 0.65)T and RP2 � (0.2, 0.3, 0.8)T,
are used.Te sizes of the preferred areas for RP1 and RP2 are
0.2 and 0.1, respectively, as shown in Table 3. Our algorithm
is employed to solve this test problem with 60 populations
and runs up to 300 generations.Te obtained preferred areas
of the true PO solutions are displayed in Figure 27. Te
obtained solutions are distributed according to the size of
each preferred area. In a single simulation run, both areas are
discovered. Note that the number of solutions generated in
the frst preferred area, corresponding to RP1, is greater than
that generated in the second preferred area, corresponding
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Figure 25: Comparison of performances on three-objective DTLZ1 with three RPs: (a) RS-KKTPM; (b) R-NSGA-II.
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Figure 26: Efcient solutions obtained by RS-KKTPM on three-
objective DTLZ2 with two RPs.
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Figure 27: Efcient solutions obtained by RS-KKTPM on three-
objective DTLZ5 with two RPs.
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to RP2. Well-convergent and well-distributed solutions are
obtained on PF in all two RPs. Tus, the DM can control the
size of each efcient region (s) of the true PF separately and
in a single simulation run.

5.4. Experiments on Many-Objective Problems. Finally, we
test our introduced approach on the many-objective ver-
sions of the problems of DTLZ1 andDTLZ2. Table 3 displays
all parameters used for 5 and 10-objective problems. First,
RS-KKTPM is used for DTLZ15 and DTLZ110 problems.
Population sizes of 80 are used for the two problems. Fig-
ures 28 and 29 present the obtained part in a parallel co-
ordinate plot. One RP is used for each problem, as shown in
Table 3. Te PO solutions of these problems must satisfy


M
i�1 fi � 0.50. RS-KKTPM can discover the needful regions

of the efcient set corresponding to the one predefned RP by
the DM.

Finally, the RS-KKTPM algorithm is applied for DTLZ25
and DTLZ210 with 14 and 19 decision variables. Tis algo-
rithm is applied for these test problems with 60 populations
and runs up to 300 generations. Figures 30 and 31 show the
obtained solutions for DTLZ25 and DTLZ210 with two and
one aspiration points, respectively. Te PO solutions to these
problems must obey the next equation: 

M
i�1 f2

i � 1. When
computing the left side of this equation for all generated PO
solutions, all the values lie in the range [1.000002, 1.000170] for
DTLZ25 problem and [1.000043, 1.002780] for DTLZ210
problem, indicating that every solution is very close to the true
PF.Tus, RS-KKTPM can converge to the PF corresponding to
the chosen aspiration points.

5.5.Experiments onEngineeringProblems. Wenow apply the
RS-KKTPM to a couple of engineering design problems.Te
frst test problem has two objectives, while the second test
problem has three.
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Figure 29: Efcient solutions obtained by RS-KKTPM on ten-
objective DTLZ1 with one RP.
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Figure 28: Efcient solutions obtained by RS-KKTPM on fve-
objective DTLZ1 with one RP.
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Figure 30: Efcient solutions obtained by RS-KKTPM on fve-
objective DTLZ2 with two RPs.
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Figure 31: Efcient solutions obtained by RS-KKTPM on ten-
objective DTLZ2 with one RP.
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5.5.1. Welded Beam Design Problem. First, we now employ a
two-objective welded beam design problem [48] as a real-
world example. Te frst objective is to minimize the cost of
fabrication, whereas the other objective is to minimize the
end defection of the welded beam. Te design of welded
beam structure is shown in Figure 32. Tis problem involves
four decision variables, namely, h (weld thickness), l (clip
length), t (the height of bar), and b (the thickness of bar). It
has also four non-linear constraints. Te problem is
mathematically formulated as follows [48]:

minimize:

f1(x) � 1.10471h
2
l + 0.04811

28
2

  + l tb,

f2(x) �
1372
625bt

3
 

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

subject to

g1(x) � τ − 13, 600≤ 0, g2(x) � σ − 30, 000≤ 0,

g3(x) � h − b≤ 0, g4(x) � 6, 000 − Pc ≤ 0,

0.125≤ h, b≤ 5.0, and 0.1≤ l, t≤ 10.0,

(11)

where

υ �
6∗ 103 

(sqrt(2)∗ hl)
,

κ1 � 6∗ 103 
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  +
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2
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2
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707
1000

 hl
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12
+

1
4

  l
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  ,

α �
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β �
l υα

sqrt (1/4) l
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+(t + h)
2
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�����������
υ2 + α2 + β 


,

σ �
504∗ 103 

bt
2

 
,

Pc �
43∗ 514243

36
 ∗ sqrt

���������
b
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2

(144/4)
 



1.0 − t
2680
94919

  .
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(12)

Figure 33 shows the efcient solutions produced by RS-
KKTPM, R-NSGA-II, R-NSGA-III, and MOEA/D-PRE [30],
respectively, to the welded beam design problem. Te relevant
parameters of the four comparison algorithms are briefy

presented below. Tree RPs are chosen: RP1 � (3, 0.005), RP2
� (15, 0.003), and RP3 � (25, 0.002). Te comparison algo-
rithms are used with 100 population members and run for 200
generations. For RS-KKTPM approach, the radius

h

b t

L

l

Figure 32: Welded beam design [52].
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corresponding to each RP is δ1 � 0.2, δ2 � 0.1, and δ3 � 0.05. For
the rest of the algorithms, the size of preferred regions is equal to
0.1. Note that the proposed algorithm can control the size of
each region separately, while other algorithms cannot. In this
problem, all objective function values are normalized using the
ideal point as the lower bound and the nadir point estimation as
the upper bound to stay within the interval [0, 1].We used (0, 0)
as the ideal point and (36, 0.015) as the nadir point.

Figure 33(a) shows that the introduced algorithm out-
performs the others by adjusting the size of each preferred
region (separately) corresponding to the supplied RP. It has
the ability to steer the solutions towards the preferred re-
gions in proportion to the size of each area. As shown in
Figure 33(a), the obtained solutions in the preferred region,
corresponding to RP1, are more compared to the obtained
solutions in the other two preferred regions. Indeed, the size
of the ROI, corresponding to RP1, is greater than the sizes of

the other two preferred regions, i.e., δ1 > δ2 and δ1 > δ3. On
the other hand, the preferred region, corresponding to RP3,
contains a few solutions compared to the other two preferred
regions because δ3 < δ1 > and δ3 > δ2. Figure 33(a) also
shows that the RS-KKTPM can produce well-distributed
solutions along the preferred part. Te advantages of the RS-
KKTPM, discussed above, are mostly not found in R-NSGA-
II, R-NSGA-III, and MOEAD-PRE (see Figures 33(b)–
33(d)). In summary, if the DM is interested in fnding PO
solutions in three main areas (intermediate cost and de-
fection, minimum cost, and minimum defection), the in-
troduced algorithm can fnd solutions near the given RPs,
rather than fnding solutions on the whole PF, allowing the
DM to deal with only a few solutions that lie in parts of her/
his interest. Moreover, if the DM is interested in fnding
these solutions within diferent sizes for all regions, the
proposed algorithm can provide them.
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Figure 33: Comparison of performances on the welded beam design problem with three RPs: (a) RS-KKTPM; (b) R-NSGA-II; (c) R-NSGA-
III; (d) MOEA/D-PRE.
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Figure 34: Car side impact design [53].
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Figure 35: Comparison of performances on the car side impact problem with two RPs: (a) RS-KKTPM; (b) R-NSGA-II; (c) R-NSGA-III;
(d) MOEA/D-PRE.
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5.5.2. Car Side Impact Design Problem. Car side impact
design is a constrained optimization problem [49]. Tis
problem has three optimization objectives which are de-
scribed as follows: the frst is to reduce the car’s weight, the
second objective is to minimize the pubic force experienced
by a passenger, and the last objective is to minimize the

average velocity of the V-Pillar responsible for withstanding
the impact load. It has seven decision variables: B-Pillar,
door beam, B-Pillar inner reinforcement, foor side inner,
door beltline reinforcement, cross members, and roof rail
(see Figure 34). Te mathematical model of this problem is
as follows [49]:

minimize:

f1(x) � 1.98 + 4.9v1 + 6.67v2 + 6.98v3 + 4.01v4 + 1.78v5 + 0.00001v6 + 2.73v7,

f2(x) � 4.72 − 0.5v4 − 0.19v2v3,

f3(x) � 0.5 10.58 − 0.674v1v2 − 0.67275v2 + 16.45 − 0.489v3v7 − 0.843v5v6( ,

⎧⎪⎪⎨

⎪⎪⎩

subject to

g1(x) � 1.160 − 0.3717v2v4 − 0.0092928v3 ≤ 1.0,

g2(x) � 0.261 − 0.0159v1v2 − 0.06486v1 − 0.019v2v7

+ 0.0144v3v5 + 0.0154464v6 ≤ 0.32,

g3(x) � 0.214 + 0.00817v5 − 0.045195v1 − 0.0135168v1

+ 0.03099v2v6 − 0.018v2v7 + 0.007176v3

+ 0.023232v3 − 0.00364v5v6 − 0.018v2v2 ≤ 0.32,

g4(x) � 0.740 − 0.610v2 − 0.031296v3 − 0.031872v7 + 0.227v2v2 ≤ 0.32,

g5(x) � 8.980 + 3.8180v3 − 4.2v1v2 + 1.27296v6 − 2.68065v7 ≤ 0.32,

g6(x) � 33.860 + 2.95v3 − 5.057v1v2 − 3.795v2 − 3.4431v7

+ 1.45728≤ 0.32,

g7(x) � 46.360 − 9.90v2 − 4.4505v1 ≤ 0.32,

g8(x) � 4.720 − 0.50v4 − 0.190v2v3 ≤ 4.0,

g9(x) � 10.58 − 0.674v1v2 − 0.67275v2 ≤ 9.9,

g10(x) � 16.45 − 0.489v3v7 − 0.843v5v6 ≤ 15.7,

0.5≤ v1,3,4 ≤ 1.5, and 0.45≤ v2 ≤ 1.35, 0.875≤ v5 ≤ 2.625, and 0.4≤ v6,7 ≤ 1.2.

(13)

Figure 35 shows the solutions produced by RS-KKTPM,
R-NSGA-II, R-NSGA-III, and MOEAD-PRE on the car side
impact design problem. In this problem, all relevant pa-
rameters of the four comparison approaches are briefy
presented below. Two RPs are chosen: RP1� (40, 3.5, 11) and
RP2� (26, 4, 11.5). For this test problem, the comparison
algorithms are used with 80 population members and run
until 300 generations. For the RS-KKTPM algorithm, the
radius corresponding to each RP is δ1 � 0.1 and δ2 � 0.05. For
the rest of the algorithms, the size of preferred regions is
equal to 0.1. In this problem, all objective function values are
normalized using the ideal point (15, 3, 10) and nadir point
(50, 5, 14). Figure 35(a) shows that the suggested algorithm
can control the number of solutions for each desired area in
proportion to its size. In other words, a larger desired area
gets more solutions, while a smaller preferred region gets
fewer solutions. As displayed in Figure 35(a), the number
of solutions for the frst preferred area, corresponding to the
P1, is more than that for the second desired area, corre-
sponding to the RP2. Tis is because the size of the frst

region is greater than the size of the second region, i.e.,
δ1 > δ2. Terefore, RS-KKTPM can control the size of each
desired area separately, while the rest of its algorithms
cannot do that (see Figures 35(b)–35(d)). Tus, if the DM is
interested in fnding solutions in region of diferent sizes, the
introduced algorithm can fnd solutions near the RPs and
proportional to the size of each preferred area separately.

5.6. PerformanceMetrics. No single performance metric can
provide an accurate assessment of an EMO’s performance
[54]. In our empirical investigations, we use two of the most
recognized performance metrics to assess the quality of
preferable efcient solutions of preference-based EMO al-
gorithms: R-HV and R-IGD. [55]. Both metrics are utilized
to detect the ROI’s convergence and the diversity of efcient
solutions simultaneously. Tey are based on two perfor-
mance metrics, the hypervolume (HV) metric and the
inverted generational distance (IGD) metric, which are
designed for the entire PF and applicable for partial pref-
erable efcient solutions. Te larger the R-HV values are or
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the smallest the R-IGD values are, the better the perfor-
mance of the tested algorithm is. Additional details can be
found in Li et al. [55].

5.7. Performance Comparison with Other Preference-Based
EMO Algorithms. We compare RS-KKTPM with six EMO
preference algorithms, including R-NSGA-II, g-NSGA-II,
r-NSGAII, R-NSGA-III,WV-MOEA-P, andMOEA/D-PRE,
to verify RS-KKTPM performance. We determine the pa-
rameters of the mentioned algorithms in advance to

approximate a similar ROI and make the experimental
fndings comparable. Te parameters utilized in the com-
parative study are summarized as follows:

(i) Reproduction operators: in all simulations, crossover
probability� 0.9, mutation probability� 1/n, distri-
bution index for SBX operator� 10, and distribution
index for polynomial mutation operator� 20.

(ii) Number of evaluations, population size, and RP
coordinate setting: diferent parameters for a set of
diferent test instances are displayed in Table 4.

Table 4: Parameter setting of the test instances utilized in preference-based EMO algorithms.

Problem Ref. point Popsize Function evaluations
ZDT1 (0.4, 0.5) 40 8000
ZDT2 (0.9, 0.4) 40 8000
ZDT3 (0.1, 0.4) 40 8000
ZDT4 (0.6, 0.6) 80 40000
ZDT6 (0.5, 0.7) 40 8000
DTLZ13 (0.0, 0.4, 0.15) 80 24000
DTLZ23 (0.6, 0.5, 0.8) 60 18000
DTLZ53 (0.2, 0.3, 0.8) 60 18000
DTLZ15 (0.2, 0.3, 0.5, 0.3, 0.2) 80 24000
DTLZ25 (0.4, 0.4, 0.4, 0.4, 0.4) 60 18000
DTLZ110 (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5) 80 24000
DTLZ210 (0.1, 0.2, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.2, 0.1) 60 18000
Welded (15, 0.0030) 100 20000
CAR (40, 4, 11) 80 24000

Table 5: Findings of mean and standard deviation for R-HV values utilizing several preference-based EMO algorithms.

Problem RS-KKTPM R-NSGA-II g-NSGA-II r-NSGA-II R-NSGA-III WV-MOEA-P MOEA/D-PRE

ZDT1 4.5121 (4.35e− 2) 4.4507
(8.75e− 2)

4.2776
(1.88e− 1)

4.2303
(9.67e− 2)

4.3990
(2.66e− 2)

2.1604
(4.50e− 1)

4.1497
(2.44e− 1)

ZDT2 4.5090 (5.57e− 2) 4.4241 (1.32e− 1) 4.4231
(1.58e− 1)

4.2033
(1.08e− 1)

3.8722
(2.83e− 1)

1.8046
(9.27e− 2)

4.1300
(1.96e− 1)

ZDT3 3.7582 (2.88e− 2) 3.7009
(2.06e− 2) 3.5993 (1.2e− 1) 3.2484

(2.52e− 1)
3.0962

(2.81e− 1)
2.5306

(4.11e− 1)
3.4078

(3.56e− 1)

ZDT4 5.0791 (1.71e− 1) 5.0525 (1.69e− 1) 5.2728
(9.86e− 3)

4.0871
(2.77e− 2)

5.0714
(8.40e− 3)

1.5734
(6.56e− 1)

5.1849
(2.40e− 2)

ZDT6 4.0303 (2.57e− 2) 3.9785
(5.70e− 2)

3.8749
(1.12e− 1)

3.9565
(1.17e− 1)

2.7656
(5.55e− 1)

1.4462
(1.25e + 0)

3.9088
(5.65e− 1)

DTLZ13 8.3033 (1.10e− 2) 8.0683
(6.85e− 2)

5.4812
(0.00e + 0)

8.1306
(8.30e− 1)

8.1918
(4.65e− 3)

7.8932
(6.79e− 3)

8.2689
(1.31e− 1)

DTLZ23 9.2300 (1.59e− 1) 9.0270
(5.33e− 2)

9.1524
(7.71e− 2)

9.1859
(1.18e− 1)

9.6399
(6.57e− 4)

9.1626
(8.06e− 3)

9.8589
(7.14e− 2)

DTLZ53 7.4794 (3.86e− 2) 7.1209 (9.84e− 2) 7.0461
(6.16e− 2)

6.9673
(1.12e− 1)

7.3971
(3.59e− 2)

7.3473
(1.00e− 2)

7.4601
(4.93e− 1)

DTLZ15
51.8760

(1.50e+ 0)
50.5049
(1.38e + 0) — 31.9832

(14.14e + 0)
46.7584
(1.06e− 1)

44.9438
(6.13e− 2)

47.9684
(6.82e− 1)

DTLZ25
29.4583
(1.10e + 0)

28.6195
(5.47e− 2)

4.3340
(3.19e + 0)

29.2152
(7.47e− 1)

31.0704
(1.37e+ 0)

29.2568
(1.41e− 1)

30.5327
(1.41e + 0)

DTLZ110
1486.5990
(109.92e+ 0)

1412.7149
(119.32e + 0) 0.0 (0.0) 6.6096

(11.112e + 0)
1342.6744
(8.24e + 0)

1260.3203
(11.03e + 0)

1303.7348
(25.98e + 0)

DTLZ210
729.1487

(40.01e+ 0)
704.7066
(2.57e + 0)

571.4168
(116.75e + 0)

7.6764
(12.83e + 0)

664.9139
(5.08e + 0)

594.3837
(24.46e + 0)

445.8092
(93.27e + 0)

Welded
14.0481 (3.769e−

01)
13.9529
(1.94e− 3)

4.0074
(8.37e− 05)

4.0077
(5.07e− 08)

13.9654
(6.05e− 4)

4.1616
(5.72e− 3)

9.1082
(11.32e + 0)

CAR
10.0671

(8.720e− 01)
8.2522

(8.28e− 1)
1.0275

(5.07e + 0)
2.2254

(1.52e + 0)
9.9254

(5.05e− 2)
6.5282

(5.96e + 0)
8.7214

(4.72e− 1)
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(iii) Number of runs: it is 21 for all algorithms on all test
problems.

(iv) Size of the preferred region: it is 0.1 for all algo-
rithms on all test problems.

(v) Parameters in r-NSGAII: the weight vector w was
set as (1/M, 1/M, . . .).

As mentioned earlier, S-KKTPM requires the gradient of
all objective and constraint functions. Ten, algebraic cal-
culations are performed to compute the theoretical closeness
of x to the true optimal solution. For MOPs, S-KKTPM
calculates the closeness metric from a specifc PO point. In
this article, the introduced RS-KKTPM approach is then
compared with six EMO approaches. For a fair comparison
between all algorithms, we used equal function evaluations
in the comparison.

Compared to the number of function evaluations re-
quired for a solution evaluation, the savings reported for
the S-KKTPM calculation may not be signifcant because
the evaluation of S-KKTPM for all solutions is an addi-
tional computational expense and requires more compu-
tation. Tus, once gradients are computed for a real-world
problem, the computational time needed for the S-KKTPM
optimization procedure would make a small addition to the
overall computational time. In the meantime, S-KKTPM
helps improve convergence and can diferentiate between
diferent non-dominated solutions that are not applicable
by using the Euclidean distance or any other evolutionary
algorithm.

Tables 5 and 6 display the mean and standard deviation of
R-HV and R-IGD values, respectively. Te best mean of R-HV
and R-IGD metrics is highlighted in bold in Tables 5 and 6.

According to R-HV metric, the ROI is approximated by
the introduced RS-KKTPM algorithm in a better way than
other algorithms for all the examined problems except the
ZDT4, DTLZ23, and DTLZ25 test cases (see Table 5). We
obtain almost the same results according to the R-IGD
metric, as shown in Table 6. Based on the R-HV values and
the R-IGD values, RS-KKTPM demonstrates better distri-
bution and convergence than other algorithms.Te practical
fndings on the 14 benchmark test problems illustrate that
the RS-KKTPM approach outperforms the other approaches
used in 11 of 14 comparisons.

6. Conclusions

In this study, the RS-KKTPM preference-based EMO al-
gorithm is proposed. It is an expansion of the R-NSGA-II
method, where the Euclidean distance metric is replaced by
the S-KKTPM metric. Te following are the properties of
this new algorithm:

(i) Te RS-KKTPM can obtain the ROI at any specifc
position of the RP (in the feasible area, on/near the
PF, and the infeasible area).

(ii) Te range of each obtained ROI can be controlled by
adjusting the interest radius size of each ROI sep-
arately and in a single simulation run.

Table 6: Findings of mean and standard deviation for R-IGD values utilizing several preference-based EMO algorithms.

Problem RS-KKTPM R-NSGA-II g-NSGA-II r-NSGA-II R-NSGA-III WV-MOEA-P MOEA/D-PRE

ZDT1 0.0152
(6.88e− 3)

0.0275
(1.05e− 2) 0.0677 (3.64e− 2) 0.0705 (2.05e− 2) 0.0339

(6.90e− 3)
0.88289

(2.40e− 1)
0.0990

(5.68e− 2)

ZDT2 0.0159
(1.11e− 2)

0.0311
(3.55e− 2) 0.0431 (2.91e− 2) 0.0776 (1.76e− 2) 0.1770

(8.46e− 2) 1.0425 (4.92e− 2) 0.1082 (5.22e− 2)

ZDT3 0.0155
(8.17e− 3)

0.0198
(7.79e− 3) 0.0357 (3.01e− 2) 0.1510 (9.05e− 2) 0.2085

(1.22e− 1) 0.4436 (1.85e− 1) 0.1103 (1.28e− 2)

ZDT4 0.0366
(3.62e− 2)

0.0409
(3.72e− 2) 0.0056 (1.83e− 3) 0.2972 (6.56e− 3) 0.0236

(1.73e− 3) 1.1441 (4.00e− 1) 0.0095 (1.95e− 3)

ZDT6 0.0305
(6.01e− 3)

0.0468
(1.10e− 2) 0.0728 (3.27e− 2) 0.0555 (2.43e− 2) 0.4645

(2.22e− 1) 1.4101 (9.86e− 1) 0.0986 (1.80e− 1)

DTLZ13
0.0805

(4.54e− 3)
0.1003

(5.68e− 3) 0.4525 (0.00e + 0) 0.0959 (9.95e− 2) 0.0814
(1.40e− 3) 0.1091 (8.56e− 3) 0.0830 (1.56e− 2)

DTLZ23
0.0598

(9.62e− 3)
0.0673

(3.50e− 3) 0.0318 (6.197e− 3) 0.0597 (1.04e− 2) 0.0210
(6.89e− 5) 0.0532 (3.19e− 4) 0.0313 (5.05e− 3)

DTLZ53
0.0834

(1.39e− 3)
0.1011

(5.32e− 3) 0.1254 (4.12e− 3) 0.1144 (8.83e− 3) 0.0865
(1.80e− 3) 0.0903 (7.70e− 4) 0.0857

(3.97e− 2)

DTLZ15
0.1125

(1.61e− 2)
0.1507

(1.91e− 2) — 0.6338 (6.84e− 1) 0.1425
(1.02e− 3)

0.18415
(1.20e− 3)

0.16923
(8.06e− 3)

DTLZ25
0.1388

(1.79e− 2)
0.1536

(7.06e− 4) 1.4854 (3.70e− 1) 0.1408 (8.11e− 2) 0.0930
(2.94e− 2)

0.12086
(3.50e− 3) 0.1453 (1.86e− 2)

DTLZ110
0.7036

(4.60e− 2)
0.7324

(6.14e− 2)
447.2251

(222.61e + 0) 4.6381 (1.78e + 0) 0.7203
(9.92e− 3)

0.75856
(4.06e− 3) 0.7697 (1.23e− 2)

DTLZ210
0.2621

(1.52e− 2)
0.3456

(2.76e− 3) 1.0850 (1.26e− 1) 3.6118 (8.26e− 1) 0.30169
(1.30e− 2) 0.4210 (5.62e− 2) 0.4701 (7.94e− 2)

Welded
0.9001

(2.62e− 1)
0.9402

(5.63e− 1) 4.400 (1.02e + 0) 3.2354 (1.26e + 0) 0.9358
(3.02e− 5) 1.912 (2.60e + 0) 1.0105 (3.94e− 1)

CAR
1.5211

(5.21e− 1)
1.9402

(7.53e− 1) 5.2504 (22.02e + 0) 3.2356
(26.28e + 0)

1.5564
(6.02e− 1) 2.0502 (2.92e− 1) 1.8502

(5.65e− 1)
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(iii) Te RS-KKTPM algorithm, given herein, improves
the quality of the PF approximation and allows a
uniform distribution of the approximating objective
vectors.

(iv) Te performance of RS-KKTPM is better than that
of R-NSGA-II, g-NSGA-II, r-NSGAI, R-NSGA-III,
WV-MOEA-P, and MOEA/D-PRE on most multi
and many-objective problems.

Te direction of future research focuses on using the
S-KKTPMmetric to improve the performance of other EMO
optimization algorithms by reference direction approaches,
such as MOEA/D and NSGA-III. Tese approaches can also
be utilized to solve engineering design problems and highly
complex problems.
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