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An improved Adam optimization algorithm combining adaptive coefcients and composite gradients based on randomized block
coordinate descent is proposed to address issues of the Adam algorithm such as slow convergence, the tendency to miss the global
optimal solution, and the inefectiveness of processing high-dimensional vectors. Te adaptive coefcient is used to adjust the
gradient deviation value and correct the search direction frstly. Ten, the predicted gradient is introduced, and the current
gradient and the frst-order momentum are combined to form a composite gradient to improve the global optimization ability.
Finally, the random block coordinate method is used to determine the gradient update mode, which reduces the computational
overhead. Simulation experiments on two standard datasets for classifcation show that the convergence speed and accuracy of the
proposed algorithm are higher than those of the six gradient descent methods, and the CPU and memory utilization are
signifcantly reduced. In addition, based on logging data, the BP neural networks optimized by six algorithms, respectively, are
used to predict reservoir porosity. Results show that the proposed method has lower system overhead, higher accuracy, and
stronger stability, and the absolute error of more than 86% data is within 0.1%, which further verifes its efectiveness.

1. Introduction

Te introduction of this study is described in the following
sections.

1.1. Background. With the rapid development of artifcial
intelligence, population optimization algorithms [1], the
memetic algorithm [2], and frst-order optimization
methods, such as random gradient descent [3] and gradient
descent with momentum (SGDM) [4], have been widely
used in the feld of machine learning and play an important
role in solving optimization problems of complex systems.
As a frst-order adaptive step stochastic gradient optimizer,
the Adam algorithm has gained a lot of attention in the feld
of numerical optimization for its outstanding computational
efciency and has been widely used in deep learning with

impressive results [5]. However, the frst-order momentum
of the Adam algorithm is an exponentially weighted average
of the historical gradients, and the update of the search
direction is infuenced by the deviation value of the gradient,
which leads to slow convergence of the model. While the
second-order momentum is accumulated over a fxed time
window, and the data do not vary monotonically with the
time window. Tis generates oscillations in the learning rate
in the later stages of training and leads to failure of the model
convergence. Terefore, it has become a focus of researchers
to seek methods to improve the defects of the Adam al-
gorithm in convergence.

1.2. Related Work. Te Adam algorithm mainly uses mo-
mentum and deviation correction methods to achieve
stronger search ability. Hence, most of the relevant research
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studies focus on further improving the performance of the
optimizer or combining it with other optimization methods
[6]. By assigning a “long-term memory” to the historical
gradients, the AMSGrad [7] algorithm is proposed, which
solves the convergence problem theoretically. Based on the
momentum-accelerated stochastic gradient descent, Ma and
Yarats [8] proposed a quasi-hyperbolic weight decay ac-
celeration algorithm and adjusted the hyperparameters. Luo
et al. [9] compared the generalization and convergence
capabilities of stochastic gradient descent (SGD) and
adaptive methods and provided new variants of Adam and
AMSGrad, identifed as AdamBound and AMSBound, re-
spectively, by using dynamic learning rate variation bounds
to achieve an asymptotic and smooth transition from
adaptivemethods to SGD. Yin et al. [10] proposed a C-Adam
algorithm based on the current gradient, predicted gradient,
and historical momentum gradient to attain iteratively more
accurate search directions by updating the true gradient.
Subsequently, a hybrid Adam-based optimization method
HyAdamC [11] is proposed, which carefully tunes the search
intensity using three-speed control functions: initial, short
term, and long term, thus, signifcantly enhancing the
prediction accuracy. Later, some methods were proposed
such as AdaGrad [12], Yogi [13], Fromage [14], difGrad
[15], RBC-Adam [16], and TAdam [17].

Although the above optimization algorithms can achieve
competent results when used to train neural networks, they
still pose the following three problems. First, the algorithms
need to determine an optimal search speed at each training
step, which may introduce overftting or afect the training
accuracy and testing accuracy [18]. Secondly, the current
momentum used in the Adam is prone to inaccurate search
directions because of gradient deviations caused by the
outliers [17]. Tirdly, such algorithms have difculty in
identifying the current state of the optimized terrain in the
solution space spanned by the weights, and therefore, they
fail to fnd the approximate optimal weights.

1.3. Contribution. To deal with the above problems, an
improved Adam optimization algorithm, combining adap-
tive coefcients and composite gradients based on ran-
domized block coordinate descent, written ACGB-Adam, is
proposed. Te contributions and innovations of this article
are summarized as follows. (1) To deal with the problem of
slow convergence of the Adam algorithm, adaptive coef-
cients are used for computing the degree of diference be-
tween the frst-order momentum and the current gradient.
Tis helps to reduce the degree of infuence of parameters on
the deviated gradient caused by the outlier points, improve
the proportion of infuence of the parameters on the mo-
mentum at the previous moment, avoid the gradient devi-
ation, and enhance the search speed and convergence
accuracy. (2) Aiming at the shortcoming that the Adam
algorithm tends to miss global optimal solution, the pre-
diction gradient is introduced and combined with the
current gradient and the frst-order momentum to form a
composite gradient, thus, providing a joint determination of
the direction of the iterative optimization. Tis helps to get a

more accurate search direction and improve the global
search capability, thereby speeding up the search for the
global optimal solution. (3) To address the issue of dealing
with high-dimensional vectors and the high computational
overhead of the Adam algorithm, the randomized block
coordinate descent (RBC) is introduced to determine the
gradient update mode according to the random variables of
the diagonal matrix. Tis ensures that only one block of the
gradient needs to be computed in each iteration instead of
the entire gradient. Ten, the dynamic balance between the
convergence accuracy and the system overhead can be
achieved. (4) Combining the above ideas, the ACGB-Adam
optimization algorithm is proposed. Te optimization
performance of the proposed algorithm is verifed by
standard classifcation datasets Mnist and CIFAR-10, which
is further applied to BP neural networks and compared with
optimization methods based on SGD, AdaGrad, Adam,
C-Adam, and RBC-Adam. From the experimental results, it
can be concluded that the algorithm proposed in this article
has better performance, and its convergence speed, stability,
and prediction accuracy are higher than those of the other
fve methods.

2. Adam Algorithm

Te Adam algorithm is explained in the following sections.

2.1. Basic Principles. Te Adam algorithm [19] difers sig-
nifcantly from the traditional SGD algorithms. SGD algo-
rithm maintains a single learning rate to update all the
weights during training; the AdaGrad algorithm reserves a
learning rate for each parameter to improve the performance
on sparse gradients; the RMSProp algorithm adaptively
reserves a learning rate for each parameter based on the
mean of the nearest magnitude of the weight gradient,
thereby improving the algorithm’s performance on non-
stationary problems. Adam algorithm sets independent
adaptive learning rates for diferent parameters by com-
puting the frst-order and the second-order momentum
estimates of the gradient and gains the advantages of both
the AdaGrad and RMSProp algorithms.

Particularly, the Adam algorithm uses not only frst-order
momentum to maintain the direction of the historical gradient
but also second-order momentum to maintain the adaptive
state of the learning rate. Besides, it directly considers a se-
quential setting where samples are displayed sequentially rather
than assuming that a large number of training samples are pre-
available. Because of these reasons, the Adam algorithm per-
formswell with high computational efciency and lowmemory
requirements [20]. In recent years, research on the Adam al-
gorithm has fourished, and several variants such as NAdam
[21], GAdam [22], AMSGrad [23], Adafactor [24], and Ada-
delta [25] have been proposed.

2.2. Algorithm Flow. In view of accurately describing the
Adam algorithm and its improvement, the relevant pa-
rameters involved in this article are described in Table 1. Te
pseudocode of the Adam algorithm is shown in Algorithm 1.

2 Computational Intelligence and Neuroscience



2.3. Existing Problems. In deep learning, the Adam algo-
rithm is widely used to solve parameter optimization
problems because of its efcient calculation, smaller number
of tuning parameters, and high compatibility. However,
there are certain shortcomings of this algorithm. Firstly, the
model convergence speed is very slow. Te frst-order
momentum in the Adam algorithm is the exponentially
weighted average of the historical gradient, which controls
the update of the optimization direction. It gets easily af-
fected by the gradient deviation value, leading to poor
searchability and slow convergence speed of the model.
Secondly, it is easy to miss the global optimal solution. Te
neural network model often contains a large number of
parameters. In a space with extremely high dimensions, the
nonconvex objective function often tends to rise and fall,
and it is easy to produce the “plateau phenomenon” that
causes the training to stop and then miss the global optimal
solution.

3. ACGB-Adam Algorithm

To solve the problems of the Adam algorithm, the ACGB-
Adam algorithm is proposed, which is primarily improved
from the following three aspects. (1) To address the slow
convergence speed of the Adam algorithm, an adaptive
coefcient calculation method is adopted to improve the
search direction and reduce the infuence of gradient de-
viation caused by the outliers on the frst-order momentum
search direction. (2) In view of the issue that the Adam
algorithm is easy to miss the global optimal solution, a
composite gradient is formed out of the current gradient and
the predicted gradient, which enhances the correctness of
the search direction, improves the global optimization
ability, and further boosts the search efciency and opti-
mization ability of the algorithm. (3) To reduce the com-
putational cost of the algorithm, the randomized block
coordinate descent method is introduced to select variables
by modules to calculate the gradient update mode. Tis
contributes to reducing the memory and CPU utilization as
much as possible on the premise of ensuring the search
performance.

3.1. Adjust Gradient Deviation with Adaptive Coefcients.
In the Adam algorithm, the gradient deviation caused by
outliers has a signifcant impact on the calculation of the
frst-order momentum. From the exponential weighted
average (EWA), it can be noticed that the frst-order mo-
mentum maintains the movement direction of its historical
gradient, so the search direction of the next time is deter-
mined by the previous frst-order momentum of the current
gradient. Subsequently, if the current gradient is far from the
global optimal direction, the direction of the frst-order
momentum will be further away from the approximate
optimum, leading to a serious decline in the search ability.
Figure 1 demonstrates the impact of the desired gradient on
the frst-order momentum. As highlighted in Figure 1(a), the
frst-order momentum at the current timemt is calculated by
the EWA between the previous momentum mt−1 and the

current gradient gt, and the two constant coefcients β1 and
(1 − β1) are used to obtain the EWA. At this time, the di-
rection of mt shifts to the direction of gt if gt deviates from
the desired direction due to the infuence of the outliers.
Terefore, the search direction at the next time will also be
further away from the approximate global optimum P∗, as
demonstrated in Figure 1(b).

To improve the slow convergence speed caused by the
deviation of the frst-order momentum search direction, it is
mandatory to confrm whether the current gradient is the
deviation gradient caused by the outliers and reduce its
impact as much as possible. So, the ACGB-Adam algorithm
computes the diference between mt−1 and gt. If this dif-
ference is very large, gt is more likely to afect the search
direction at the next moment than the frst-order mo-
mentum. In this case, the infuence of the momentum at the
previous time mt−1 will be increased according to their
diference degree by an adaptive coefcient to reduce the
infuence of gt on mt as much as possible. Te outlier
gradient adjustment method based on the adaptive coef-
cient is expressed as

mt � β1,tmt−1 + 1 − β1,t gt, (1)

where β1,t is the adaptive coefcient, which is proportional to
the diference between mt−1 and gt, namely, β1,t∝ |mt−1 − gt|.
In this article, the method in [17] is used to determine the
diference ratio, as mentioned in equation (2). In equation (2),
qt denotes the similarity between gt and mt as calculated by
equation (3), and d represents the vector dimension. Qt−1 is a
weighted cumulative sum of q1, q2 ,. . ., qt−1, as calculated by
equation (4):

β1,t �
Qt−1

Qt−1 + qt

, (2)

qt � 2d d + 
d

j�1

gt,j − mt− 1,j 
2

vt−1,j

⎛⎝ ⎞⎠, (3)

Qt−1 �
2β1 − 1
β1

Qt−2 + qt−1. (4)

3.2. Combined Predicted Gradient to Form Composite
Gradient. In the Adam algorithm, the frst-order mo-
mentum mt is determined by the current gradient gt and
the historical frst-order momentum mt−1. Tis causes the
search direction to be excessively dependent on the his-
torical gradient, making it easy to miss the global opti-
mum. Te ACGB-Adam algorithm thus introduces the
predicted gradient ut, updates the parameter to be opti-
mized at the next moment by the gradient descent
method, and difers it from the historical momentum so
that it uses a real gradient update and then merges with
the current gradient and the historical frst-order mo-
mentum to form a composite gradient. Tis makes it
possible to get a more accurate search direction in the next
iteration. Figure 2 illustrates the schematic diagram of the
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frst-order momentum search direction adjustment
mechanism integrating adaptive coefcients and com-
posite gradient.

For the frst-order momentum before improvement in
Figure 2(a), a constant coefcient β1 is used. Terefore, if
gt moves away from the optimal position P∗ in a direction

(a)

Optimum P*
mt–1

mt

gt

β1

β1 : Constant coefcient

1 – β1
(Unpromising search direction)

(b)

Optimum P*mt–1

ut
m1,t

mt

gt + ut
gt

β1,t

β1,t : Adaptive coefcient

1 – β1,t

(Promising search direction)

(Search direction corrected
by adaptive coefcient)

Figure 2: Adjustment of the frst-order momentum based on adaptive coefcient and composite gradient: (a) ordinary gradient opti-
mization and (b) the improved gradient optimization.

(Promising
Search direction)

Optimum P*mt–1
mt

gt

β1

1 – β1

Optimum P*mt–1

mt

gt

β1

1 – β1 (Unpromising
search direction)

(a) (b)

Figure 1: Te efect of the desired gradient on the frst-order momentum: (a) ordinary gradients and (b) outlier gradients.

Table 1: Description of parameters of Adam algorithm and its improvement.

Parameters Description
α Learning rate
β1, β2 Exponential decay rate of the frst-order and second-order moment estimation, respectively
T, t Te maximum iterations and the current t time step, respectively

βt
1, β

t
2

Product of exponential decay rate of the frst and second-order moment estimation at t time step, respectively, (1 −

β1) 
t
i�1 β

t−i
1 � 1 − βt

1 and (1 − β2) 
t
i�1 β

t−i
2 � 1 − βt

2
mt Te frst-order moment vector at t time step
vt Te second-order moment vector at t time step
gt Current gradient at t time step
β1,t Adaptive coefcient
ut Prediction gradient
Dt Random diagonal matrix at t time step
dt

i Te ith diagonal element of Dt with independent identical Bernoulli distribution
θt Te parameter that needs to be optimized
ft Te sequence of the smooth convex loss function
P∗ Global optimal position

Input: α, β1, β2, ft

Output: θt

(1) Initialize parameters (α � 0.001, β1 � β2 � 0.9, m0 � 0, v0 � 0, t� 0)
(2) For t� 1 to T do
(3) Get a stochastic gradient objective at time step t: gt � ∇θft(θt−1)

(4) Update biased frst-order moment estimation: mt � β1mt−1 + (1 − β1)gt

(5) Update biased second-order moment estimation: vt � β2vt−1 + (1 − β2)gt
2

(6) Get bias-corrected frst-order moment estimation: mt � mt/(1 − βt
1)

(7) Get bias-corrected second-order moment estimation: vt � vt/(1 − βt
2)

(8) Update the parameter: θt � θt−1 − αmt/
��
vt



(9) End For
(10) Return θt

ALGORITHM 1: Adam.
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deviated from the desired direction, mt will continue its
movement in the direction of gt. In Figure 2(b), m1,t is the
search direction corrected by the adaptive coefcient β1,t.
As compared to the direction of mt in Figure 2(a), m1,t will
approach the global optimal position in a more accurate
direction. Terefore, to adjust the gradient efect of out-
liers, an adaptive coefcient is introduced. Because of this,
the infuence of the outliers of the frst-order momentum
at the previous moment is as small as possible while
calculating the current frst-order momentum. Tus, a
more potential search direction can be efectively deter-
mined, and the search for the global optimal solution can
be accelerated. Secondly, based on the use of an adaptive
coefcient to correct the search direction, the predicted
gradient ut is introduced, and the search direction mt is
formed together with the current gradient gt and the
historical frst-order momentum mt−1. It can be observed
that, by introducing the predicted gradient, on the basis of
the adjustment of m1,t, the search direction formed can be

further closer to P∗ to avoid missing the global optimal
solution. Terefore, the convergence accuracy of the al-
gorithm is improved.

3.3. Gradient Update Mode Based on Randomized Block
Coordinate Descent. As a simple and efective method, SGD
is often used to learn linear classifers. However, when
dealing with high-dimensional vector data, the full gradient
descent mode in SGD is not easy to be implemented in
parallel. Terefore, this article introduces the random block
coordinate method to optimize the Adam algorithm, which
can not only handle high-dimensional vectors but also can
avoid calculating the complete gradient of all dimensional
data in each iteration, thus saving the computing cost and
reducing the system overhead on the premise of ensuring the
convergence speed and optimization accuracy.

3.3.1. RBC Algorithm. RBC is a random optimization al-
gorithm [26]. In each iteration, a coordinate (block) is
randomly selected, and its variables are updated in the
coordinate gradient direction. If f is a convex smooth
function and its gradient Li (i ϵ 1, 2, ..., N{ }) is a Lipschitz
continuous number, the fow of the RBC algorithm is as
follows: wherein, xt denotes the parameter vector to be
updated. Te RBC algorithm is as shown in Algorithm 2.

RBC algorithm has been widely used to address large-
scale optimization problems because of its low computation
and update cost [16] and its good optimization efect. For
instance, Hu and Kwok [27] studied the learning of scalable
nonparametric low-rank kernels, and Zhao et al. [28] pro-
posed an accelerated small-batch random block optimiza-
tion algorithm. Moreover, several machine learning
algorithms can be optimized with the help of RBC. For
instance, Singh et al. [29] improved the gradient projection
algorithm by using RBC, and Xie et al. [30] combined the
RBC algorithm with mean-variance optimization.

3.3.2. Gradient Calculation Based on RBC. In this article, a
new gradient calculation method is proposed based on the
RBC method. Let Dt(t � 0, 1, 2, ..., N) be a n-dimensional
diagonal matrix in the tth iteration, and the ith element on
the diagonal is denoted as dt

i . Here, dt
i is a Bernoulli random

variable that satisfes the independent identically distributed,
i.e., dt

i ∈ 0, 1{ }, 1≤ i≤N:

Begin

Initialize parameters

Yes

Don’t select coordinates

Use the ACGB-Adam to
update moment vector

Don’t compute the gradient
of corresponding element

of the parameter vector

Meet the maximum
number of iterations ?

Update desired gradient
gt by Dt and the normed

gradient 𝜵θ ft (θt–1)

No

Yes
End

Select coordinates

No

Randomly select a block (subset)
from high-dimensional vectors

dti=1?

Generate a N-dimensional diagonal
matrix Dt randomly

Figure 3: Flowchart of the gradient calculation based on RBC.

Input: θ0ϵRN (RN is a N-dimensional set of real numbers)
Output: θt

(1) Initialize parameters θ � θ0
(2) For t� 1 to T do
(3) t� t+ 1
(4) Select coordinates iϵ 1, 2, ..., N{ } evenly and randomly
(5) Update θ(i)

t � θ(i)
t−1 − 1/Li∇θfi(θt−1) where L1, L2, ..., LN are Lipschitz constants

(6) End For

ALGORITHM 2: Randomized block coordinate descent (RBC).
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Variable information
about θt

Tree core theories
of the ACGB-Adam Update current parameters

Update
parameters

Determine the search
direction at the next time

Determine the gradient
update mode

Random Block Coordinate

Fusing the predicted gradient to
form the composite gradient

Adjust gradient deviation values
through the adaptive coefcientθt–1

gt
gt

mt

mt

vt

θt

Figure 4: Te architecture of ACGB-Adam.
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bird

cat

deer

dog

frog

horse

ship

truck

(b)

Figure 5: Samples of standard datasets: (a) Mnist dataset handwritten instances and (b) CIFAR-10 dataset picture category instances.

Input: α, β1, β2, ft

Output: θt

(1) Initialize parameters (adaptive coefcient β1,t, predicted gradient ut, and the remaining parameters were initialized in the same
way as in the Algorithm 1)

(2) For t� 1 to T do
(3) Generate a random diagonal matrix Dt/∗ Gradient Calculation based on Algorithm 2-RBC∗/
(4) Get a stochastic gradient at time step t: gt � Dt∇θft(θt−1)

(5) Update the parameters according to the gradient descent method: θt � θt−1 − αgt/∗Composite Gradient Optimization ∗/
(6) Get a predicted stochastic gradient at time step t: ut � ∇θft(θt−1)/∗ Optimization of the frst moment estimation ∗/
(7) Update biased frst-order moment estimation: mt � β1,tmt−1 + (1 − β1,t)(gt + ut)

(8) Update biased second-order moment estimation: vt � β2vt−1 + (1 − β2)gt
2

(9) Compute bias-corrected frst-order moment estimation: mt � mt/(1 − βt
1,t)

(10) Compute bias-corrected second-order moment estimation: vt � vt/(1 − βt
2)

(11) Update the parameters: θt � θt−1 − αmt/
��
vt



(12) End For
(13) Return θt

ALGORITHM 3: ACGB-Adam.

Table 2: Basic information of the Mnist and CIFAR-10 datasets.

Datasets Classes Image type Features Number of training data Number of test data
Mnist 10 Grayscale 784 60000 10000
CIFAR-10 10 RGB 3072 50000 10000
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Dt �

1 0 · · · 0

1
⋮

0

0
⋮

· · ·

· · · ⋮
⋱ ⋮

· · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Te RBC method is used to randomly select a block
(subset) from the whole element of a high-dimensional vector
through equation (5) If dt

i � 1, which means that the corre-
sponding coordinates are selected, then the ACGB-Adam al-
gorithm is executed for gradient calculation; if dt

i � 0, which
means that the corresponding coordinates are not selected,
then the gradient update calculation is not performed.Tus, in
each round of gradient updating, only one block (subset) of the
gradient has to be computed, and the frst-order and second-
order momentum are calculated based on this. Moreover, it is
not necessary to calculate the entire gradient. Terefore,
compared with the other full gradient descent algorithms, the
optimization method based on randomized block coordinate
descent may save a lot of computing costs and reduce CPU
utilization as well as memory utilization while ensuring the
convergence of the algorithm. Te specifc calculation process
is shown in Figure 3.

3.4. ACGB-Adam Algorithm Process. Te ACGB-Adam al-
gorithm process is described in the following sections.

3.4.1. Overall Architecture of Algorithm. Te overall archi-
tecture of the ACGB-Adam algorithm is shown in Figure 4,

which mainly includes three core modules: the random
block coordinate method, the adjustment of gradient de-
viation values through adaptive parameters, and the com-
posite gradient.

Te general strategy of the ACGB-Adam algorithm is to
integrate the above threemodules and apply three optimization
methods to solve problems in parameter updating so as to
improve the convergence speed, global optimization ability and
reduce the system overhead. First, the current gradient update
mode is optimized by RBC, which can avoid calculating all
gradients and reduce the system overhead. Secondly, through
the adaptive parameters, the algorithm could calculate the
coefcient proportion of the frst momentum adaptively
according to the diference between the current gradient and
the frst momentum at the last time so as to minimize the
infuence of the outlier gradient and optimize the search di-
rection and search speed. Finally, the composite gradient
combines the predicted gradient, the current gradient, and the
frst momentum of the last time to form the fnal search di-
rection, aiming to further approach the global optimal position
and improve the global search ability of the algorithm.

3.4.2. ACGB-Adam Algorithm Process. Te overall algo-
rithm fow of ACGB-Adam is shown in Algorithm 3.

4. Experiment and Analysis

Te experiment and analysis are described in the following
sections.
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Figure 6: Experimental results of the Mnist dataset: (a) MSE and (b) accuracy.

Table 3: MSE and accuracy on Mnist dataset.

Methods SGD AdaGrad Adam A-Adam C-Adam RBC-Adam ACGB-Adam
MSE 1.021 0.675 0.607 0.532 0.325 0.449 0.253
Accuracy 0.908 0.913 0.918 0.926 0.952 0.926 0.959
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4.1. Standard Datasets and Experimental Setup. To evaluate
the performance of the ACGB-Adam algorithm, experi-
ments were carried out on two standard datasets (Table 2)
used for classifcation. Te proposed algorithm was fur-
ther compared with the stochastic gradient descent
(SGD), the adaptive gradient (AdaGrad), the adaptive
moment estimate (Adam), the Adam optimization algo-
rithm based on adaptive coefcients (A-Adam), Adam
optimization algorithm based on composite gradient (C-
Adam), and Adam optimization algorithm based on
randomized block coordinate descent (RBC-Adam) al-
gorithms (Figure 5(a)).

(1) Mnist Dataset. Te Mnist dataset [31] developed by
the US postal system is a classic dataset for image
recognition. In this dataset, 70000 digital pictures of
0∼9 handwritten by 250 diferent people are counted.
Tese numbers have been standardized in size and
are located in the center of the image. Some examples
of handwriting in the dataset are represented in
Figure 5(a).

(2) CIFAR-10 Dataset. Te CIFAR-10 dataset [32] is
used for identifying universal objects which consists
of 60000 RGB images. Compared with the hand-
written characters, this dataset contains pictures of
real objects in the real world. Te noise is large, and
the proportions and characteristics of objects are
diferent, which lead to great difculties in

recognition. Figure 5(b) lists ten classes in the
dataset, and each class shows ten pictures randomly.

(3) Experimental Setting. MATLAB is used for the
simulation of experiments. Te operating system is
Win10, the CPU is Intel i7–1065G7, the primary
frequency is 1.30 GHz, the memory is 16 GB, and
the SSD capacity is 512 GB. To improve the
comparability of the results, the six comparison
algorithms involved in the experiment all use the
same parameter settings. Te main super-
parameters are as follows: α� 0.001, β1 � β2 � 0.9,
and the maximum number of iterations is 100.
MSE and accuracy are used as performance eval-
uation indicators of algorithm training and clas-
sifcation accuracy.

4.2. Experimental Results of the Standard Dataset. Te ex-
perimental results of the standard dataset are explained in
the following sections.

4.2.1. Mnist Experimental Results. Figure 6 represents the
training error loss and classifcation accuracy of the six
algorithms on theMnist.Te training error and test accuracy
at the 100th iteration are shown in Table 3. It can be observed
from Figure 6 and Table 3 that, as the number of iterations
increases, each algorithm gradually converges on the
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Figure 7: Experimental results of the CIFAR-10 dataset: (a) MSE and (b) accuracy.

Table 4: MSE and accuracy on the CIFAR-10 dataset.

Methods SGD AdaGrad Adam A-Adam C-Adam RBC-Adam ACGB-Adam
MSE 3.690 3.364 3.191 2.757 2.635 2.798 2.287
Accuracy 0.837 0.826 0.885 0.90 0.92 0.901 0.941
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training set, and the classifcation accuracy on the test set
keeps improving. Compared with the other six algorithms,
the ACGB-Adam algorithm quickly converges to the stable
state, has the smallest error loss value, and has the highest
classifcation accuracy of 0.959. Tis indicates that the al-
gorithm proposed in this article has a good classifcation
efect.

4.2.2. CIFAR-10 Experimental Results. Figure 7 demon-
strates the training error of algorithms on the CIFAR-10
dataset, along with the classifcation accuracy of the test set.
Te training error and test accuracy at the 100th iteration
are shown in Table 4. It can be observed from Figure 7 and
Table 4 that the training error of the ACGB-Adam algo-
rithm in the early stage of iterations reduces quickly and
gradually tends to be stable. With the increase in iterations,

the error loss of the algorithm still decreases steadily.
Compared with the other six algorithms, the ACGB-Adam
algorithm has the smallest error loss value and the highest
classifcation accuracy of 0.941. From the experimental
results on the CIFAR-10 dataset, it can be inferred that the
proposed algorithm in this article has better optimization
performance than the other six algorithms in terms of
convergence speed, accuracy, stability, and classifcation
accuracy.

4.2.3. Memory and CPU Usage Rate Analysis. For the two
standard datasets, the changes in memory and CPU utili-
zation of the seven algorithms with the number of iterations
are illustrated in Figure 8 and Table 5.

It can be observed from Table 5 and Figure 8 that, with
the increase of iteration times, the memory and CPU
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Figure 8: Change of (a) memory usage rate and (b) CPU usage rate with iterations.

Table 5: Comparison of the memory and CPU usage rate (%).

Dataset SGD AdaGrad Adam A-Adam C-Adam RBC-Adam ACGB-Adam

Memory usage rate Mnist 98.7 98.1 97.2 97.4 97.5 77.4 79.2
CIFAR-10 98.8 98.0 97.7 97.3 97.9 80.2 82.3

CPU usage rate Mnist 97.2 95.8 91.6 90.8 92.4 75.5 75.7
CIFAR-10 98.0 96.3 92.9 93.0 93.6 78.3 80.1

Table 6: Performance comparison of RBC-Adam and ACGB-Adam.

Dataset MSE Accuracy Memory usage rate CPU usage rate

RBC-Adam Mnist 0.449 0.926 77.4 75.5
CIFAR-10 2.798 0.901 79.2 82.3

ACGB-Adam Mnist 0.253 0.959 80.2 78.3
CIFAR-10 2.287 0.941 82.3 80.1
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utilization of each algorithm increase gradually. Under the
same conditions, the memory and CPU utilization of the
RBC-Adam algorithm is the lowest, followed by the ACGB-
Adam algorithm proposed in this article. Te diference
between the memory and CPU utilization rates of the two
algorithms is less than 2%. Te specifc experimental results
are shown in Table 6. It can be seen from Tables 5 and 6 that
although the computing cost of the RBC-Adam algorithm is
slightly lower than the ACGB-Adam algorithm, its training
error and classifcation accuracy are far lower than those of
the proposed algorithm. Altogether, the ACGB-Adam al-
gorithm proposed in this article can achieve a dynamic
balance in convergence and computing cost. On the premise
of improving the convergence speed and accuracy, it can
reduce the memory and CPU utilization to the greatest
extent and has good comprehensive optimization
performance.

4.3. Reservoir Porosity Prediction. To further verify the ef-
fectiveness and utility of the algorithm proposed, the res-
ervoir porosity in the real work area was predicted by a BP
neural network based on the ACGB-Adam algorithm.

4.3.1. Data Preparation and Preprocessing. As shown in
Figure 9, the sample data are from the real data of two wells,
A and B, in an exploration area. Te logging depth is
900∼1120m, including 1492 records and 11 logging pa-
rameters. To achieve efcient and accurate porosity pre-
diction, the grey correlation analysis method [33] is used to
select parameters with high correlation with porosity as
input parameters of the neural network, namely, Depth,
RLLS (shallow investigate double lateral resistivity log), GR
(natural gamma ray), HAC (high-resolution interval transit
time), and DEN (density), as represented in Figure 10. Tis
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helps to improve the data processing efciency on the
premise of ensuring prediction accuracy.

It can be assumed that these fve parameters that have a
signifcant impact on porosity are diferent in nature and
usually have distinct dimensions and orders of magnitude.
In case the level diference between the parameters is too
large, the infuence of the parameters with higher values will
be highlighted, and the efect of the parameters with lower
values will be weakened. To ensure the comparability of the
data, this article uses the deviation normalization method
[33] to preprocess the data and eliminates the infuence of
the dimension and the value of the variable itself on the
results.

4.3.2. Model Performance Analysis. Te preprocessed data
were taken as sample data, and the training set and test set
were divided in the ratio of 8 : 2. Te BPNN model is set as
follows: the number of hidden layers was 1, including 5
neurons, the transfer function was Tansig, the learning
rate was 0.001, and the maximum number of iterations
was 5000. Using MSE and RMSE as the model perfor-
mance evaluation indices, the proposed ACGB-Adam_BP
model was compared with fve methods, namely,
SGD_BP, AdaGrad_BP, Adam_BP, C-Adam_BP, and

RBC-Adam_BP. Te fnal training error and test error of
various methods are enlisted in Table 7, in which the
minimum values of MSE and RMSE are shown in bold,
and the iterative error curve is shown in Figure 11.

It can be seen from Table 7 and Figure 11 that the BPNN
based on the ACGB-Adam algorithm generates the lowest
error in the training set and the test set and tends to be stable as
soon as possible. Te convergence speed is much better than
the other fve comparison algorithms. Tis indicates that the
proposed algorithm has better optimization performance.

4.3.3. Porosity Prediction Results. To further observe the
above results intuitively and validate the efectiveness and
correctness of the method proposed in this article for porosity
prediction, the prediction results of the BP model based on the
ACGB-Adam optimization algorithm are visually analyzed in
terms of 300 test samples, as highlighted in Figure 12. Due to
space constraints, the error analysis results on the training set
are not shown in the article. From the comparison curve
between the predicted value and the actual value of porosity, it
can be observed that the BP neural networkmodel based on the
ACGB-Adam optimization algorithm has a relatively ideal
prediction result, and the predicted abnormal value of porosity
is quite less. Te absolute error of more than 86% of the data is
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Table 7: Training error and test error of six methods.

Training error
SGD_BP AdaGrad_BP Adam_BP C-Adam_BP RBC-Adam_BP ACGB-Adam_BP

MSE 1.174293 0.51372 0.095824 0.021837 0.101693 0.0 9725
RMSE 1.083648 0.716743 0.309555 0.147773 0.318893 0. 40446

Test error

MSE SGD_BP AdaGrad_BP Adam_BP C-Adam_BP RBC-Adam_BP ACGB-Adam_BP
1.267104 0.566655 0.163862 0.028447 0.155603 0.022442

RMSE 1.125657 0.752772 0.404799 0.168662 0.394465 0. 49807
Te minimum values of MSE and RMSE in Table 7 is shown in bold.
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within 0.1%, which signifes the high prediction accuracy of the
proposed algorithm.

5. Conclusion

Starting with the improvement of the Adam algorithm to
heighten the convergence speed, accelerating the search for
the global optimal solution, and enhancing the high-di-
mensional data processing ability, the Adam optimization
algorithm combining adaptive coefcients and composite
gradients based on randomized block coordinate descent is
proposed, which enhances the performance of the algo-
rithm. Trough theoretical analysis and numerical experi-
ments, the following conclusions can be drawn:

(1) Te gradient deviation caused by the outliers is
crucial to the convergence speed and solution pre-
cision of the Adam algorithm. Using an adaptive
coefcient to adjust the diference between the frst-
order momentum and the current gradient can help
in reducing the infuence of parameter proportion of
deviation gradient, improving the slow convergence
speed of the Adam algorithm, boosting the search
speed, and improving the convergence accuracy.

(2) By introducing the prediction gradient and com-
bining the current gradient and the frst-order
momentum to form a composite gradient, an ac-
curate search direction can be obtained in the
subsequent iteration, and then, the global opti-
mization ability of the algorithm could be
enhanced.

(3) In the process of gradient updating, the RBCmethod
is used to determine the gradient calculation method
by randomly selecting variables from the parameter
subset. Tis can reduce the calculation cost as much
as possible on the premise of ensuring the conver-
gence of the algorithm, enhance the processing

ability of the algorithm for high-dimensional data,
and maintain a good balance between the optimi-
zation accuracy and the system overhead.

(4) Te test results on Mnist and CIFAR-10 standard
datasets for classifcation indicate that the ACGB-
Adam algorithm is signifcantly superior to SGD,
AdaGrad, Adam, A-Adam, C-Adam, and RBC-Adam
algorithms in terms of convergence speed and opti-
mization accuracy. Although the proposed method is
slightly higher than the RBC-Adam algorithm in terms
of memory and CPU utilization, it can achieve a decent
balance between convergence and system overhead.
According to the evaluation indices, the proposed
algorithm has better performance advantages com-
pared with the other fve algorithms, which validates
the efectiveness of the algorithm improvement.

(5) Te BPNN model based on the ACGB-Adam al-
gorithm is applied to reservoir porosity prediction.
Te experimental results suggest that, as compared
to the BPNN model based on Adam and its variants,
the maximum reduction of MSE and RMSE of the
proposed model in this article is approximately
86.30% and 62.99%, respectively, which achieves
higher accuracy in porosity prediction, verifes the
superiority of the proposed algorithm, and extends
the application feld of the algorithm.

Te method proposed in this article enhances the per-
formance of the Adam optimization algorithm to a certain
extent, but does not consider the impact of the second-order
momentum and diferent learning rates on the performance
of the original algorithm. Terefore, the follow-up research
can focus on the optimization and improvement of the
second-order momentum and learning rate and conduct in-
depth and detailed research on the parts not involved in this
algorithm. Tis can help to attain better optimization
performance.

Po
ro

sit
y 

(%
)

30

24

18

12

6

0
0 50 100 150

Sample

200 250 300

Target value

Predicted value

|Absolute Error|

Figure 12: Porosity prediction results based on the ACGB-Adam_BP method.

12 Computational Intelligence and Neuroscience



Data Availability

No data were used to support the fndings of the study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (Grant nos. 42002138 and 62172352),
Natural Science Foundation of Heilongjiang Province
(Grant no. LH2020F003), Postdoctoral Scientifc Research
Development Fund of Heilongjiang Province (Grant no.
LBH-Q20073), Excellent Young and Middle-aged Innova-
tive Team Cultivation Foundation of Northeast Petroleum
University (Grant no. KYCXTDQ202101), and S&T Pro-
gram of Hebei (Grant no. 226Z0102G).

References

[1] Z. Pan, D. Lei, and L. Wang, “A Knowledge-Based Two-
Population Optimization Algorithm for Distributed Energy-
Efcient Parallel Machines Scheduling,” IEEE Transactions on
Cybernetics, vol. 52, 2020.

[2] J. J. Wang and L. Wang, “A cooperative memetic algorithm
with feedback for the energy-aware distributed fow-shops
with fexible assembly scheduling,” Computers & Industrial
Engineering, vol. 168, Article ID 108126, 2022.

[3] L. Bottou, “Large-scale machine learning with stochastic
gradient descent,” Proceedings of the COMPSTAT’ 2010,
pp. 177–186, Paris, France, August, 2010.

[4] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural Networks, vol. 12, no. 1,
pp. 145–151, 1999.

[5] M. Wang, S. Zhou, Z. Yang, Z. Liu, and S. Ren, “A brief
introduction to deep learning technology,” Automation
technology and application, no. 5, pp. 18–25, 2019.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, Cambridge, MA, USA, 2016.

[7] J. R. Sashank, K. Satyen, and K. Sanjiv, “On the convergence of
adam and beyond,” in Proceedings of the International
Conference on Learning Representations, Vancouver, BC,
Canada, April, 2018.

[8] J. Ma and D. Yarats, “Quasi-hyperbolic momentum and adam
for deep learning,” in Proceedings of the 7th International
Conference on Learning Representations, ICLR, New Orleans,
LA, USA, May, 2019.

[9] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient
methods with dynamic bound of learning rate,” in Proceedings
of the 7th International Conference on Learning Representa-
tions, ICLR, New Orleans, LA, USA, May, 2019.

[10] M. Yin, Y. Wang, Z. Sun, and Y. Yu, “A compound gradient
accelerated optimization algorithm with adaptive step size,”
Journal of Northeastern University: Natural Science Edition,
vol. 41, no. 9, p. 6, 2020.

[11] K. S. Kim and Y. S. Choi, “HyAdamC: a new adam-based
hybrid optimization algorithm for convolution neural net-
works,” Sensors, vol. 21, no. 12, p. 4054, 2021.

[12] D. John, H. Elad, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of
Machine Learning Research, no. 12, pp. 2121–2159, 2011.

[13] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar,
“Adaptive methods for nonconvex optimization,” in Pro-
ceedings of the 32nd International Conference on Neural In-
formation Processing Systems, pp. 9815–9825, Montreal,
Canada, December 2018.

[14] J. Bernstein, A. Vahdat, Y. Yue, and M. Y. Liu, “On the
Distance between Two Neural Networks and the Stability of
learning,” in Proceedings of the 34th Conference on Neural
Information Processing Systems (NeurIPS 2020), Vancouver,
Canada, February, 2020.

[15] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, and
B. B. Chaudhuri, “difGrad: an optimization method for con-
volutional neural networks,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 31, no. 11, pp. 4500–4511, 2020.

[16] Y. Zhou, M. Zhang, J. Zhu, Q. Zheng, and Q. Wu, “A
Randomized Block-Coordinate Adam online learning opti-
mization algorithm,” Neural Computing & Applications,
vol. 32, no. 16, pp. 12671–12684, 2020.

[17] W. E. L. Ilboudo, T. Kobayashi, and K. Sugimoto, “Robust
stochastic gradient descent with student-t distribution based
frst-order momentum,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 3, pp. 1324–1337, 2022.

[18] Brownlee and J. Better, Deep Learning: Train Faster, Reduce
Overftting, and Make Better Predictions Machine Learning
Mastery, San Juan, PR, USA, 2018.

[19] D. Kingma and J. Ba, “Adam: a method for stochastic opti-
mization,” Computer Science, 2014.

[20] S. Ruder, “An overview of gradient descent optimization
algorithms,” 2016, https://arxiv.org/abs/1609.04747.

[21] T. Dozat, “Incorporating nesterov momentum into adam,” in
Proceedings of the International Conference on Learning
Representations(ICLR), San Juan, Puerto Rico, May 2016.

[22] J. Zhang and F. B. Gouza, “GADAM: Genetic-evolutionary
adam for deep neural network optimization,” 2018, https://
arxiv.org/abs/1805.07500.

[23] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
adam and beyond,” 2019, https://arxiv.org/abs/1904.09237.

[24] N. Shazeer and M. Stern, “Adafactor: Adaptive learning rates
with sublinear memory cost,” in Proceedings of the Interna-
tional Conference on Machine Learning ICML, pp. 4596–4604,
Stockholm, Sweden, July 2018.

[25] M. Zaheer, S. J. Reddi, and D. S. Sachan, “Adaptive methods
for nonconvex optimization,” in Proceedings of the Neural
Information Processing Systems, Curran Associates, Inc,
Montreal, Canada, December 2018.

[26] Z. Lu and X. Lin, “Randomized block coordinate non-
monotone gradient method for a class of nonlinear pro-
gramming,” 2013, https://arxiv.org/abs/1306.5918.

[27] E. L. Hu and J. T. Kwok, “Scalable nonparametric low-rank
kernel learning using block coordinate descent,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 26, no. 9, pp. 1927–1938, 2015.

[28] T. Zhao, M. Yu, Y. Wang, and L. Arora, “Accelerated mini-
batch randomized block coordinate descent method,” Ad-
vances in Neural Information Processing Systems, vol. 27,
p. 5614, 2014.

[29] C. Singh, A. Nedic, and R. Srikant, “Random block-coordinate
gradient projection algorithms,” in Proceedings of the IEEE
Conference on Decision and Control, pp. 185–190, Los Angeles,
CA, USA, December, 2014.

[30] T. Y. Xie, B. Liu, Y. Xu et al., “A block coordinate ascent al-
gorithm for mean-variance optimization,” in Proceedings of the
Neural Information Processing Systems NIPS, pp. 1073–1083,
Convention center in Montreal, Canada, December 2018.

Computational Intelligence and Neuroscience 13

https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1805.07500
https://arxiv.org/abs/1805.07500
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1306.5918


[31] L. Li Deng, “Te MNISTdatabase of handwritten digit images
for machine learning research [best of the web],” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 141-142, 2012.

[32] D. Bankman, L. Yang, B. Moons, M. Verhelst, and
B. Murmann, “An always-on 3.8μJ/86% CIFAR-10 mixed-
signal binary CNN processor with all memory on chip in
28nm CMOS,” in Proceedings of the 2018 IEEE International
Solid - State Circuits Conference - (ISSCC), IEEE, San Fran-
cisco, CA, USA, February, 2018.

[33] M. Liu, D. Yao, J. Guo, and J. Chen, “An optimized neural
network prediction model for reservoir porosity based on
improved shufed frog leaping algorithm,” International
Journal of Computational Intelligence Systems, vol. 15, no. 1,
pp. 1–19, 2022.

14 Computational Intelligence and Neuroscience




