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Pansharpening technology is used to acquire amultispectral image with high spatial resolution from a panchromatic (PAN) image and a
multispectral (MS) image. Te detail injection model is popular for its fexibility. However, the accuracy of the injection gain and the
extracted details may greatly infuence the quality of the pansharpened image.Tis paper proposes an adaptive injection model to solve
these problems. For detail extraction, we present a Gaussian flter estimation algorithm by exploring the intrinsic character of the MS
sensor and convolving the PAN image with the flter to adaptively optimize the details to be consistent with the character of the MS
image. For the adaptive injection coefcient, we iteratively adjust the coefcient by balancing the spectral and spatial fdelity. By
multiplying the optimized details and injection gain, the fnal HRMS is obtained with the injection model. Te performance of the
proposed model is analyzed and a large number of tests are carried out on various satellite datasets. Compared to some advanced
pansharpening methods, the results prove that our method can achieve the best fusion quality both subjectively and objectively.

1. Introduction

Remote sensing aims at extracting the land information of
the Earth’s surface using satellites. Owing to the disad-
vantage of sensor technology, acquiring a high-resolution
remote sensing image in both spatial and spectral domains is
still difcult [1]. Terefore, image processing technology is
usually adopted to fuse the existing two kinds of images,
namely, the panchromatic (PAN) image which has a high
spatial resolution but only one channel, and the multi-
spectral (MS) image which has a low spatial resolution but
high spectral resolution. For the MS and PAN images which
are obtained simultaneously in the same area, they can be
combined by appropriate algorithms to generate a fused
image with high resolution in both spectral and spatial
aspects. Tis process is also called PAN sharpening [2].
Pansharpened images are widely used in geography, mili-
tary, agriculture, ecological environment, and other felds
[3, 4].

Te existing traditional fusion methods are usually
classifed into two types. Te frst one is component sub-
stitution (CS), which replaces the spatial components of MS

images with a PAN image. Popular methods of this kind
include adaptive Gram–Schmidt (GSA) [5], the principal
component analysis (PCA) [6], and the intensity-hue-sat-
uration (IHS) methods [7].Te fusion result based on the CS
method has high spatial resolution but easily sufers from
spectral distortion [2, 8].

Te other kind is multiresolution analysis (MRA), which
adds extracted details to MS images through the multiscale
decomposition of PAN images. Traditional MRA methods
mainly include methods based on pyramid decomposition
or wavelet transform. For instance, the àtrous wavelet
transform [9], discrete wavelet transform [10], and the
contour wave transform [11] all belongs to this category. A
nonlinear approach called morphological flters (MF) [12]
has also been successfully applied in the pansharpening feld.
By exploring the modulation transfer function (MTF) of the
MS sensor, a generalized Laplacian pyramid (GLP) based on
the MTF flter; i.e., MTF-GLP [13] is presented to adaptively
inject the details. To better preserve texture information in
the fused image, Yang et al. [14] proposed a multiscale
decomposition method based on guided fltering, and the
efect is improved. Recently, the popular additive wavelet
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luminance proportional (AWLP) was enhanced in [15] by
taking into account the acquisition device and optical ra-
diation transfer process. Te MRA method can better retain
the spectral features. However, some spatial information
may be lost [4, 16].

In recent years, variational optimization (VO)-based
fusion methods have attracted the attention of many re-
searchers. Tis kind of method usually constructs an esti-
mation model based on the assumption of spectral and
spatial fdelity between the fused image and source images.
Ten, a TV regularizer is proposed in [17] and applied to
each band of the HRMS images. Later, Palsson et al. [18]
considered a spectral reduced-rank relationship between the
PAN and HRMS images and used the l2 regularizer to
constrain the model. Other classes of methods such as sparse
representation-based [19] and Bayesian-based [20] are also
included in the VO-based methods. Tese methods usually
can better balance the spectral and spatial quality than the
traditional methods. However, they require much more
computational resources [21]. Besides, the majority of the
previously discussed VO methods rely on the regularization
parameters, which need to be determined manually and may
afect the accuracy of the model [22].

Deep learning (DL), one of the hottest research areas in
artifcial intelligence, has produced outstanding outcomes in
the fusion of remote-sensing images. Typically DL-based
networks include autoencoders (AEs) [23] and convolu-
tional neural networks (CNNs) [24]. To better preserve
spectral and spatial details, Yang et al. [16] designed an end-
to-end depth residual network-based fusion method to
automatically learn a mapping from remote sensing images,
which has achieved good results. Recently, some unsuper-
vised DL-based methods have been developed based on the
intrinsic properties of the source images. For example, Liu
et al. [25] frst applied the generative adversarial network
(GAN) in pansharpening and proposed PSGAN, and then
Ciotola et al. [26] proposed a general unsupervised network
in the full-resolution framework, thus making full use of the
original information and reducing the spectral distortion.
However, these methods require a lot of computation, long
running time, and numerous samples [27, 28]. Owing to the
limitation of the number of image samples and the re-
quirement of algorithm efciency, this paper comprehen-
sively considers the abovementionedmethods and optimizes
the injection model based on the MRA method to achieve
dual fdelity of spectral information and detailed informa-
tion during fusion.

Te key step in the MRA-based method is how to extract
the details of the PAN image. A more advanced method is to
use a linear time-invariant flter to match the point spread
function (PSF) of the MS sensor. Aiazzi et al. [29] argued
that it is better to use a flter to simulate the MTF of the MS
sensor, but it requires using the factory information of the
MS sensor, and it is not easy to obtain. Another more reliable
method is to estimate the flter from the existing image to
simulate the PSF of the MS sensor. In this framework, a low-
spatial-resolution MS (LRMS) image can be obtained by
spatially fltering a high-spatial-resolution MS (HRMS)
image. Te impulse response function of this flter can

simulate the point spread function of the MS sensor, and the
flter usually has a shape similar to the Gaussian model
[30, 31]. Using this flter to convolve the PAN image, the
resulting high-frequency parts are the missing detail com-
ponents in the HRMS image and are highly linearly cor-
related with the MS image.

Considering spectral fdelity and detail injection, this
work proposes a pansharpening method based on Gaussian
flter estimation and adaptive detail injection. Tis method
frst obtains the initial fused image by the guided fltering
injection model of multiscale decomposition, and then
simulates the PSF of the MS sensor with Gaussian fltering
and convolving the PAN image with the estimated Gaussian
flter to obtain the optimized injected details. Ten, the
adaptive fusion coefcient is calculated recursively, so that
the spectral fdelity and detail injection can be jointly op-
timal. Te main innovations of our work are shown as
follows:

(1) An adaptive injection model is proposed to realize
the dual fdelity of spectral and spatial information

(2) A detail extraction method based on Gaussian flter
estimation is proposed to optimize the injected
details

(3) An adaptive fusion coefcient is designed to auto-
matically optimize the volume of the injected details

2. Related Work

2.1. General Framework of Injection Model. Te injection
model based on the MRA method refers to a fusion method
in which the injection details are extracted by fltering the
source images, and then the details are added to the
upsampled MS image with the injection coefcients. Te
method can combine diferent pansharpening technologies
according to the actual need, to exert the advantages of
diferent fusion technologies. Te general representation of
the injection model is as follows [24]:

􏽣MSk � 􏽦MSk + Gk ∗ PI − PL( 􏼁, (1)

where k � 1,2, . . ., N represents the subchannel k in the N

channels, 􏽣MSk represents the estimated HRMS image of the
k-th channel, 􏽦MSk denotes the k-th channel after bicubic
upsampling, Gk represents the injection coefcient of the
k-th channel, PI represents the PAN image after histogram
equalization of the I component of the MS image, and PL

represents a low-resolution version of the PAN image.
For the injection coefcient, Vivone et al. [32] propose

an interchannel weight coefcient based on a regression
model through an iterative algorithm. Yin and Li [33]
propose a weight coefcient based on the ratio between pixel
channels. Vivone et al. [34] use the high-pass modulation
(HPM) method with the multiplicative combination of the
source images as the injection gain. Among them, the in-
jection coefcient using the ratio between channels can
better preserve the spectral information, and the fusion
result is better. Te injection coefcient between channels is
defned as follows:
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Gk �
􏽦MSk

(1/N) 􏽐
N
i�1

􏽦MSk

. (2)

2.2. Extraction of Intensity Component. Since it is not de-
sirable to change the chroma and saturation while injecting
details, only the intensity (I) component of the image is often
processed in the image fusion process. Te I component can
be calculated using the following formula:

I � 􏽘
N

k�1
αk

􏽦MSk, (3)

where αk represents the combination coefcient of the
channel. Te authors in [35, 36] proposed that the intensity
can be calculated using the linear combination of the bands,
that is, the combination coefcients are usually acquired by
solving the optimization problem as follows:

min
α1 ,...,αN

P − 􏽘
N

i�1
αiMi

���������

���������

2

,

s.t. α1 ≥ 0, . . . , αN ≥ 0,

(4)

where P represents the PAN image. After obtaining the I
component of the MS image, perform histogram matching
between P and I in the above formula, and obtain PI using
the following equation:

PI ≜ P − uP( 􏼁 ·
σI

σP

+ uI, (5)

where uP represents themean of P, uI represents themean of
the I component, σI represents the standard deviation of the
I component; σP represents the standard deviation of P.

2.3. Guided Filtering. Guided fltering was frst proposed by
[24], which can save the main feature of the input image and
obtain the changing trend of the guided image. Taking PI as
the input image and I as the guide image, PI is generated by
intensity-guided fltering to generate PL, and detailed in-
formation linearly related to theMSmap is obtained. Guided
fltering can be obtained by the following simplifed formula:

PL � GF PI, I( 􏼁, (6)

where GF(·) represents the guided flter function. Multi-
scale-guided fltering can be expressed as follows [13]:

P
j

L � GF P
j−1
L , I􏼐 􏼑, (7)

where j represents the number of guided fltering layers; P
j
L

represents the image obtained by PI through the j-th layer of
guided fltering.

3. The Proposed Method

3.1. Te Proposed Framework. Tere are two main def-
ciencies in the current injection model. For one thing, there
is a low correlation between MS and PAN images, which
may cause spectral distortion. On the other hand, there may

be over-detail injection or insufcient injection. Aiming at
the two problems, this work proposes a method for detail
extraction and adaptive injection coefcient optimization
based on Gaussian flter estimation. Te framework of this
method is shown in Figure 1.

Firstly, according to formula (1), the source images are
used to obtain an initial fusion image through traditional
injection models such as histogram matching and guided
fltering.

Secondly, we proposed the detail optimization method,
that is, fltering the initial fusion image with a multiscale
Gaussian flter to simulate the characteristics of the MS
sensor, and fltering the PAN image with the obtained
Gaussian flter estimation to obtain the optimized details.

Tird, we optimize the injection gain, that is, compre-
hensively consider the spectral information and the detail
information to calculate the adaptive injection amount
coefcient.Te specifc process is shown in the dotted box in
Figure 1, and the detailed algorithm is shown in Section 3.2.

Finally, the optimized details are multiplied by the in-
jection coefcient, and then the fnal HRMS image is acquired
by adding the optimized details to the upsampled MS image.

3.2. Gaussian Filter Estimation and Detail Extraction. As
mentioned above, Reference [31] proposed to use the
Gaussian flter to simulate the MTF of the MS sensor; that is,
the HRMS image is regarded as the LRMS image after
passing through the MS sensor. A Gaussian flter is used to
simulate this process, and the resulting Gaussian flter is a
fltered estimate conforming to the PSF of the MS sensor.
Next, the PAN image is convolved with the estimated flter,
and the extracted detail components are those missing from
the low-resolutionMS image. Yang et al. [37] proved that the
flter estimation has strong robustness through experiments.
Even if white noise is added to the initial fusion image, it
does not afect the extraction of details. In addition, Yin and
Li [33] proposed a two-step multiscale decomposition
method to refne PAN sharpening. Inspired by this, this
paper proposes to use multiscale Gaussian fltering to
simulate the PSF of the MS sensor, that is, extract the lu-
minance component from the initial fusion image F(1),
denoted as I1, and perform Gaussian fltering iteratively,
which can be expressed as follows:

I
i
1 � HG I

i−1
1􏼐 􏼑, i � 1, 2, . . . , n, (8)

where Ii
1 represents the image after the i th fltering and

HG(·) represents the Gaussian flter. To obtain the best
Gaussian flter estimation, the correlation coefcient be-
tween the result Ii

1 obtained by formula (8) and the I
component of the upsampled MS image is calculated. When
the correlation coefcient is the highest, the estimated
Gaussian flter is the most accurate, and the correlation
coefcient is calculated as follows:

corr I
i
1, I􏼐 􏼑 �

cov I
i
1, I􏼐 􏼑

std I
i
1􏼐 􏼑 · std(I)

, (9)
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where cov (·) represents the covariance function and std (·)

represents the standard deviation function. As the fltering
level increases, the fltered image and the up-sampled MS
image get closer and closer, and after reaching the maximum
value, as the fltering level continues to increase, the fltered
image and the upsampled MS image deviate increasingly. By
iterative calculation of the values of formulas (8) and (9), the
number of iterations m is obtained when formula (9) is
maximum, which is the estimated Gaussian flter Hm, which
is expressed as follows:

Hm(·) � HG HG(· · · HG(·)( 􏼁
􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽

m

,

m � arg
i

max cor  r I
i
1, I􏼐 􏼑,

(10)

where Hm means the best match of the PSF of a sharpened
image blurred by theMS sensor.Te flter Hm is applied to the
PAN image, and the extracted detail components should also
conform to the MS sensor PSF, thus reducing the spectral
distortion, and the detail extraction D defned as follows:

D � PI − Hm PI( 􏼁. (11)

Combining formulas (1), (7), and (11), after optimizing
the details, the k th channel fusion image F

(2)
k can be updated

to the following form:

D � PI − Hm PI( 􏼁. (12)

3.3. Adaptive Injection Coefcient. After obtaining the op-
timized injection details, this paper optimizes the injection
coefcient. Diferent images have diferent structural fea-
tures and spectral information and thus have diferent re-
quirements for the amount of detail injection. Directly

injecting details using the same gain can easily lead to too
much injection to cause spectral distortion or insufcient
injection to cause image blur. Terefore, it is necessary to
retain the spectral and detail information through an in-
jection amount coefcient g. After adding this coefcient,
combined with formula (12), the new fusion image F

(3)
k can

be defned as follows:

F
(3)
k � 􏽧MSk + g∗

􏽧MSk

(1/N) 􏽐
N
i�1

􏽧MSk

.∗D. (13)

We need to determine diferent coefcients g for remote
sensing images with diferent structural features. Te author
in [38] believes that the requirements for spectral fdelity and
spatial resolution in the injection model need to be balanced,
and the weighted sum of the two evaluation indicators can be
used as the fusion image indicator, and the weight indicates
the degree of importance. We set the initial value g0 of the
detail injection coefcient g and the step size r. For g0 ≤g≤ 1,
the corresponding fused image is obtained and the weighted
evaluation index is calculated and obtain the gmax that makes
the evaluation index the highest as the fnal injection coef-
fcient. For the evaluation index, this paper proposes a
comprehensive evaluation system of spectral information and
spatial information based on correlation analysis. Te
weighted evaluation index Q for spectral information and
spatial information is defned as follows:

Q � (1 − α)∗ESP + α∗EHF, (14)

where ESP and EHF represent the spectral information
evaluation index and the spatial information evaluation
index, respectively; α represents the weight of the two. For an
image F

(3)
k fused by formula (13), its I component is denoted

as I3, then ESP is represented by the average value of the

Calculate spectral
correlation

Calculate Spatial
Correlation

Take the
largest Q

injection
model Multiscale

filtering

Filtering

Fused images
using different g

Spectral
Evaluation
Index ESP

Spatial
Evaluation
Index EHF

Comprehensive
evaluation

index Q

Determining the
optimal injection

factor gmax

1– a

a

Gaussian filter
estimation

Optimized
detailS D

Adaptive
Injection

Coefficient

Bands
coefficient

Up sampled
MS

PAN

Initial fused
image Final fused

image

Figure 1: Te framework of proposed fusion method.
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correlation between the fused image and each channel k of
the upsampled MS image, and EHF is represented by the
linear correlation between I3 and PAN images, which is
defned as follows:

ESP �
1
N

􏽘

N

k�1
corr F

(3)
k , 􏽦MSk􏼐 􏼑,

EHF � corr I3, PI( 􏼁.

(15)

Te authors in [28] show that the optimal determination
of the injection components and the injection amount g

follows the premise that if there is a higher correlation
between I and PAN images, there will be a better fusion
result. Tat is, if the correlation between the two is high, the
spectral information can be well preserved when details are
injected. At this time, the weight of the spatial feature can be
increased and the weight of the spectral feature can be re-
duced. Conversely, if the correlation is low, the injected
details are likely to cause spectral distortion. Te spectral
information weight should be increased, and the spatial
information weight should be decreased.

Assuming that the I component corresponding to the
fused image generated by the initial value g0 is denoted as I0,
the weight α in formula (14) can be determined by the
following formula:

α � corr I0, PI( 􏼁( 􏼁
2
. (16)

Te design of the square term of (16) has two reasons.
Te frst is to avoid that the spectral weight is too small when
I0 and PI are highly correlated; the second is to magnify the
diference between the spatial information of diferent
images.

For diferent injection coefcients g, iteratively calcu-
lating F

(3)
k according to formula (13), and calculating the

evaluation index Q according to formula (14), gmax with the
highest index Q can be obtained as the injection coefcient
of the fnal fused image. gmax can be expressed as follows:

gmax � arg
g

maxQ F
(3)
k (g)􏼐 􏼑. (17)

Note that gmax can be diferent according to the char-
acteristics of the image, such as the image dimension and the
type of land cover. Combining formulas (13) and (17), after
using the optimized injection coefcient, the fnal fused
image can be updated as

F
(3)
k � 􏽧MSk + gmax ∗

􏽧MSk

(1/N) 􏽐
N
i�1

􏽧MSk

.∗D. (18)

4. Analysis of Experiment Result

4.1. Experimental Setup. To evaluate the performance of our
method, we use two datasets from the satellites, including
QuickBird and IKONOS. Tese remote sensing images have
diferent features in spectral wavelength, spatial resolution,
etc., and all include four bands such as red, green, blue, and
near-infrared.

For parameter setting, this paper sets the initial value
of the injection volume coefcient g0 � 0.1 and the step size
r � 0.05, to thoroughly consider the efciency and preci-
sion of the calculation. Te Gaussian flter window is set to
5 × 5, the default setting in reference [22].

Tis paper carried out two kinds of experiments. One is
the simulated image after down-sampling the real image,
also known as the reduced-scale (RS) experiment, that is,
following the Wald protocol [39], and using the original MS
image as a reference image. Te simulated images contain a
total of 100 sets of images from the datasets with 50 sets in
each dataset. Te other is the real image experiment, also
known as the full-scale (FS) experiment. Te real images
contain the same number of images as the simulated images.

Te methods used for comparison include classical and
state-of-the-art methods such as bilateral flter luminance
proportional (BFLP) [40], AWLP [9], context-based deci-
sion (CBD) [29], GLP-MTF [13], MF [12], adaptive spectral
intensity modulation pansharpening (ASIMP) [41], and low-
rank fuzzy fusion (LRFF) [42]. Tese methods are subjec-
tively and objectively evaluated and are named qualitative
and quantitative evaluations. Te common objective eval-
uation indicators used with reference images are CC↑ [43],
UIQI↑ [42], RMSE↓ [20], RASE↓ [16], SAM↓ [21], ERGAS↓
[44], and Q2n↑ (Q4/Q8) [44]. Commonly used objective
metrics for real image fusion include Dλ↓, Ds↓, and QNR↑
[8]. ↑ means the optimal value is 1, while ↓ means the
optimal value is 0. Te details are shown in Table 1.

4.2. Performance Analysis. To verify the efectiveness of the
optimizationmethod proposed in Sections 3.2 and 3.3 of this
paper and quantitatively analyze the performance im-
provement achieved by the proposed method, we calculate
the average objective indicators of each optimization step.
Te fused images corresponding to the three optimization
steps are expressed as F1 representing the initial fusion
image, F2 representing the image after Gaussian fltering to
optimize the details, and F3 representing the image after
adaptively optimizing the injected coefcients. Te average
objective index of 80 groups of image fusion results is
calculated, respectively. Tomore intuitively show the relative
changes of each indicator, each objective indicator is nor-
malized, that is, for the result X(i) of an indicator X, the
normalization isX(i)/(max (X(i))), the results are shown in
Figure 2. We can see that for the initial fusion image F1, the
injected details are obtained using the classical MRA-based
method. After optimizing the details through the estimated
Gaussian flter, the obtained details have a higher correlation
with the MS image, and various indicators are signifcantly
improved; after optimizing the injection coefcient, it can
efectively prevent overinjection or underinjection, and all
indicators are further improved. With the sequential opti-
mization steps of F2 and F3, the overall indicators are getting
better and better. Among them, the SAM index is basically
stable. With optimization, the SAM index frst increases
slightly and then decreases slightly, showing that the pro-
posed method has little impact on the loss of spectral
information.

Computational Intelligence and Neuroscience 5



Table 1: Illustration of the fusion quality metrics.

Full name Description RS/
FS Optimal

CC↑ Correlation coefcient Evaluating spatial similarity between the two images RS —
UIQI↑ Universal image quality index Representing a global fusion quality RS 1
RMSE↓ Root mean square error Representing the diference between the two images RS 0
RASE↓ Relative average spectral error Refecting the spectral error of the fusion image RS 0
SAM↓ Spectral angle mapper Measuring the spectral distortion RS 0

ERGAS↓ Error relative global adimensionnelle de
synthese Evaluating the spatial and spectral quality RS 0

Q4/Q8↑ Q4 for a 4-band image, Q8 for an 8-band
image

A vector extension of the Q-index to evaluating the global
quality RS 1

Dλ↓ — Indicating spectral distortion FS 0
Ds↓ — Indicating spatial distortion FS 0
QNR↑ Quality with no reference Comprehensive metric combining Dλ and Ds FS 1

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

CC UIQI RASE RMSE SAM ERGAS
Metrics

F1-Initial fusion image

F3-Optimized injection gain
F2-Optimized details
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m
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Figure 2: Average quantitative comparison of optimization steps.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 3: Fusion results of the images from QuickBird dataset in simulation experiment. (a) Reference. (b) PAN. (c) AWLP. (d) BFLP.
(e) CBD. (f ) MTF-GLP. (g) MF. (h) ASIMP. (i) LRFF. (j) Proposed.
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4.3. SimulationExperiment. In this paper, two sets of remote
sensing images are used for subjective evaluation, and then
the average objective evaluation is measured on 50 sets of
images from each dataset.

Te size of a simulation MS image is 256 × 256 × 4. Te
fusion results of each method on the QuickBird and
IKONOS datasets are shown in Figures 3 and 4, respec-
tively. Te smaller red rectangle is enlarged and displayed
in a larger rectangle. From Figure 3, we can see that the
results of AWLP, CBD, MTF-GLP, and MF methods
generate obvious spectral distortion in the forest area, and
the color of them is brighter than the reference image; the
results of BFLP and LRFF have slight spectral distortion,
and there is an overinjection problem which introduces

unnecessary noise. Te result of ASIMP turns into brown
in the forest area. Te proposed method is relatively close
to the reference image in the spectral information of the
beach and forest. Te fusion results in Figure 4 have
exhibited a situation similar to those in Figure 3. Te
results of comparison methods show diferent degrees of
spectral distortion, and the result of the proposed method
is closest to the reference image.

To objectively evaluate the performance of each com-
parison method, the average objective metrics were calcu-
lated after the fusion of 50 sets of remote sensing images
from each dataset. Te results are shown in Table 2. We can
see from the table that our method achieves the best results
on all average metrics on both datasets.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 4: Fusion results of the images from IKONOS dataset in simulated experiment. (a) Reference. (b) PAN. (c) AWLP. (d) BFLP.
(e) CBD. (f ) MTF-GLP. (g) MF. (h) ASIMP. (i) LRFF. (j) Proposed.

Table 2: Average quantitative evaluation of fusion results in simulation experiments.

Methods
QuickBird dataset IKONOS dataset

CC↑ UIQI↑ RASE↓ RMSE↓ SAM↓ ERGAS↓ CC↑ UIQI↑ RASE↓ RMSE↓ SAM↓ ERGAS↓
AWLP 0.9015 0.8567 21.3640 14.3177 3.7094 5.2526 0.9165 0.8934 20.9276 20.5598 4.0982 4.5009
BFLP 0.8964 0.8189 29.2416 18.9560 3.8910 6.9647 0.9137 0.8983 19.5769 20.1413 4.0510 4.8381
CBD 0.8943 0.8491 21.7795 14.8396 4.2800 5.5706 0.9177 0.8944 21.3869 22.0035 3.7171 5.8970
MTF-GLP 0.8959 0.8448 22.5773 15.4283 3.3850 5.6583 0.9188 0.9001 19.2471 19.8020 3.2134 4.8311
MF 0.9057 0.8643 18.2789 12.4872 3.8328 4.6707 0.9142 0.9002 17.3611 17.8616 4.1449 4.3381
ASIMP 0.9084 0.8627 19.9071 13.2617 3.8361 5.0637 0.9300 0.9043 16.8757 17.3623 3.5643 4.2421
LRFF 0.9078 0.8635 19.0474 13.0131 3.5951 4.9042 0.9266 0.9045 16.3265 17.5784 3.6155 4.2052
Proposed 0. 125 0.8725 18.2357 12.3240 3.2 45 4.62 0 0. 315 0. 0 1 15.6355 16.0863 3.1610 3. 250
Te bold values indicate that they are optimal.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 5: Fusion results of the images from IKONOS dataset in real experiment. (a) Up sampled MS. (b) PAN. (c) AWLP. (d) BFLP.
(e) CBD. (f ) MTF-GLP. (g) MF. (h) ASIMP. (i) LRFF. (j) Proposed.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 6: Fusion results of the images from QuickBird dataset in real experiment. (a) Up sampled MS. (b) PAN. (c) AWLP. (d) BFLP.
(e) CBD. (f ) MTF-GLP. (g) MF. (h) ASIMP. (i) LRFF. (j) Proposed.
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4.4. Real Image Experiment. Te experiment on real images
uses a set of images from each dataset for subjective eval-
uation and calculates the average objective index for all sets
of real images from the datasets.

Te fusion results of the comparison methods on the
IKONOS and QuickBird datasets are shown in Figures 5 and
6, respectively. From Figure 6, we can see that the results of
the BFLP,MF, and LRFFmethods produce apparent spectral
distortion in the orange roof area. Since there is no reference
image, it is difcult to directly distinguish other methods
from the proposed method visually. We mainly refer to
quantitative evaluation.

To objectively evaluate the efectiveness of each com-
pared method, this paper conducts experiments on 50 sets of
real images from each dataset and calculates the average
objective indicators as shown in Table 3.Te table shows that
except for Ds in the QuickBird dataset, all the metrics of the
proposed method are optimal, further verifying the good
performance of our method.

5. Conclusion

In the fusion of remote sensing images, there has always
been a key problem on how to keep the spectral information
fdelity while injecting details. In this paper, a novel adaptive
injection-based pansharpening method is proposed, which
frst uses the traditional injection model as the initial fusion
image and then optimizes the injection details and injection
gain. Gaussian flter estimation is used to simulate the
characteristics of the MS sensor in the process of optimizing
the injected details, and the PAN image is deconvolved with
the estimated Gaussian flter to obtain the optimized details.
To optimize the injection beneft, the spectral information
and detailed information are comprehensively considered,
and a weighted evaluation index is established to determine
the adaptive injection amount coefcient. Te fusion ex-
periments are conducted on 100 sets of simulated images
and real images from the IKONOS and QuickBird datasets.
Compared to some advanced fusionmethods, the qualitative
and average quantitative evaluations show that our method
performs better than all other comparison methods.

Data Availability

Te datasets can be obtained from https://www.kosmos-
imagemall.com/.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the Natural Science Foundation
of Zhejiang Province under Grant no. LY22F020017.

References

[1] H. Lu, Y. Yang, S. Huang, W. Tu, and W. Wan, “A unifed
pansharpening model based on band-adaptive gradient and
detail correction,” IEEE Transactions on Image Processing,
vol. 31, pp. 918–933, 2022.

[2] F. Dadrass Javan, F. Samadzadegan, S. Mehravar, A. Toosi,
R. Khatami, and A. Stein, “A review of image fusion tech-
niques for pan-sharpening of high-resolution satellite imag-
ery,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 171, pp. 101–117, 2021.

[3] H. Lu, Y. Yang, S. Huang, and W. Tu, “An efcient pan-
sharpening approach based on texture correction and detail
refnement,” IEEE Geoscience and Remote Sensing Letters,
vol. 19, pp. 1–5, 2022.

[4] X. Meng, H. Shen, H. Li, L. Zhang, and R. Fu, “Review of the
pansharpening methods for remote sensing images based on
the idea of meta-analysis: practical discussion and challenges,”
Information Fusion, vol. 46, pp. 102–113, 2019.

[5] B. Aiazzi, S. Baronti, and M. Selva, “Improving component
substitution Pansharpening through multivariate regression
of MS $+$Pan data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 45, no. 10, pp. 3230–3239, 2007.

[6] Y. Li, J. Qu, W. Dong, and Y. Zheng, “Hyperspectral pan-
sharpening via improved PCA approach and optimal
weighted fusion strategy,” Neurocomputing, vol. 315,
pp. 371–380, 2018.

[7] X. Zhou, J. Liu, S. Liu, L. Cao, Q. Zhou, and H. Huang, “A
GIHS-based spectral preservation fusion method for remote
sensing images using edge restored spectral modulation,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 88,
pp. 16–27, 2014.

[8] G. Vivone, M. Dalla Mura, A. Garzelli et al., “A new
benchmark based on recent advances in multispectral pan-
sharpening: revisiting pansharpening with classical and
emerging pansharpening methods,” IEEE Geosci. Remote
Sens. Mag.vol. 9, no. 1, pp. 53–81, 2021.

[9] X. Otazu, M. Gonzalez-Audicana, O. Fors, and J. Nunez,
“Introduction of sensor spectral response into image fusion
methods. Application to wavelet-based methods,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 43,
no. 10, pp. 2376–2385, 2005.

[10] E. Daniel, “Optimum wavelet-based homomorphic medical
image fusion using hybrid genetic–grey wolf optimization
algorithm,” IEEE Sensors Journal, vol. 18, no. 16,
pp. 6804–6811, 2018.

[11] K. P. Upla, M. V. Joshi, and P. P. Gajjar, “An edge preserving
multiresolution fusion: use of contourlet transform and MRF
prior,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 6, pp. 3210–3220, 2015.

[12] R. Restaino, G. Vivone, M. Dalla Mura, and J. Chanussot,
“Fusion of multispectral and panchromatic images based on
morphological operators,” IEEE Transactions on Image Pro-
cessing, vol. 25, no. 6, pp. 2882–2895, 2016.

Table 3: Average quantitative evaluation of real experiments.

Methods
IKONOS dataset QuickBird dataset

Dλ↓ Ds↓ QNR↑ Dλ↓ Ds↓ QNR↑

AWLP 0.0234 0.0481 0.9304 0.0446 0.0563 0.9021
BFLP 0.0230 0.0471 0.9318 0.0453 0.0578 0.9001
CBD 0.0259 0.0480 0.9281 0.0444 0.0608 0.8979
MTF-GLP 0.0295 0.0534 0.9194 0.0515 0.0601 0.8971
MF 0.0236 0.0523 0.9261 0.0489 0.0660 0.8892
ASIMP 0.0299 0.0528 0.9216 0.0405 0.0531 0.9091
LRFF 0.0338 0.0462 0.9211 0.3412 0.0573 0.9021
Proposed 0.0188 0.0458 0. 370 0.0331 0.0540 0. 153
Te bold values indicate that they are optimal.

Computational Intelligence and Neuroscience 9

https://www.kosmos-imagemall.com/
https://www.kosmos-imagemall.com/


[13] L. Alparone, A. Garzelli, and G. Vivone, “Intersensor sta-
tistical matching for pansharpening: theoretical issues and
practical solutions,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 55, no. 8, pp. 4682–4695, 2017.

[14] Y. Yang, W. Wan, S. Huang, F. Yuan, S. Yang, and Y. Que,
“Remote sensing image fusion based on adaptive IHS and
multiscale guided flter,” IEEEAccess, vol. 4, pp. 4573–4582, 2016.

[15] G. Vivone, L. Alparone, A. Garzelli, and S. Lolli, “Fast re-
producible pansharpening based on instrument and acqui-
sition modeling: AWLP revisited,” Remote Sensing, vol. 11,
no. 19, p. 2315, 2019.

[16] Y. Yang, H. Lu, S. Huang, and W. Tu, “Remote sensing image
fusion based on fuzzy logic and salience measure,” IEEE
Geoscience and Remote Sensing Letters, vol. 17, no. 11,
pp. 1943–1947, 2019.

[17] F. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “A new
pansharpening algorithm based on total variation,” IEEE
Geoscience and Remote Sensing Letters, vol. 11, no. 1,
pp. 318–322, 2014.

[18] F. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, “Model-based
reduced-rank pansharpening,” IEEE Geoscience and Remote
Sensing Letters, vol. 17, no. 4, pp. 656–660, 2020.

[19] L.-J. Deng, M. Feng, and X.-C. Tai, “Te fusion of pan-
chromatic and multispectral remote sensing images via ten-
sor-based sparse modeling and hyper-Laplacian prior,”
Information Fusion, vol. 52, pp. 76–89, 2019.

[20] Y. Yang, H. Lu, S. Huang, Y. Fang, and W. Tu, “An efcient
and high-quality pansharpening model based on conditional
random felds,” Information Sciences, vol. 553, pp. 1–18, 2021.

[21] Y. Yang, H. Lu, S. Huang, and W. Tu, “Pansharpening based
on joint-guided detail extraction,” Ieee Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
vol. 14, pp. 389–401, 2021.

[22] Y. Yang, H. Lu, S. Huang, W. Wan, and L. Li, “Pansharpening
based on variational fractional-order geometry model and
optimized injection gains,” Ieee Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 15,
pp. 2128–2141, 2022.

[23] C. Liu, Y. Zhang, S. Wang et al., “Band-independent enco-
der–decoder network for pan-sharpening of remote sensing
images,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 58, no. 7, pp. 5208–5223, 2020.

[24] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail in-
jection-based deep convolutional neural networks for pan-
sharpening,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 59, no. 8, pp. 6995–7010, 2021.

[25] X. Liu, Y. Wang, and Q. Liu, “Psgan: a generative adversarial
network for remote sensing image pan-sharpening,” in Pro-
ceedings of the 2018 25th IEEE International Conference on
Image Processing (ICIP), pp. 873–877, IEEE, Athens, Greece,
October 2018.

[26] M. Ciotola, S. Vitale, A. Mazza, G. Poggi, and G. Scarpa,
“Pansharpening by convolutional neural networks in the full
resolution framework,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–17, 2022.

[27] X. Fu, Z. Lin, Y. Huang, and X. Ding, “A variational pan-
sharpening with local gradient constraints,” in Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10 257–10 266, IEEE, Long
Beach, CA, USA June. 2019.

[28] M. Huang, S. Liu, Z. Li et al., “Remote sensing image fusion
algorithm based on two-stream fusion network and residual
channel attention mechanism,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 8476000, 14 pages, 2022.

[29] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva,
“MTF-Tailored multiscale fusion of high-resolution MS and
Pan imagery,” Photogramm Eng Remote Sensing, vol. 72, no. 5,
pp. 591–596, 2006.

[30] N. H. Kaplan, I. Erer, O. Ozcan, and N. Musaoglu, “MTF
driven adaptive multiscale bilateral fltering for pan-
sharpening,” International Journal of Remote Sensing, vol. 40,
no. 16, pp. 6262–6282, 2019.

[31] G. Vivone, P. Addesso, R. Restaino, M. Dalla Mura, and
J. Chanussot, “Pansharpening based on deconvolution for
multiband flter estimation,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 57, no. 1, pp. 540–553, 2019.

[32] G. Vivone, R. Restaino, and J. Chanussot, “Full scale re-
gression-based injection coefcients for panchromatic
sharpening,” IEEE Transactions on Image Processing, vol. 27,
no. 7, pp. 3418–3431, 2018.

[33] H. Yin and S. Li, “Pansharpening with multiscale normalized
nonlocal means flter: a two-step approach,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 53, no. 10,
pp. 5734–5745, 2015.

[34] G. Vivone, R. Restaino, and J. Chanussot, “A regression-based
high-pass modulation pansharpening approach,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 56, no. 2,
pp. 984–996, 2018.

[35] Y. Leung, J. Liu, and J. Zhang, “An improved adaptive
intensity–hue–saturation method for the fusion of remote
sensing images,” IEEE Geoscience and Remote Sensing Letters,
vol. 11, no. 5, pp. 985–989, 2014.

[36] S. Rahmani, M. Strait, D. Merkurjev, M. Moeller, and
T. Wittman, “An adaptive IHS pan-sharpening method,”
IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4,
pp. 746–750, 2010.

[37] Y. Yang, W. Tu, S. Huang, H. Lu, W.Wan, and L. Gan, “Dual-
stream convolutional neural network with residual infor-
mation enhancement for pansharpening,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.

[38] H. Ghassemian, “A review of remote sensing image fusion
methods,” Information Fusion, vol. 32, pp. 75–89, 2016.

[39] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite
images of diferent spatial resolutions: assessing the quality of
resulting images,” Photogrammetric Engineering and Remote
Sensing, vol. 63, pp. 691–699, 1997.

[40] N. H. Kaplan and I. Erer, “Bilateral fltering-based enhanced
pansharpening of multispectral satellite images,” IEEE Geo-
science and Remote Sensing Letters, vol. 11, no. 11, pp. 1941–
1945, 2014.

[41] Y. Yang, L. Wu, S. Huang, Y. Tang, and W. Wan, “Pan-
sharpening for multiband images with adaptive spec-
tral–intensity modulation,” Ieee Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 11, no. 9,
pp. 3196–3208, 2018.

[42] Y. Yang, C.Wan, S. Huang, H. Lu, andW.Wan, “Pansharpening
based on low-rank fuzzy fusion and detail supplement,” Ieee
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 13, pp. 5466–5479, 2020.

[43] J.-L. Xiao, T.-Z. Huang, L.-J. Deng, Z.-C. Wu, and G. Vivone,
“A new context-aware details injection fdelity with adaptive
coefcients estimation for variational pansharpening,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60,
pp. 1–15, 2022.

[44] G. Vivone, L. Alparone, J. Chanussot et al., “A critical
comparison among pansharpening algorithms,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 5,
pp. 2565–2586, 2015.

10 Computational Intelligence and Neuroscience




