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Rapidly increasing adoption of electronic health record (EHR) systems has caused automated medical specialty classifcation to
become an important research feld. Medical specialty classifcation not only improves EHR system retrieval efciency and helps
general practitioners identify urgent patient issues but also is useful in studying the practice and validity of clinical referral
patterns. However, currently available medical note data are imbalanced and insufcient. In addition, medical specialty clas-
sifcation is a multicategory problem, and it is not easy to remove sensitive information from numerous medical notes and tag
them. To solve those problems, we propose a data augmentation method based on adversarial attacks. Te semiadversarial
examples generated during the dynamic process of adversarial attacking are added to the training set as augmented examples,
which can efectively expand the coverage of the training data on the decision space. Besides, as nouns in medical notes are critical
information, we design a classifcation framework incorporating probabilistic information of nouns, with confdence recalculation
after the softmax layer. We validate our proposed method on an 18-class dataset with extremely unbalanced data, and comparison
experiments with four benchmarks show that our method improves accuracy and F1 score to the optimal level, by an average of
14.9%.

1. Introduction

Recently, deep neural networks (DNNs) have achieved re-
markable success in classifcation tasks in various felds, such
as computer vision [1], network anomalous behavior [2–4],
and medical domain [5, 6]. Te widespread use of electronic
health record (EHR) systems has made the task of medical
specialty classifcation become more important in modern
healthcare. Classifying clinical notes into medical specialty
felds improves the retrieval efciency of the EHR system,
which enables the doctor to quickly access the target in-
formation. In addition, automated medical specialty clas-
sifcation can be extended to other downstream applications,
for example, assisting in medical knowledge extraction and
supporting intelligent medical decision systems.

However, obtaining and labeling unstructured medical
notes is not easy. Physician writing styles vary widely, as well

as diferent probabilities of disease outbreaks in diferent
medical subfelds. Tese objective factors lead to existing
datasets with signifcant defciencies: insufcient data vol-
ume [6], nonopen access [5], and unbalanced categories [7].
Abundant medical specialty categories with little and un-
balanced data are seriously impacting the performance of the
classifcation model, which is the greatest challenge in the
task of medical specialty classifcation.

As far as we know, the existing work focuses on how to
design a more optimal model and tune the best parameters
[6] to improve accuracy, such as comparing the efectiveness
of diferent machine-learning models and deep-learning
models, determining the best combination of models [7]
or algorithms [5]. An approach of integrated data analysis
was proposed in [5], where the researchers applied various
techniques to extract features, including the unifed medical
language system and semantic network. However, the
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problems of insufcient and imbalanced data have been
hardly considered in the existing work. In addition, the
maximum number of categories considered in the available
work is 9, less than the medical classifcation in medical
specialty classifcation. A fner classifcation is more in line
with the needs of realistic application scenarios, but it also
implies a greater challenge.

Standing for the realistic scenario, we explore how to
improve the performance of the classifer with the limited
corpus. In this paper, instead of focusing on the model
comparison and selection, we pay more attention to
employing data augmentation technology which is an ef-
fective method to address the data imbalance problem. In
the machine vision feld, many outstanding augmentation
techniques have been demonstrated to be efective in pre-
vious work [8]. However, for textual data, randomly
modifying examples is inefective due to the natural discrete
nature of the text. In addition, data augmentation techniques
applicable to diferent tasks vary widely, which leads to poor
transferability.

To tackle these challenges, we developed a data aug-
mentation method based on adversarial attacks. Te
adversarial attack aims to generate adversarial examples
which are similar to the original examples but make model
predictions wrong. From the geometric space perspective,
the process of adversarial attacks is described as the process
of clean examples approaching the decision boundary until
it is completely crossed. Interestingly, the intermediate
product of the attack process is identical to the defnition of
augmented data: data with a distribution close to that of the
original data. Taking advantage of this property, we extend
the training dataset using the intermediate examples gen-
erated in the attack process as augmented examples, which
are called semiadversarial examples. Tose examples better
cover diferent regions of the decision space and improve
both the generalization ability and robustness of the model.
Furthermore, since nouns in medical notes play a key role in
identifying the subfeld to which the note belongs, we
designed classifer architecture with confdence recalculation
after the softmax layer by probabilistic information. Tis
mechanism has advantages in supermultiple classifcation
tasks, especially for categories with insufcient examples.
Our contributions are summarized as follows.

(1) We propose an adversarial-based data augmentation
technique: SemiADA. It takes great consideration of
the distribution of data in the decision space, which
helps generate more comprehensive examples. Nu-
merous experiments show that after employing the
SemiADA method, the model accuracy and F1 score
are improved by 15.1% and 14.7%, respectively.

(2) We propose a weighted classifer with probabilistic
information. Experimental results show that the
proposed method proves to be excellent in medical
classifcation tasks, especially in categories with in-
sufcient examples.

(3) We designed a medical specialty classifer based on
a tough dataset situation. To the best of our
knowledge, we cover the largest number of specialty
categories. In addition, experimental results show
that the classifer obtained by our method has
stronger robustness.

2. Related Work

In this section, we explore existing related work in three
areas: (1) classifcation tasks in the medical domain, (2) data
enhancement methods, and (3) adversarial attacks as well as
adversarial enhancement methods.

2.1. Medical Classifcation. Machine learning excels at
classifcation tasks and plays an important role in smart
healthcare. Image classifcation-related applications are
particularly widespread. For example, in breast cancer de-
tection, Fotin et al. [9] used AlexNet trained on a proprietary
database to produce better performance than that achieved
by years of engineering manual feature systems; in Alz-
heimer’s detection, Lim and Schaar [10] utilized the fexi-
bility and scalability of deep neural networks to enhance
a joint longitudinal and temporal model of event data to
predict the trajectory of Alzheimer’s disease over time; in
heart disease detection, Poudel et al. [11] introduced an RNN
recursive connection in the U-net architecture to learn
which information of the previous ventricle to remember
when segmenting the next ventricle in a slice-by-slice seg-
mentation of the left ventricle.

Compared to medical image classifcation, the applica-
tion of machine learning to the medical classifcation of
textual data has not been widely explored. For electronic
health records, Weng et al. [5] constructed a machine
learning-based natural language processing (NLP) pipeline
and developed a medical subdomain classifer based on
medical record content. Ahnaf et al. [6] used Bengali for
training machine-learning and deep-learning models and
used a bidirectional LSTM model to classify text-based re-
cords based on medical specialties. Cheng et al. [12] trained
a CNN on a temporal matrix of medical codes for each
patient to predict the onset of congestive heart failure (CHF)
and chronic obstructive pulmonary disease (COPD).

2.2. Data Augmentation. Data augmentation techniques are
proposed for solving insufcient data and poor data quality
by constructing new examples to enrich the training data to
improve the generalization ability of machine-learning
models [13–15].

In terms of execution granularity, text data en-
hancement is classifed into the character level, word level,
phrase level, and document level. Character-level text data
augmentation includes randomly changing a letter in
a word [16], deleting or inserting characters [17], and
modifying punctuation to induce weak text sounds [18].
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Such methods have been shown to enable models to better
handle noisy text. Phrase-level methods are based on
structure [19] and interpolation [20]. Tis type of method
is more restricted to specifc languages and tasks. Com-
mon document-level methods include back translation
[21] and generative methods [22].

Te most widely promoted word-level approach is the
text enhancement method based on synonym substitution
[23, 24]. Embedding-based replacement aims at identi-
fying more contextually appropriate words by using
neural network embedding models and vector similarity
calculation [25–27]. In contrast to plain synonym sub-
stitution, semantic and high-dimension-based methods
take the context into account and have more compre-
hensive distributional assumptions. Te BERT [28] model
has been trained in a completion task with a large-scale
corpus, making it capable of predicting [MASK] as
a specifc word. Tis feature of BERT is fully exploited in
data augmentation techniques for word replacement, for
example [18], proposed conditional BERT (c-BERT),
which uses BERT contextual augmentation to generate
augmented data.

Data augmentation techniques applied to the medical
domain have focused on image enhancement. Janowczyk
et al. [29] used SAEs to normalize H&E-stained histopa-
thology images; Benou et al. [30] used CNNs to denoise
DCE-MRI time series. Aydin et al. [31] combined images
and text, using attention mechanisms and transfer-learning
approaches to further improve medical data classifcation
accuracy in small batches of data. In addition, methods
based on GAN [32, 33] and reinforcement learning [34] are
also used in image synthesis for the medical domain. Text-
only data augmentation is difcult because label-preserving
text transformations are hard to defne [35, 36], and this
disadvantage is accentuated in specifc specialized felds,
such as medicine.

2.3. Adversarial Attacks. Given a text x, the attacker adds
imperceptible disturbance Δx to x and aims to make the
pretrained model F misclassify. Δx operation includes
adding, deleting, and replacing characters or words. In
terms of textual form, there is some similarity between the
adversarial and augmented examples in that they both
generate similar copies of original examples by per-
forming certain modifcation operations in the original
example. In the natural language feld, gradient-based
adversarial training is efective in improving the accu-
racy and generalization of models [7, 21] but has weak
gains in adversarial robustness. In addition, adversarial
data augmentation [37, 38] and virtual adversarial data
augmentation [21] also efectively improve the adversarial
robustness of models, but such methods are prone to
decrease model accuracy. Lee et al. [38] proposed
a combination of friendly data augmentation and
gradient-based adversarial training that can improve the
adversarial robustness of models while maintaining their
accuracy.

3. Methodology

3.1. Notions and Defnitions. We denote F as the target
model and Dorig � (xi, yi)

n
i�1 as the original dataset. xi is the

text, denoted as the set of words xi � w1, w2, ..., wm , and m

is the number of words. yi is the label of xi, and yi ∈ Y,
where Y is the set of all labels. Fy(x) is the confdence
(probabilistic score outputted by the softmax layer) of F

predicting x as y. F(x) is the predicting label of x.
An adversarial example xadv is generated by imple-

menting imperceptible perturbations on x and indicated as
xadv � w1′, w2′, ..., wq

′ . If attack methods are replacement-
based, m � q.

Te dataset after data augmentation is indicated as Dada.
As for adversarial data augmentation, the steps are as fol-
lows: (1) train F on the original dataset Dorig to obtain a base
model Fbase, (2) generate several semiadversarial examples
x′adv  for each text in Dorig, (3) construct the adversarial
dataset Dadv � (x ′adv, yi) , and (4) train F on
Dada � Dorig ∪Dadv to get the fnal model.

3.2. Semiadversarial Data Augmentation. Established data
augmentation techniques fully consider how to enrich the
training set by generating new data close to the original data
but ignore the data distribution in the model decision space.
Te process of adversarial example generation well simulates
the transformation of data location in the decision space.We
presume that adversarial attacks can augment the dataset
with a more comprehensive distribution. Although adver-
sarial data augmentation has been shown to hurt model
performance [39], perturbed examples that do not cross
decision boundaries can overcome this drawback [40].
“Friendly adversarial examples” have been proposed and
shown to improve the adversarial robustness of the model
while maintaining accuracy [40]. Inspired by this, we pro-
pose semiadversarial data augmentation (SemiADA). Spe-
cifcally, the multiple-step adversarial attack method
(MSAA) generates semiadversarial examples for data aug-
mentation. Semiadversarial examples are perturbed but do
not successfully attack the target model. Multiple-step
means we perturb several words for each attacking action.

A visual illustrative example is shown in Figure 1.
Figure 1(a) describes the general data augmentation approach
to generate semiexamples distributed around the original
examples. Te dynamic process of the adversarial attack is
described in Figure 1(b). As shown in Figure 1(c), SemiADA
can cover a larger area of the decision space. It is worth noting
that there is a relatively large divide in the decision space
between the perturbed and original samples as shown in
Figure 1(c), but the texts are still highly similar to each other,
which means perturbed examples reserve semantics.

In common attack algorithms, only one word or em-
bedding vector is perturbed in each attack action, which is
described as a single-step attack. Diferent from them, we
propose a multiple-step adversarial attack method (MSAA),
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in which multiple words are selected as being perturbed in
each attack action, and fnally, a set of combined candidates
are identifed. During theMASS process, the semiadversarial
examples generated in intermediate steps are retained as
enhanced examples. Whole semiadversarial data augmen-
tation is shown in Algorithm 1, which mainly consists of
three steps as follows.

Step 1. Wording Importance Ranking. For any input
x � [w1, w2, ..., wm], each word plays a diferent efect on the
fnal prediction result. Terefore, we rank the importance of
all words and perturb the important words in priority.
Calculating the diference in confdence by deleting the word
is a common way to compare words’ importance. Tis type
of method requires an access target model m times and is
time consuming. To improve computational efciency, we
calculate the embedding vector diference of the replacement
word as [MASK] andmeasure the importance of the word by
the projection of the vector diference in the gradient di-
rection.Te importance of each word wi in x is computed as
I(wi, x):

I wi, x(  � V[MASK] − Vwi
 ∇wi

J(θ, x, f(x)), (1)

where the V[MASK] is the embedding of [MASK], the Vwi
is

the embedding of word wi, and J is the loss function of the
model F. It only requires querying the model once to get the
scores of all words, which greatly boosts efciency.

We further flter out the stop words derived from NLTK
(https://ww.nltk.org/) and Spacy (https://spcay.io/) libraries
such as “the,” “then,” and “· · ·.” Finally, we get the sorted and
fltered set W.

Step 2. Identify Candidate Word Combinations. We con-
struct a vocabulary dictionary by Dorig, which contains
27816 words. We determine the synonym set Synwi

for each
wi in the dictionary, which is initiated with k closest words

from the synonyms set of wi by WordNet based on cosine
similarity computation. WordNet [41] is a semantic-
oriented English dictionary with 155,287 words and
117,659 synonyms. Te word vectors used for similarity
computation are from pretrained word embedding model
Glove [42].

Human-written medical notes are not perfect and always
contain some syntactic errors, so we do not need the gen-
erated augmented examples to be perfect. Unlike adversarial
example generation, we aim to generate data that better meet
the data augmentation conditions, so syntactic correctness
checking is not strictly necessary.

In each attack action, we select the top t words from the
sorted set W as the perturbed word set PerSet � wi, ..., wi+t

where i � j∗ t and j is the j-th attack action. Tere are kt

kinds of all possible combinations, so it is extremely time
consuming to try all replacements. To save overhead, we
randomly example r � k × t times to reduce the number of
combinations of exponential complexity by a constant value.
Te candidate substitution words are obtained as follows:

CandiSet � R w, Synw( , w ∈ PerSet j 
r

j�1, (2)

where R(w, Synw) represents randomly selecting a word
from Synw.to replace w.

Step 3. Construct Semiadversarial Examples. We sequen-
tially replace words in PerSet with the combination of
candidate words in CandiSet to generate the perturbed
examples x′. If the prediction probabilistic of x′ on the
original label y is reduced, we add x′ to the fnal aug-
mentation set. It is worth noting that we do not add the fnal
adversarial examples to the augmented set because they
mislead the decision boundaries of the model to deviate
more from the true one. Te idea that adversarial data
augmentation leads to a decrease in model accuracy has also
been experimentally verifed in several works [39, 40].

...

(a) Data augmentation (b) Adversarial attack (c) Semi-adversarial data augmentation

Augmented Data A'

Augmented Data B'

Original example A

Original example B

Adversarial augmented Data A'

Sample augmentation space Attack path
Decision boundary

Figure 1: A visual illustrative example of (a) data augmentation and (b) adversarial attack. Te circles and squares represent the diferent
categories. Te black curve represents the resultant decision boundary. As shown in the yellow-shaded part in (c), semiadversarial data
augmentation covers a larger decision space.
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3.2.1. Complexity Analysis of Algorithm 1. According to the
cyclical functions in the workfow, time complexity can be
expressed as

T(n) � O
n

t
(t + kt + kt)  � n + 2kn � (2k + 1)n. (3)

As k is a constant, the computation time is increasing as
the input text size grows in a constant multiple. Te time
complexity of mainstream black-box adversarial attack
methods tends to be above O(n2) [35, 43]. Benefting from
the idea of a multistep combinatorial attack in the attack (as
shown in Step 1), our method is at least one rate lower than
mainstream attack methods. We have confrmed it experi-
mentally, as shown in Table 1.

3.3. Weighted Classifcation by Probabilistic Information.
Data augmentation mechanisms considerably alleviate the
problem of unbalanced and insufcient data, but the ac-
curacy under supermultiple categories is still unsatisfactory.
We focus attention on the task and the data itself to seek
more solutions. In the medical feld, nouns play an im-
portant role, and high-frequency words vary greatly across
medical specialties. For example, the “stomach” often ap-
pears in the “gastroenterology” category but rarely in the
“podiatry” category. We inferred that simple probabilistic

statistical information is useful to express the diferences
between categories. Terefore, we considered incorporating
probabilistic information (PI) for classifcation.

We add the probabilistic information (PI) layer after the
softmax layer (Figure 2). Its function is to recompute the
probabilistic distribution and make the model prediction
more accurate by incorporating the knowledge of proba-
bilistic statistics. In the inference phase, for any input x, we
perform the following steps.

3.3.1. Calculating Word Category Importance. We propose
the concept of word category importance (WCI) to indicate
the relevance of diferent nouns to diferent medical spe-
cialties. Referring to the BM25 algorithm in information
retrieval, we design the formula for WCI as

WCI wi, y(  � IDF′ ×
(k + 1) × TF′

k 1 − b + b Dy



/avg DYj



  + TF′
,

(4)

where |Dy| denotes the total number of examples in the
dataset whose labels are y, DYj

is the average data amount
for all categories, and IDF′ is a variant of the inverse doc-
ument frequency and expressed as

Input: Medical note text x, the ground truth y, target model F, attack step size t, synonym sets size k, original dataset Dorig
Output: Semiadversarial examples set AESet

(1) Fbase⟵ train F on Dorig
(2) W⟵ Sort all words in x by the descending order of their importance scores via equation (1)
(3) Filter the stopwords from W

(4) n⟵ length of W

(5) For j � 1 to (n/t − 1) do
i⟵ j∗ t

(6) PerSet in⟵ the words in W where index is i to i + t

(7) CandiSet⟵ { }
(8) for wi in PerSet do
(9) Initiate the candidates set Synwi

by extracting the top k synonyms for wi from WordNet using cosine similarity
(10) end for
(11) for i � 1 to k × t do
(12) Candidates⟵Randomly sample t words from Synwi

to Synwi+t

(13) Add Candidates to CandiSet
(14) end for
(15) xadv⟵x

(16) for Candidates in CandiSet do
(17) x′⟵Replace wi to wi+k of xadv with their corresponding candidate in Candidates
(18) if Fy(x′)<Fy(xadv) then
(19) Add x′ to AESet
(20) xadv⟵x′

(21) end if
(22) end for
(23) if there exits x′ whose prediction result F(x′)≠y Ten
(24) return AESet
(25) end if
(26) end for
(27) return AESet

ALGORITHM 1: SemiADA.
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IDF′ wi, y(  � log
|D|

Dwi



 − Dy,wi



 + 1
+(1 − a)

Dy,wi





Dy




, (5)

where the damping factor a is a constant between 0 and 1 for
restraining |Dy,wi

|/|Dy| contributions, |D|, |Dwi|, |Dy,wi
|, and

|Dy| are the number of all texts in the dataset, the number of
texts containing wi, the number of texts with the label y that
contains wi, and the number of texts with the label y, re-
spectively, and TF′ is the category frequency of a word,
denoted as

TF′ �
Cy,wi

Cy

, (6)

where Cy,wi
is the total times of the word wi that appears in

all examples with the label y and Cy is the total number of
words in all examples with the label y.

3.3.2. Estimating the Category Propensity of Input Examples.
For any input x, we measure its propensity to belong to any
category yi based on the category importance of all words in
x, denoted as

Score x, yi(  �

����������������

wi∈xWCI wi, yi( 
2

n



. (7)

3.3.3. Probabilistic Distribution Recalculation. Te softmax
output of the target model is the normalized logit distri-
bution, denoted as zi | i ∈ c,  zi � 1 , where zi denotes the
output of the i-th node and c denotes the number of cat-
egories. After the probabilistic information layer, the output
of each node is

Softmax − PI zi(  �
e

ziScore x,yi( )− M


c
j�1e

zjScore x,yj( − M
, (8)

where M � maxzjScore(x, yj)
c

j�1 serves to prevent
overfow of values.

4. Experiments

4.1. Experiment Setup

4.1.1. Dataset. We adopt the medical specialty classifcation
dataset fromKaggle (https://www.kaggle.com/competitions/
medical-specialty-classifcation/overview). Te dataset of
patient notes contains initial consultations, procedure visits,
and so on. As some categories contain less than 30 items and
are too difcult to train, we flter out the class where data
numbers are less than 30. Te fltered dataset includes 3,140
notes and 18medical specialty categories.Te distribution of
the data is shown in Figure 3, and the distribution of text
length after preprocessing is shown in Figure 4.

In the performance evaluation of diferent models
trained in a plain way and the proposed method, we used
stratifed K-fold (k= 5). We divide the dataset into fve folds
and assign the training and test data in a 4 :1 ratio. Data
augmentation is processed for the training set only. Each
metric score (Table 2) is derived from the average score of
the test data of k-models. Considering the time consumption
of data augmentation and retraining of a large model, in
other experiments, we fx the test data and the training data,
corresponding to the trained BioBERT model performs at
the median in Table 2. In all training, the fnal training and
validation sets are obtained by randomly dividing the
training data in a 9 :1 ratio in a stratifed manner.

4.1.2. Models. We adopt BioBERT as the classifer model.
We utilize BioBERT with 12 transformer layers, 12 self-
attention heads, and a hidden size of 768. We set dropout as
0.1, epochs as 10, max sequence length as 512, and batch size
as 16. Te learning rate of 1e− 5 is selected. In addition, we
compare BioBERT with diferent models, including CNN,
LSTM, and BERT. Specifcally, the parameters of BERT are
the same as those of BioBERT. Te CNN model contains

Table 1: Te performance of diferent attacks.

Attack Accuracy Time (minutes) #Query
None 73.3 — —
Textfooler [43] 20.1 47 mim 1207.12
Deepwordbug [44] 37.4 33min 921.78
Textbugger [45] 40.6 40min 947.50
BERT-attack [37] 17.2 67min 1089.72
MSAA 40.5 12min 240.91
Te victim model is BioBERT trained on the medical specialty classifcation
dataset. Time is execution times for each method that attacks BioBERT
based on 1000 test examples by the plain way and the proposed method.
#Query is the number of queries that methods require for the victim model.
To make a fair comparison, MSAA is simplifed by SemiADA that just
generates adversarial examples but does not save the intermediate perturbed
examples.

(CLS) w1

p1 p2 pc

w1 w1...

...

BioBERT Fine-turned

Fully-connected layer

Softmax

epiScore (x,yi)–M

epjScore (x,yj)–M∑c
j=1

p1ʹ p2ʹ pcʹ...

y

Probabilistic information layer

Figure 2: Te classifer architectures of the proposed method. We
add a probabilistic information layer to recalculate the probability
distribution following the softmax layer.
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three convolutional layers with flter sizes of 3, 4, and 5. Te
LSTM model contains 2 bidirectional layers and 256 hidden
units. We initialize them with 300-dimensional pretrained

word embeddings Glove (https://github.com/stanfordnlp/
GloVe) [42]. For both CNN and LSTM, the batch size is
64, the number of epochs is 16, and the dropout rate is 0.1.
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Figure 3: Data category distribution statistics. Te horizontal coordinate indicates the categories, and the vertical coordinate indicates the
total number of samples under that category. As we can see from the fgure, data distribution is severely imbalanced.
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Figure 4: Text length statistics. Te highest number of texts with lengths of 180–230 words. Te horizontal coordinate indicates the total
number of words in a note, and the vertical coordinate indicates the number of texts with a diferent total number.

Table 2: Te performance of diferent models trained in a plain way and the proposed method.

Models Mode Acc Micro-R Micro-P Micro-F1

CNN Plain 65.2 63.8 65.9 64.8
SemiADA+PI 79.1 79.3 78.1 78.7

LSTM Plain 70.5 70.6 71.9 71.2
SemiADA+PI 81.6 84.1 81.2 82.6

BERT Plain 69.4 71.5 69.6 70.5
SemiADA+PI 83.9 83.9 83.0 83.4

BioBERT Plain 73.0 71.5 74.7 73.1
SemiADA+PI 87.7 88. 87.9 88.2

SemiADA+PI is our proposed method, where SemiADA represents the data augmentation mechanism and PI represents the classifcation mechanism
incorporating probabilistic information.
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4.1.3. Evaluation Metrics. In this paper, we used accuracy,
precision, recall, and F1 score to evaluate the performance of
the model. Because the medical classifcation task is a mul-
ticategory problem, after the confusion matrix is formed by
two categories, we average the confusion matrix to obtain
the average of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) as TP, FP, TN, and
FN and then calculate accuracy (Acc), microprecision
(micro-P), microrecall (micro-R), and micro-F1 (micro-F1).
Te formulas expressions of all the used metrics are as
follows:

Acc �
TP + TN

TP + FP + TN + FN
,

micro − P �
TP

TP + FP
,

micro − R �
TP

TP + FN
,

micro − F1 �
2 × micro − P × micro − R

micro − P + micro − R
.

(9)

4.1.4. Experimental Environment. All models are trained in
4 GeForce RTX 2080 GPUs; the version number of the
python environment used is 3.6.13; the model architecture
used is the pytorch (https://pytorch.org/) library, and the
version is 1.10.2.

4.2. Baselines. We utilize multiple data augmentation
methods as comparison methods. Te size of the augmented
dataset is consistent. In addition to the examples in the
augmented dataset, other training details are consistent.

4.2.1. Plain Training. We use the dataset Dorig for plain
training in four models without any extra optimization.

4.2.2. Data Augmentation Based on Synonym Replacement
(SRA). All nouns, adjectives, verbs, and adverbs in text are
replaced randomly with their synonyms based on
WordNet [41].

4.2.3. Data Augmentation Based on Embedding Replacement
(ERA). According to the replacement method described in
[27], replacement is determined by two factors: whether the
vector cosine similarity is less than the threshold and
whether the lexical identity is consistent. Keeping the same
experimental conditions as in the original paper, the
threshold size is set to 0.7 in the experiments, and the NLTK
library is used for lexical annotation.

4.2.4. Data Augmentation Based on the Language Model
(LMA). We choose conditional BERT as the augmented
language model [46], and the specifc implementation fol-
lows the original algorithm scheme: randomly mask k words
and then predict label-compatible words of the masked
position and generate multiple new examples by replacing
the predicted words. Te value of k is 20% of the total
number of words in the input examples.

4.2.5. Adversarial Data Augmentation (ADA). We use the
adversarial examples generated by advanced adversarial ex-
ample attack method Textfooler [43] as augmented examples
based on TextAttack (https://github.com/QData/TextAttack).

4.3. Main Results. We investigated the efect of diferent
models on the generalization ability of the models using the
method proposed in this paper, and the results are shown in
Table 2. We observe that the performance of BoiBERT and
BERTmodels improves more than that of CNN and LSTM.
Compared with the plain training of the four models, the
BioBERT model pretrained with medical data has signif-
cantly better performance than other models.

As shown in Table 3, SemiADA+PI shows a signifcant
improvement in performance in contrast to other augmentation
techniques. It is worth noting that ADA leads to degradation in
performance. Te main reason for this phenomenon is that the
augmented examples in ADA are adversarial examples that have
led to changes in the labels and relatively large shifts in the
decision boundaries of the model. In addition, SRA and ERA
have comparable augmentation capabilities, and LMA performs
better as it is based on the language model.

5. Further Discussion

5.1. Ablation Studies. We conduct ablation studies on the
BioBERT model to clarify the impact of two parts of the
proposed method. As shown in Table 4, SemiADA com-
mendably improves the performance of the model in each
metric, but precision is still higher than recall due to im-
balance categories still existing. Tis issue can be well miti-
gated by the PI strategy. It is worth noting that although the PI
strategy alone does not improve model performance signif-
icantly, it improves microrecall whichmeans the classifcation
accuracy of categories with small data size is improved.

5.2. Impact of Synonym Set Size. A larger synonym set size k

means that there are more possibilities for word replacement
and that more diverse augmented data can be generated. But
does a larger k necessarily mean better performance? To
further clarify the relationship between k and model per-
formance, we slid k with a window size of 5 in the interval [5,
50] and observed the change in model classifcation
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performance. As shown in Figure 5, model performance
does not signifcantly improve after k is greater than 20 and
even has a slightly decreasing trend when k reaches 40.

5.3. Impact of Attack Step Size. We propose the MSAA
method which perturbs t words in an attacking action for
semiadversarial data augmentation. Larger t leads to
a greater diference between the generated examples and the
original examples, so there is less risk of the model falling
into overftting during the training phase. On the other
hand, large t will make the semiadversarial examples to be
very limited and insufcient to augment the dataset. We
evaluated the efect of the generated augmented examples for
diferent t ∈ [1, 10], and the results are shown in Figure 6.
We observe that the model works best for t � 3. How to
determine the value of t for diferent datasets in a more
direct and automatic way needs to be further explored.

5.4. Impact of theAugmentedDataAmount. Te appropriate
number of augmented examples is important. An excessive
number of augmented examples may lead the model into an
overftting dilemma. We compare the variation in training
accuracy and testing accuracy of the models obtained by
training diferent numbers of augmented texts. As shown in
Figure 7, test accuracy no longer increases when the aug-
mented data amount for each category reaches 5000.

5.5. Robustness Analysis. We evaluate the robustness of our
method against four attack methods, which rely on the
TextAttack library. Due to the inefciency of the attacks for
long text, we select 200 data for each experiment and repeat
the experiment three times to take the average value. Te
maximum perturbation rate is set to 0.1, and the minimum
text similarity threshold is set to 0.84. We summarize the
robustness results of the plain training mode and our
proposed method as shown in Table 5.

5.6. Visualization Analysis. To further verify our in-
terpretation given in Figure 1, we compare the diference
between SRA and SemiADA in the two types of vector
representations: the diference in the embedding distribu-
tion on the hidden layer output of [CLS] position and the
output of the softmax layer. Te output embedding of [CLS]
can be viewed as a sentence vector.Te output embedding of
the softmax layer is the most direct-viewing response to the
distribution of examples in the decision space. Since the
candidate words for both methods are derived from
WordNet, the word vector distribution is the same, so we do
not visualize and compare the word embeddings.

Because both of those embeddings are high-dimensional
vectors (768-dimensional, and 18-dimensional, respectively),
we perform dimensionality reduction visualization by t-SNE.

Table 3: Te performance of diferent data augmentation modes on the BioBERT model.

Modes Acc Micro-R Micro-P Micro-F1
Plain 73.0 71.5 74.7 73.1
SAR 80.3 78.2 83.1 80.8
ERA 80.9 78.2 82.8 80.4
LMA 84.9 80.7 88.1 84.2
ADA 72.1 71.3 72.5 71.9
SemiADA+PI 87.7 88. 87.9 88.2
Four metrics were used to compare the performance diferences between the models: accuracy (acc), microprecision (micro-P), microrecall (micro-R), and
micro-F1 (micro-F1).

Table 4: Ablation studies of our method on BioBERT.

Modes Acc Micro-R Micro-P Micro-F1
Plain 73.0 71.5 74.7 73.1
PI 73.4 78.1 77.3 77.7
SemiADA 85.6 83.2 86.9 86.9
SemiADA+PI 87.7 88. 87.9 88.2
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Figure 5: Te performance of BioBERTwith diferent synonym set
sizes k. We select attacking step sizes of t� 3, 4, and 5 to conduct the
repeated experiments, but only the results for t � 3 are shown in the
fgure, as the performance shows the same trend in the three sets of
experiments.
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As we can see from Figure 8, although the candidate word
distributions used by two methods are the same, sentence
embeddings are markedly diferent from each other. Te
distribution of the new sentences generated by SRA is much
closer to that of the original sentences (smaller area of the same

color). As shown in Figure 9, in the decision space, the new
samples generated by SemiADAare obviously distributedmore
scattered, while the samples generated by SRA are very close to
each other. In other words, the new samples generated by
SemiADA are richer and cover a wider area in the decision
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Figure 6: Te efect of diferent t on the performance of the enhanced model.
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Figure 7: Te accuracy of training and test phases with diferent amounts of augmentation data.

Table 5: Te robustness experiment results of the plain training mode and SemiADA+PI training mode, including accuracy under attack
(AUA %) and attack successful rate (ASR %).

Attacks
Plain SemiADA+PI

AUA % ASR% AUA % ASR%
None 73.0 — 87.7 —
Textfooler [43] 20.1 72.4 65.7 2 .2
Deepwordbug [44] 37.4 48.6 59.6 32.0
Textbugger [45] 40.6 43.0 66.0 24.9
BERT-attack [37] 17.2 76.4 40.9 53. 
Te black bold values denote the stronger robustness capability among two modes.
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space. Te candidate words have been strictly restricted to
ensure that the data distribution of the new samples is un-
biased. In this case, overly similar sentence distributions and
extremely close inputs in the decision space can cause the
model to fall into an overftting state, which is the signifcant
reason for the limited accuracy improvement.

5.7. Challenges and Limitations. Pretrained models are
currently the most powerful tools for NLP as they signif-
cantly improve the accuracy of many NLP tasks and have
strong generality. However, we also need to consider the
resource consumption in model implementation, because
the huge model architecture is not convenient for physical
storage and application. We believe that lightweight models

will be more popular in the medical industry, and this is the
direction of our future research.

Healthcare is an important feld regarding human life
and development, with low fault tolerance for models and
higher requirements for model interpretability. Dealing with
vague and uncertain medical texts remains a challenging
task. Literature studies [47, 48] give applications of fuzzy
classifers in key areas, which give us some insights. As fuzzy
classifers are transferable, we believe that the accuracy and
stability of the models will be greatly improved by applying
them to the healthcare domain.

Adversarial robustness aims to enhance security of the
deep-learning model, and we have accomplished some
throwaway work in this paper. We hope this will trigger

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 8: Comparison of sentence embedding distribution generated by SRA and SemiADA.We randomly select 10 original samples, which
are sampled from diferent categories in the dataset. Ten, we generate 20 new samples for each original sample by SRA and SemiADA. In
order to avoid the overlap of embeddings from diferent categories, we add bias terms of diferent sizes to embeddings from diferent
categories in the visualization, so that the categories are far away from each other. We repeat the experiment three times to obtain three sets
of plots (each column is a set of experimental results), where the visualization results under the SRA method are shown in (a1–a3) and the
visualization results under SemiADA are shown in (b1–b3).We only need to observe the coverage of each category (the area covered by each
color). Te larger the coverage means examples cover a wider range in the decision space.
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more thoughts and exploration on the security and re-
liability of deep-learning model applications in the
healthcare feld.

6. Conclusions

In intelligent medical scenarios, training a high-quality model
with nonideal data is an important task, which is the starting
point of our work in this paper. We propose SemiADA, a data
augmentation method based on semiadversarial attacks and
probabilistic information, to address the problem of in-
sufcient data amount and imbalanced data distribution in
supermultiple classifcation tasks. Our approach signifcantly
improves the performance of medical specialty classifers in
a cost-friendly manner. Experiments show that our proposed
method performs signifcantly better than various data aug-
mentationmethods. In addition, the robustness of the model is
evaluated under various attack methods. Te results show our
proposed method improves the adversarial robustness of the
target model to a certain degree.

Our approach takes into consideration the idea of solving
data problems in deep learning and the unique characteristics
of data in the medical feld, to complement each other and
maximize performance gain. Such an idea is of great interest in
cross-disciplines, such as the intersection of medicine and
artifcial intelligence, where this paper is positioned.
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