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Computing intelligence is built on several learning and optimization techniques. Incorporating cutting-edge learning
techniques to balance the interaction between exploitation and exploration is therefore an inspiring feld, especially when it
is combined with IoT. Te reinforcement learning techniques created in recent years have largely focused on incorporating
deep learning technology to improve the generalization skills of the algorithm while ignoring the issue of detecting and
taking full advantage of the dilemma. To increase the efectiveness of exploration, a deep reinforcement algorithm based on
computational intelligence is proposed in this study, using intelligent sensors and the Bayesian approach. In addition, the
technique for computing the posterior distribution of parameters in Bayesian linear regression is expanded to nonlinear
models such as artifcial neural networks. Te Bayesian Bootstrap Deep Q-Network (BBDQN) algorithm is created by
combining the bootstrapped DQN with the recommended computing technique. Finally, tests in two scenarios demonstrate
that, when faced with severe exploration problems, BBDQN outperforms DQN and bootstrapped DQN in terms of ex-
ploration efciency.

1. Introduction

IoT analytics heavily relies on reinforcement learning
techniques. Making decisions consecutively is the founda-
tion of reinforcement learning. Simply said, every next input
depends on the output of the previous input and the output
depends on the state of the current input. Model-based
techniques may identify a solution analytically without

actually engaging with the environment and can generate the
precise result of every state and action interaction in RL.
Because the environment is frequently too complicated to
create a model, the majority of real-world problems lack
models. Second, model-free solutions in RL can only
monitor the behavior of the environment through real in-
teraction with it. Machine data are often fragmented and/or
include a time aspect. Also, when we accept the data coming
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from a certain device, gadgets can act diferently depending
on the context.Terefore, it is tricky to catch all instances for
the data and the data cleaning phase of an algorithm.
Continuous sensor data monitoring is also time-consuming
and pricey. Reinforcement learning technologies embedded
with IoT can help these hazards. Tese algorithms pick up
new information on their own, freeing the programmer to
focus on other important responsibilities rather than
bothering about the training procedure and data collecting
procedure. Tese developments in computational in-
telligence methodologies have the potential to greatly im-
prove reliability in terms of latency and processing resources
without sacrifcing service quality. However, the explosive
increase in the use of sensors and actuators for next-
generation IoT systems generates enormous quantities of
information that are processed all through the cloud, which
can materially reduce processing efciency. Sensor tech-
nology is evolving at a rate never witnessed before, driven by
advances in materials’ science and nanotechnology. As
a result, it is becoming more accurate, smaller, and less
expensive and capable of detecting things that were not
imaginable before. In fact, in a few years, we will see a trillion
new sensors deployed yearly since sensing technology is
advancing so quickly. Actuator is a diferent kind of
transducer that is used in many IoT systems. Simply said, an
actuator works the opposite way from a sensor. It transforms
an electrical input into physical movement. Actuators come
in a variety of forms, such as electric motors, hydraulic
systems, and pneumatic systems. In addition, IoT sensors
and actuators can cooperate to provide automation on an
industrial scale. Finally, over time, analysis of the data
generated by these sensors and actuators might yield in-
sightful business information. Furthermore, the traditional
reinforcement learning methods may address exploration
issues successfully, but there are certain constraints: the state
space of a Markov decision process must be both discrete
and constrained; however, in this case, it was not given
sufcient attention or focus. Moreover, there are three main
problems in the feld of reinforcement learning [1]: (1)
generalization, (2) how to balance the relationship between
exploration and utilization, and (3) credit assignment
problem. In recent years, the research hotspot is mainly
focused on the generalization problem in large-scale state
space, and there is a new research feld named deep re-
inforcement learning [2].Te rise of this feld began after the
DeepMind team proposed the DQN (deep Q-network) al-
gorithm [3].Temain contribution of the DQN algorithm is
to combine deep learning [4] and reinforcement learning [5]
and through experience playback (experience replay) and
target networkmechanism to solve some problems related to
generalization [6]. Since then, many improved versions of
the DQN algorithm have been proposed [7, 8]. Tese al-
gorithms mainly focus on the generalization problem, and
the main problem to be discussed in this paper is how to
balance the relationship between exploration and utilization
with the integration of IoT and reinforcement learning. A
learning algorithm may be thought of as a stochastic
mapping, or a channel in information theory, that takes
training data as input and produces a hypothesis as output.

Te generalization error is the diference between the output
hypothesis’ population risk and its empirical risk on the
training data. It quantifes the degree to which the learnt
hypothesis sufers from overftting. Te usual method of
measuring generalization error is based on either specifc
complexity metrics of the hypothesis space. Te reciprocal
data between the collection of empirical hazards of the
available hypotheses and the algorithm’s fnal output may be
utilized to efciently assess and control bias in data analysis,
which is analogous to generalization error in learning issues.
Te total variation data between a random instance in the
dataset and the output hypothesis are used to calculate the
generalization error in learning problems; however, the
approach is limited to bounded loss functions. Another
beneft of relating the generalization error to the input-
output mutual information is that, unlike the VC dimension
or the uniform consistency, which only depends on the
hypothesis space or the learning algorithm, the latter
quantity depends on all components of the learning prob-
lem, including the dispersion of the dataset, the hypothesis
space, the learning algorithm itself, and possibly the loss
function. Te input-output mutual information may be
more closely linked to the generalization error than typical
generalization-guaranteeing parameters of interest since the
generalization error might substantially depend on the input
dataset.

IoT analytics heavily relies on deep learning techniques.
Machine data are often sparse and/or contain a temporal
component. Even when we believe the data coming from
a certain device, gadgets might act diferently depending on the
environment.Terefore, it is challenging to capture all instances
for the data preprocessing/training step of an algorithm.
Continuous sensor datamonitoring is also time-consuming and
costly. Deep learning techniques can reduce these hazards. Deep
learning algorithms pick up new information on their own,
freeing the developer to focus on other important tasks rather
than worrying about the training process. A machine learning
method called reinforcement learning involves the agent
interacting with its surroundings in an efort to optimize the
fnancial reward. Te human brain communicates with the
outside world andmakes use of that interaction to comprehend
and survive in that world. Reinforcement learning compares
learning about the environment to learning about the human
brain and sensory processing system. It is a process where an
agent must investigate every aspect of the system to compre-
hend it. It is not practical inmany situations due to the length of
time required to converge and obtain an optimal policy. Te
problem with traditional RL is its dimensionality. Te number
of factors that an RL agent must learn increases exponentially as
the environment gets more complicated. Over the network, IoT
links millions of devices. Because IoT devices are so dynamic,
a complicated RL may constantly acquire new data to adapt to
many advanced situations. Some IoT ecosystems are so com-
plicated that modeling them is challenging.Te efort needed to
simulate and solve such a complicated environment is reduced
by RL.Tink of a challenging IoTcase wherewe need to develop
a model to address a challenge.

Te hottest supervised learning algorithms in the feld of
machine learning can only learn relevant patterns from data
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collected by humans, but what data need to be collected, or
which data are important, is still up to humans to decide.
However, IoT-based reinforcement learning can obtain
diferent observation sequences by selecting diferent ac-
tions, and then learning-related patterns according to the
obtained observation sequences. Tat is to say, within the
scope of reinforcement learning, an algorithm is needed to
decide whether to select the current optimal action (use) or
choose an action (exploration) that has the potential to bring
long-term benefts. However, algorithms such as DQN use
a simple heuristic exploration strategy ε-greedy, which only
randomly selects an action with the probability of ε
(0≤ ε≤1) to achieve the efect of exploration. However, such
an exploration strategy is extremely inefcient. Although the
DQN algorithm can reach or even exceed the human level in
an Arcade Learning Environment [9], the time complexity of
the algorithm is O (2N) when faced with deep exploration
problems [4].

A good exploration strategy must consider the in-
formation gained brought by the selected action, and the
information is mainly measured by the degree of uncertainty
of the estimated value, then a good exploration strategy can
be obtained only by introducing probabilistic thinking. As
early as 1998, Dearden and other scholars proposed Bayesian
Q-learning [10] to balance the relationship between explo-
ration and utilization. Since then, other researchers have
proposed reinforcement learning algorithms under the
Bayesian framework [11, 12]. However, the computational
processes of these algorithms are relatively complex and
cannot be combined with deep learning techniques. Te
main problem with the combination of Bayesian re-
inforcement learning and deep learning is that it is in-
tractable to obtain the posterior distribution of neural
network parameters in high-dimensional state space.

Te contribution of this paper is to propose a new
calculation method that can generate samples of the pos-
terior distribution of parameters, and the IoT-based deep
reinforcement learning algorithms using this calculation
method are collectively referred to as Bayesian deep re-
inforcement learning algorithms. Machine intelligence
techniques govern computation, regulation, system lag,
reliability, consistency, efectiveness, and energy efciency at
multiple elements in IoT ecosystems. Tese methodologies
are in control of information gathering, linking devices to
the Internet, data processing, and decision-making without
interpersonal interactions. Currently, this calculation
method is only applicable to value-based deep reinforcement
by the combination of intelligent learning algorithms with
policy-based deep reinforcement learning algorithms.
Combining the bootstrapped DQN with this calculation
method, a new algorithm BBDQN (Bayesian bootstrapped
DQN) is obtained, and the exploration efciency of the
algorithm is verifed through experiments in two environ-
ments, one of which is a lattice world with a deep exploration
structure. Another experimental environment is the classic
control problem Mountain Car, which does not have a deep
exploration structure itself, slightly modify its reward
function to make it have a deep exploration structure, and
then conduct experiments on the modifed Mountain Car.

Te experimental results show that BBDQN can solve the
deep exploration problem, and its exploration efciency is
better than the DQN algorithm using a random exploration
strategy (i.e., ε-greedy) and the bootstrapped DQN algo-
rithm. Trough the use of randomized value functions, the
straightforward algorithm bootstrapped DQN explores in
a computational and statistically efcient way. Bootstrapped
DQN engages in temporally extended (or deep) exploration
as opposed to dithering tactics such as epsilon-greedy ex-
ploration; this can result in tenfold quicker learning. We
illustrate these advantages in the expansive arcade learning
environment and complicated stochastic MDPs. Boot-
strapped DQN signifcantly reduces learning times and
enhances performance in the majority of Atari games. In
a traditional bootstrap, you simulate sampling your data
from a population by collecting samples with substitutions
from your data. Tis procedure is repeated K times to mimic
drawing your sample several times, allowing you to assess
the potential variability estimate of your statistic (a function)
over various samples drawn from the same population (Xk).
Consequently, we are emulating the statistic’s “sampling
distribution” (variability due to the sampling process). In the
specifed Bayesian bootstrap, you are estimating the pos-
terior distribution of the estimates of the statistic ϕ (X) and
the distribution of your data X� {x1, x2, . . ., xN}. It is
a nonparametric model in which your data points are as-
sumed to have a categorical distribution (the likelihood).

Even though the DQN has already considerable success,
it may still be enhanced with the aid of a variety of diferent
methods, including a more precise approximation approach
for the state action-value function and prioritized experience
replay. Due to its capacity to balance exploration and ex-
ploitation in reinforcement learning, the exploration ap-
proach should be the most crucial of these strategies. Te
exploration strategy determines the course of action to
pursue given the current situation and has the potential to
afect how the process will ultimately develop in the future.
Given its signifcance, several exploration tactics have been
suggested. Te strategy employed in the frst DQNs and
possibly the one that is utilized the most is the epsilon-
greedy one. Te greedy approach mostly selects the action
that is thought to be the best, but it also randomly selects an
action with little probability. An activity that has been
proven to be a poor option may be repeatedly picked in the
succeeding decision-making process since the activities are
chosen entirely at random for investigation. To increase the
efectiveness of exploration, add some Gaussian noise. For
jobs with well-defned incentives, these heuristic strategies
are enough.

A signifcant issue for reinforcement learning is still
efective exploration in complicated situations. We suggest
the bootstrapped DQN, a straightforward technique that
uses randomized value functions to explore in a way that is
both computationally and statistically efcient. Te boot-
strapped DQN engages in temporally extended (or deep)
exploration as opposed to dithering tactics such as epsilon-
greedy exploration; this can result in tenfold quicker
learning. We illustrate these advantages in the expansive
Arcade Learning Environment and complicated stochastic
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MDPs. Te bootstrapped DQN signifcantly reduces
learning times and enhances performance in the majority of
Atari games. Te bootstrapped DQN builds many posterior
estimates using the same original data. Te random ini-
tialization of the weights for the heads is what causes the
variety of approximate solutions. Tis implies that these
heads frst try random actions (due to varied random ini-
tials) but that some (but not all) of the heads will learn from
it due to bootstrapping when some heads discover a favor-
able state and generalize to it. Other heads will eventually
either discover additional excellent states or come to un-
derstand the greatest good states discovered by the other
heads. Simply employing the bootstrapped DQN as an
exploitative approach is quite good in and of itself, even
better than the vanilla DQN. Tis is due to bootstrapped
DQN’s deep exploration capabilities, since it may employ the
best states, it knows while simultaneously planning to try out
states it does not know anything about. Even in the flms, it is
clear that the heads agree on all critical decisions but dis-
agree on other, less signifcant actions.

2. Related Work

Te exploration efciency of the reinforcement learning
algorithm directly afects the sample efciency of the al-
gorithm, and improving the exploration efciency can
reduce the number of time steps required to train the agent.
Te Bayes policy is a criterion for measuring the explo-
ration efciency of reinforcement learning algorithms;
however, computation of Bayesian optimal policies is tricky
because the computation time grows exponentially with the
problem space (states and actions) [13]. Tere are many
studies considering exploration efciency, and Liu et al.
[14] were the authors to propose it, and their work con-
frmed that polynomial-time reinforcement learning al-
gorithms must use multiperiod exploration. Based on their
work, a series of tabular reinforcement learning algorithms
has been proposed [15–21]. Te exploration methods
mentioned in these papers are more efcient than ε-greedy
and Boltzmann exploration, but these methods all cannot
handle the curse of dimensionality. Deep reinforcement
learning algorithms [3, 22, 23] are proposed in recent years
to deal with large state spaces tend to use ε-greedy ex-
ploration. Tese algorithms can get good results in Atari
arcade games and Go, but they do not have any practical
applications; the inefcient exploration efciency makes
these algorithms only trained in simulated environments.
By randomly selecting between exploration and exploita-
tion, epsilon-greedy is a straightforward strategy for bal-
ancing exploration and exploitation. Epsilon refers to the
likelihood of deciding to explore, and the epsilon-greedy,
with a low probability of exploring, exploits most of the
time. Teoretical computer science, optimization, machine
learning, and decision theory all use exponential weighting
schemes as basic tools. Exponential weighting systems,
often known as Boltzmann, Gibbs, or softmax exploration
strategies, are frequently employed in reinforcement
learning to balance exploration and exploitation. Te
chance of selecting an arm in the most popular variant of

Boltzmann exploration is inversely related to an expo-
nential function of the empirical mean of the reward for
that arm.

For the exploration of large-scale state space, some re-
searchers proposed a model learning algorithm [24]. Te
problem with this method is that it can only solve simple
model problems. For complex models, the calculation of this
method is also difcult. Some researchers have proposed
a policy learning algorithm [25], which mainly solves the
problem of continuous action space, such as robot control,
but when the size of the policy space is exponential, this
method cannot guarantee the efciency of exploration.
Another class of approaches encourages exploration by
assigning rewards to infrequently visited states based on
pseudocounts [26] or density models [27].

How to ensure the exploration efciency, and general-
ization of the algorithm has always been a difcult problem
in reinforcement learning, and some researchers have
thought of using Bayesian thinking to deal with this
problem, such as the BayesianQ-learning algorithm [10], but
this algorithm can only deal with state A limited number of
problems; there is also the RLSVI (randomized least-square
value iteration) algorithm proposed in this literature [28],
which is only suitable for linear function approximates and
cannot be combined with neural networks, a nonlinear
function approximate; while the algorithm proposed in this
literature [29] uses the neural network as the feature ex-
tractor that takes the input of the last layer of the network as
a feature and then uses Bayesian linear regression to cal-
culate the Q-value. RLSVI works similarly to least-squares
value iteration (LSVI) and has many of the same principles
as other closely related algorithms such as TD, LSTD, and
SARSA. Te diference between RLSVI and the alternatives
is that the algorithm explores by randomly sampling sta-
tistically plausible value functions, whereas the alternatives
are typically used in conjunction with action-dithering
schemes such as Boltzmann or epsilon-greedy explora-
tion, which results in highly inefcient learning. Te ran-
domized least-squares value iteration (RLSVI) technique
rapidly investigates and generalizes value functions with
linearly parameterized values. It is, however, reliant on
hand-designed state representation, which necessitates en-
gineering efort for each scenario.

Research in Bayesian neural networks has not been
mainstreaming [30, 31]; however, there have been recent
signs of a resurgence, with many concerns about quantifying
the uncertainty of datasets. Methods [32] have been pro-
posed, and the authors of this paper are inspired by these
methods and propose a deep reinforcement learning algo-
rithm that can efciently compute Bayesian posteriors.
Because they provide us with whole distribution across the
regression parameters, Bayesian regression methods are
known to be particularly powerful. Bayesian linear re-
gression ofers a built-in technique for calculating in-
sufcient or unevenly distributed data. Te coefcients can
have a prior applied to them so that, in the absence of data,
the prior can be used instead. In Bayesian linear regression,
statistical analysis is carried out under Bayesian interface
conditions. To create linear regression, we do not utilize
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point estimates but rather probability distributions. An
output is produced using a probability distribution rather
than more traditional methods of regression. Bayesian linear
regression seeks to identify posterior rather than model
parameters.

3. Background Knowledge

A collection of potential world states S, a set of models, a set
of potential actions A, a real-valued reward function R (s, a),
and a policy are all components of a Markov Decision
Process (MDP) model. Each possible state for the agent is
represented by a set of tokens called a state. A model, often
known as a transition model, describes how an action
changes a state. Specifcally, the transition T (S, a, S′) de-
scribes a situation in which being in state S and performing
an action “a” transports us to state S′ (S and S′ may be the
same). All conceivable actions are included in an action A.
Te collection of actions that can be executed while in state S
is defned as A (s). A reward is a reward function with a real
value.Te reward for merely existing in the state S is denoted
by R (s). Te reward for existing in a state S and doing an
action “a” is indicated by the expression R (S, a). Te reward
for being in a state S, doing an action “a,” and then ending up
in a state S′ is denoted by the formula R (S, a, S′). Te
Markov Decision Process has a solution in the form of
a policy. A mapping from S to a is a policy. It signifes that
when in state S, action “a” should be conducted. Re-
inforcement learning problems are usually modeled as
Markov Decision Processes. Te Markov Decision Process
used in this paper can be expressed as (S, A, T, R, c), where S
is the state space, A is the action space, and A(s), s ∈ S is the
action set available in state s; T is the state transition
probability, T(St+1|st, at) represents the probability of
transitioning to state St+1 after taking action at state st; R is
reward functioned, Rs,a denotes the mean value of the re-
ward distribution obtained after taking action a in state s,
and let r denote the immediate reward obtained after taking
action a in state s (it can also be understood as a sample
obtained from the reward distribution), and then there is
Rs,a � Ε[r |st � s, at � a]; c ∈ [0, 1] as the discount param-
eter used to control the weight of future rewards.

Te goal of reinforcement learning is to learn a policy
that maximizes the discounted cumulative reward obtained
by the agent. Let π denote the policy and π(a|s) denote the
probability of taking action a in state s. Ten, introduce the
concept of action-value function (Q function), the action-
value function Qπ(s, a) table under the policy π, and the
agent can obtain the expected discounted cumulative reward
after taking action states, namely,

Qπ(s, a) � Eπ 

∞

t�0
c

t
rt s0 � s, a0 � a

⎡⎣ ⎤⎦. (1)

Tis equation can also be expressed recursively:

Qπ(s, a) � Rs,a + c 
st,at

s
′
|s, a π a

′
s
′

 Qπ s
′
, a
′

 . (2)

We denote the optimal policy by π∗ and the optimal
action-value function by Q∗. Since the optimal policy is the
policy that obtains the maximum discounted cumulative
reward, the Q∗ function can be written as follows:

Q
∗
(s, a) � Rs,a + 

st

T s
′
|s, a maxa′ Q

∗
s
′
, a
′

 . (3)

Equation (1) is also known as the Bellman optimality
equation. For each pair of s, a, there is an equation. By
combining all these equations, a system of equations is
obtained, which can be solved by linear programming
methods. Tis system of equations yields the optimal action-
value function Q∗ (s, a) for all s, a. Te optimal action-value
function can also be solved by dynamic programming
methods such as policy iteration or value iteration. Te
optimal strategy can be expressed by the optimal action-
value, that is, for all states s, select the action
a � argmax a Q∗ (s, a) that maximizes the optimal action-
value function in this state; if there are multiple actions
satisfying with this condition, one of these actions can be
randomly selected. It can be seen from equation (1) that this
method requires a known environment model—state
transition probability T and reward the function R to be
calculated. If the environment model is not known, other
methods are needed to fnd the maximum value. Optimal
strategies, such as Q-learning algorithms, are used to cal-
culate the optimal action-value function, iteratively, and the
update rule is

Q(s, a)←Q(s, a) + α r + cmaxQ s
′
, a
′

  − Q(s, a) . (4)

Among them, α is the learning rate, and the reward r and
the next state, s are both fed back to the agent by the en-
vironment. In the case of limited state space and action
space, as long as the learning rate sequence satisfes the
random approximation condition and all state-action pairs
are in the case of continuous updates, the algorithm con-
verges to the optimal value function Q∗ [5] with
probability 1.

In large-scale state spaces, the traditional reinforcement
learning algorithm Q-learning is no longer applicable, but
this problem can be solved by combining function ap-
proximation techniques. Te combination of neural net-
works and reinforcement learning is a hot research topic in
recent years, and the DQN algorithm is a model in this
regard. When using a neural network, the action-value
function can be expressed as Qθ(s, a), where θ is a param-
eter of the neural network. We compute the target value
from feedback from interacting with the environment:

c � r + cmaxQθ s
′
, a
′

 . (5)

With the target value and the predicted value, the pa-
rameter θ of the neural network can be updated by the
stochastic gradient descent algorithm. Te update rule is

θ← θ − α∇θ y − Qθ(s, a) 
2
. (6)
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If you do this directly, the efect is not very good because
the neural network is a supervised learning method, which
requires that each training sample is independent of each
other, and the samples collected by reinforcement learning
are related to each other, and each update of the parameters
will afect the target value, causing the target value to be
unstable. As mentioned in the DQN algorithm, only two
mechanisms are needed to alleviate this problem: experience
replay and the target network. Te experience replay
mechanism is that, each time the agent interacts with the
environment, the information (s, a, r, s′) of the interaction is
stored in the memory pool (replay bufer), and the agent
randomly selects from the memory pool for each update. We
take a certain number of samples and use these samples to
update the parameters. Te target network mechanism is
that the agent maintains two Q networks, one network is
used to select actions and update them in real time and the
other network (target network) is used to calculate the target
value and will not update in real-time the target value used in
each update, and it can be expressed as

c � r + cmaxQ
target

s
′
, a
′

 . (7)

Among them, Qtarget represents the target network, and
only after the specifed time step has passed, the parameters
of the two networks will be synchronized once.

4. In-Depth Exploration of the Problem

Te chain problem mentioned is a kind of deep exploration
problem, and this paper will use this problem to analyze the
exploration efciency of the ε-greedy strategy and Boltz-
mann exploration. To simplify the calculation, some mod-
ifcations have been made to the chain problem as discussed
in the literature [10]. ε-greedy exploration is to randomly
choose one of all available actions with probability ε, and
choose the best action for the moment with probability 1 − ε.
Te probability of selecting each action in Boltzmann’s
exploration is proportional to the estimate of the action-
value function, which is calculated as

π(a|s) �
e

Q�(s,a)/t

ie
Q�(s,a)/t . (8)

Among them, Q͂ is the estimation of the action-value
function, t is the temperature parameter, the larger the value
of t is, the closer the strategy is to the random strategy, and
the smaller the value of t is, the closer it is to the greedy
strategy. A chain problem is used to analyze the exploration
efciency of ε-greedy exploration and Boltzmann explora-
tion.Te state transition diagram of this problem is shown in
Figure 1. Each arrow in the diagram corresponds to an
action and reward.Te starting state of the problem is 1, and
the termination state is N. Suppose the length of each ep-
isode (episode) H � N − 1, and no matter in which state, the
choice of action a will have, a probability of 0.2 failure
(failure means that the selected action and the actual action
are inconsistent) and action b is deterministic. Te optimal
strategy for this problem is to always choose action a, and the

average reward that the optimal strategy can get in each cycle
is the probability (1 − 0.2)N− 1 that the strategy successfully
reaches N. Whether it is ε-greedy or Boltzmann exploration,
since there is no reward before reaching the target state N
(i.e., the reward is 0), the estimated values of action a and
action b are equal in all states, and the action selection is
completely random; in this case, the probability of reaching
state N through exploration is (1 − 0.2)N− 1 × 2− (N− 1), just
take the reciprocal of this probability to get the average
required amount of reaching state N through exploration.
Te number of cycles, with l representing the required
number of cycles, the following relationship is established:

theE[l] �
1

(1 − 0.2)
n− 12

N− 1 > 2N− 1
. (9)

From this inequality, it can be determined that a re-
inforcement learning algorithm using an ε-greedy strategy
or Boltzmann exploration has a time complexity of O(2N)

when faced with a deep exploration problem such as the
chain problem, where N represents the size of the problem.

Te exploration efciency of epsilon-greedy exploration
and Boltzmann exploration is examined using a chain
problem. Figure 1 depicts the state transition diagram for
this problem. Each arrow in the graphics represents an
activity and its associated reward. Te problem’s initial state
is 1 and its fnal state is N. Te described chain issue is a type
of deep exploration problem, and this study will utilize it to
compare the exploration efciency of the epsilon-greedy
method with Boltzmann exploration. Epsilon-greedy ex-
ploration is the process of randomly selecting one of all
potential actions with probability, and then selecting the
optimal action for the moment with probability. In Boltz-
mann’s exploration, the likelihood of picking each action is
proportional to the estimated action-value function.

5. Bayesian Deep Reinforcement Learning

Te benefts of exploration can be estimated by the value of
information. Te so-called value of information refers to the
degree to which the information obtained through explo-
ration leads to the improvement of the quality of future
decision-making, and how quantifying the information
obtained through exploration is the key. According to in-
formation theory, the amount of information brought by the
exploration can be calculated by the uncertainty of the es-
timated value of the action selected by the exploration. Te
quantitative treatment of the ideas, parameters, and regu-
lations regulating message transmission through commu-
nication networks is known as information theory. It was
established by Claude Shannon in the middle of the 20th

b, 0b, 0

b, 0

a, 1a, 0a, 0a, 01 2 N-1 N

Figure 1: Chain problem.
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century and has since developed into a vibrant branch at the
intersection of communication theory and mathematics,
promoting the advancement of other scientifc disciplines.
Some people consider information theory to be a subset of
probability theory since the methods utilized in it are
probabilistic in nature. Whether an analog or digital com-
munication technology is used, information is its source.
Information theory is a mathematical method for studying
information coding, as well as quantifcation, storage, and
communication. In [10], a Bayesian method is proposed to
maintain this information; however, in this paper, the
number of state-action pairs of the problem discussed is
limited, and all the obtained state-action pairs can be
recorded by recording all the variance and then calculate the
amount of information. When the number of state-action
pairs is too large, reinforcement learning will consider
combining generalization techniques to solve this problem.
If a linear function approximator is used, it can be estimated
according to the Bayesian linear regression mentioned in
[33] value variance. However, in recent years, research re-
lated to deep learning has shown that the strong general-
ization ability of neural networks is much stronger than that
of linear function approximators. Terefore, the combina-
tion of deep learning and reinforcement learning technology
has become a major trend, and a new feld of research is
called deep reinforcement learning. Due to the complex
structure of the neural network and the huge number of
parameters, the variance of the estimate cannot be calculated
by the calculation method mentioned in the literature [33],
so this paper proposes a new calculation method. Tis
method obtains a sample of the posterior distribution of the
neural network parameters by calculation at each time step.
Since the estimated variance of diferent actions is diferent,
the action with high variance has a larger amount of in-
formation, and its sampling value may also be larger.
Terefore, the probability of being selected is also higher. For
example, there are two actions whose Q-value obeys
a Gaussian distribution. Since action 1 is selected many
times, its variance is smaller than that of action 2. Suppose
that the variance of action 1 is 1, and the variance of action 2
is 10. In addition, the variance of action 1 is 1. Action 1 has
a mean historical return of 3 and action 2 has a mean
historical return of 1, so action 1 follows a Gaussian dis-
tribution with mean 3 and variance 1, while action 2 follows
a Gaussian distribution with mean 1 and variance 10,
resulting in action 2. Due to the large variance, the prob-
ability that its sampled value is greater than that of action 1 is
also greater. Te following sections describe in detail how to

apply Bayesian methods in deep reinforcement learning
algorithms.

Te input to a neural network can be a one-dimensional
array, a two-dimensional matrix, or even a three-
dimensional image. For the sake of clarity, x ∈ Rd is used
to represent the state feature, that is, the input value of the
neural network, plus the target value y to form the training
set, which is expressed as D � (xiyi) 

n
i�1. Te posterior

distribution of the linear regression model fθ (xi) � θTxi

parameters is calculated and later extended to the case of
neural networks. Te model parameters are expressed as
s ∈Rd, and the prior distribution of the parameters θ is
assumed to be N(θˉ, λI), and the observed target value has
a certain noise, that is, yi � θTxi + wi, where wi∝N(0, σ2).
For noise, the noise of each sample is independent of each
other. According to Bayes’ theorem, the posterior distri-
bution of the parameter θ can be expressed as

p(θ|D) �
p(D|θ)p(θ)

p(D)
. (10)

In Bayesian theory, p(D|θ) is called the likelihood, p(θ)

is called the prior, and p(D) is called the evidence.
According to the derivation of the literature [33], the pos-
terior distribution of the parameter θ obeys the multivariate
Gaussian distribution with the mean (12) and the covariance
(13):

E[θ|D] �
1
σ2

X
T
X +

1
λ

I 
− 1

, (11)

cov[θ|D] �
1
σ2

X
T
X +

1
λ

I 
− 1

. (12)

Among them, X ∈ Rn×d is the matrix obtained by
splicing n sample inputs xii and y ∈ Rn is the vector ob-
tained by splicing n target values yi. Tis posterior distri-
bution can be inferred by methods such as Markov Chain
Monte Carlo, but to extend to nonlinear model artifcial
neural networks, the posterior distribution is expressed in
another form:

θ′←
1
σ2

X
T
X +

1
λ

I 
− 1 1

σ2
X

T
(y + δ) +

1
λ
θ′ . (13)

Among them, δ ∈ Rn is a random vector, each com-
ponent δi comes from the Gaussian distribution (0, σ2), and
the sampling of each component is independent of each
other, and θ̂ comes from the parameter prior distribution
N(θ’, λI). It can be shown that θ͂’ and θ are equivalent
because

E θ′|D  �
1
σ2

X
T
X +

1
λ

I 
− 1

.
1
σ2

X
T
(y + E[δ|D]) +

1
λ

E θ′|D   � E[θ|D]. (14)
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Tat is, the means of θ͂’ and the mean of θ are equal, and
there are

cov[θ|D] �
1
σ2

X
T
X +

1
λ

I 
− 1

.
1
σ4

X
T
E δδT

|D X +
1
λ2

E θ′θ′
T
|D   . (15)

((1/σ2)XTX + (1/λ)I)− 1 � cov[θ|D] and Ε[δδT|D] �

σ2 I,Ε[θ
̂
’θ
̂
’T|D] � λI, that is, the covariance of θ͂’ is equal to

the covariance of θ. With θ’, the posterior parameters can be
directly calculated, which is the key to combine Bayesian
methods and neural networks. Calculating θ’ requires
adding noise to the target value, which can be obtained by
open delta number generation noise sample open δi for each
sample (xi, yi). In addition, the reinforcement learning
algorithm will continuously collect new data and modify its
model parameters over time. Terefore, formula (15) is
rewritten into an iterative calculation method to adapt it to
the form of online learning. Te update rules are as follows:

θ′ ← θ′ − ∇θL fθ + fθ; Dnoise( . (16)

Among them, ∇θL(fθ + fθ; Dnoise) is the loss function
and fθ′ + fθ indicates that the output of the prediction
function is obtained by adding the outputs of two neural
networks, one of which has the posterior parameter θ͂' and
the other network has the prior. Te parameter θ’ ; Dnoise
represents the dataset with added noise, i.e.,
Dnoise � (xiyi + δi) 

n
i�1. Equation (16) is to update the

posterior parameter θ͂, and the prior parameter θ̂ will not
change after it is determined in the initialization stage. We
combine formula (16) for calculating the posterior param-
eters and the bootstrapped DQN method, since the DQN
method adopts the experience replay mechanism, and the
way of sampling samples from the memory pool in the
experience replay mechanism is equivalent to inject
Gaussian noise into the data [34], so there is no need to
explicitly add noise; the dataset is represented by
Dsample � (xiyi + δi) 

n
i�1, where n represents the number of

samples drawn from the memory pool at each update, also
known as the batch size. We denote the target network as
fθ′ , and then the loss function can be written as

opensL fθ′ + fθ′ ; Dsample  ≔ 
tϵDsample

yi − fθ′ + fθ′  xi(  .

(17)

Te method that combines the Bayesian method and
bootstrapped DQN is called the BBDQN algorithm, see
Algorithm1 for an overall description of the algorithm.

5.1. BBDQN Algorithm. Te Bayesian bootstrap, like other
bootstrapping approaches, can enhance probabilistic fore-
casts by employing preprocessed data with replacement,
which allows for distinguishing the output predictions. Te
Bayesian bootstrap in this research works analytically to
obtain the posterior distributions of the QR model

parameters, distinguishing itself from the classic bootstrap,
which depends on random choices from the available input
data. Because the observations are treated as fxed in
Bayesian inference, this new perspective appears to be
compatible with the Bayesian method. Indeed, the de-
termination of the mean using the Bayesian bootstrap varies
only in the weight distribution. However, from a conceptual
viewpoint, the Bayesian bootstrap difers signifcantly from
the frequentist form.

6. Experimental Analysis

6.1. LatticeWorld. First, test the exploration efciency of the
BBDQN algorithm in the grid world shown in Figure 2. Te
white grid represents the scale of the grid world, and the gray
grid is the terminal state. Due to space constraints, the grid
world in Figure 2 has a scale of only 4× 4, while the scale of
the lattice world used in the experiment is 20× 20, but this
does not prevent the use of the small-scale lattice world of
Figure 2 to describe its dynamic model. In Figure 2, the state
S is the initial state, and the agent has always maintained
a speed of moving to the right +1. Te available actions in
each state are up and down. If you choose up, then the next
step will reach the upper right state of the current state, and if
down is selected, the next step will reach the lower right state
of the current state. If the agent is at the bottom of the grid
world, the downward action can be understood as walking
against the wall. At this time, the next state will be to the
right of the current state. If you select the action up in the
upper right corner of the white grid, you can reach the top of
the gray grid. To get a reward of +1, there are no rewards in
other states, so you must always choose the action up to get
the reward, but the action up has a cost, and the cost is
related to the size of the grid world. Assuming that the size of
the grid world is N×N, each selection action up will bring
a reward of − 0.01/N, while choosing action down has no
cost, the reward is 0. In fact, this problem is a two-
dimensional extended version of the chain problem men-
tioned in Paper 4. Te input can be represented as a one-hot
matrix xi ∈ 0, 1{ }N×N, the position of the agent in the matrix
is 1, and the other positions are all 0s. In this experiment,
compared with the DQN using ε-greedy strategy and
bootstrapped DQN, the hyperparameters used by BBDQN
algorithm are shown in Table 1, where 0 ∈ Rd represents
a vector with all 0 components.

In the grid world, simple is the norm. Te left-bottom
corner of your agent or robot serves as the “start” point,
and it terminates at either +1 or − 1, which corresponds to
the associated reward. Te agent has four alternative
movements at each step, including up, down, left, and

8 Computational Intelligence and Neuroscience



right, while the black block is a wall that your agent cannot
pass through. Our frst solution assumes that each action
is deterministic, i.e., the agent will move in the direction it
desires to mov in order to simplify things. Te wall, on the
other hand, will stay in place if the agents run into it. Tis
is where artifcial intelligence comes into play, because our
bot should be able to learn from the procedure and think

like a person. Value iteration is the key to the magic. Once
our agent discovers a path to reward +1, should it stick to
it and always take that line (exploitation), or should it give
other paths a shot (exploration) and expect a shorter path?
In reality, we will balance exploitation and exploration in
order to keep our agent from being stuck in the local
optimum. Our agent will pick an action depending on the
exploration rate.

Te experimental results are shown in Figure 3, where
the algorithm performance is measured with regret. Regret
refers to the diference between the maximum cumulative
reward and the actual cumulative reward. Because DQN has
never found a rewarded area in the grid world, its cumulative
reward is less than 0, and its regret is constantly growing. As
can be seen from Figure 3, the BBDQN can learn the optimal
policy in less than 2000 epochs, while the DQN does not
learn a good policy after 10000 epochs. In fact, after 1 million
cycles of experiments, the DQN still did not converge.

(1) Input: di scount parameter c, batch size n, number of learnersK, parameter first
(2) Testmean θˉ, parameter prior variance λ, sampling intervalT sample, target networkmore
(3) The new intervalT target .

(4) Output: network parameters θ͂.
(5) Initialize the parameters θ͂ of theK learners.
(6) Initialize thememory pool and set count � 0
(7) The prior parameters θ̂ of K learners are obtained by sampling
(8) for episode � 1 to inf do
(9) Get the initial statex1 from the environment
(10) for t � 1 toT do
(11) if count mod T sample � 0 then
(12) Sample k ∼ Unif( 0,1, . . . , K{ })

(13) end if
(14) Choose the optimal action at accordi ng to the learner k

(15) Execute the action at to get the rt andxt + 1 of the environmental feedb ack
(16) store (xt, at, rt, xt + 1) intomemory pool
(17) Draw n da ta samples from thememory pool to get Dsample
(18) The loss function is calculated by formula (6):
(19) θ͂← θ͂ − α∇θ͂L(fθ͂ + fθ ̂;Dsample)
(20) if count mod T target � 0 then
(21) Upda te target network
(22) end if
(23) count � count + 1
(24) end for
(25) end for

ALGORITHM 1: Bootstrapped DQN (BBDQN) algorithm.

S

Figure 2: Grid world with deep exploration structure.

Table 1: Hyperparameters.

Hyperparameters Value
Discount parameters c 0.99
Batch size n 128
Memory pool capacity 100
Number of learners K 10
Parameter prior mean θˉ 0
Parameter prior variance λ 10
Sampling interval Tsample 20
Target network update interval Ttarget 20
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Te time complexity of the DQN algorithm using the
ε-greedy strategy is O (2N) when faced with deep exploration
problems. Tis paper also tests the performance of the
bootstrapped DQN algorithm. Te action selection of this
algorithm is not realized by ε-greedy, and the algorithm
improves its exploration efciency by adding ensemble
technology on the basis of the DQN [10], but it cannot be
used in solving this deep exploration problem in the short
term. Te regret of the bootstrapped DQN and DQN over
10 000 cycles has only a small diference, which is not visible
in Figure 3 and must be zoomed in to see the diference.
Specifcally, the DQN has accumulated regrets of 9 over
10000 cycles.

Figure 3 is the performance curve of the algorithm when
the grid world size is 20× 20. It is possible to assume that the
size of the lattice world is N×N and analyze the relationship
between algorithm exploration efciency and N. As in Paper
4, the number of cycles required for the algorithm to dis-
cover the reward for the frst time is used as a measure of
exploration efciency, and 6 data samples are obtained
through experiments, which are shown in Table 2, where l
represents the frst discovery of the reward by the algorithm.
In order to express the relationship between the two,
polynomial regression is used to ft these 6 points, which is
expressed as follows:

l � b + w1N + w2N
2

+ . . . + wmN
m

. (18)

Among them, w1, w2, . . . , wmm are the parameters of the
m degree polynomial, which can be obtained by the least-
square method. We tested multiple m values and found that
whenm is 3, the mean square error is the smallest, that is, the
relationship between the two can be approximated by a 3rd
degree polynomial as follows:

l ≈ − 2.76 + 9.30N − 6.84N
2

+ 1.63N
3
. (19)

Among them, the parameter retains two decimal places.
Terefore, when the BBDQN algorithm faces deep explo-
ration problems, the time complexity of the algorithm is at
the polynomial level, specifcally O(N3), which is better than
the random exploration strategy ε-greedy time complexity
of O(2N).

6.2. Further Analysis on Lattice World. In Figure 3, there is
no obvious diference between the DQN algorithm and the
bootstrapped DQN algorithm, but this does not mean that
the exploration efciency of the two algorithms is the same.
In fact, the bootstrapped DQN algorithm is more efcient
than the DQN. To prove this conclusion, a series of ex-
periments were carried out.

In the previous section, it was mentioned that the size of
the lattice world is represented by N×N, and the number of
learners is represented by K. Te performance of each al-
gorithm is compared when K is fxed at 10 and N is 10, 20,
and 30. In addition, the performance of each algorithm is
compared when N is fxed at 20 and K is 10, 20, and 30.
When the lattice size of the world becomes smaller, the
superiority of the bootstrapped DQN over the DQN is re-
fected. As shown in Figure 4, when K is 10 and N is 10, the
regret of the DQN algorithm keeps growing, while the
bootstrapped DQN and BBDQN fnd the optimal policy
within 1000 cycles. In addition, when the number of learners
increases, the superiority of the bootstrapped DQN over the
DQN can also be refected. As shown in Figure 5, when K is
30 and N is 20, the bootstrapped DQN algorithm fnds the
optimal policy at around 2000 cycles.

Te results of all experiments are shown in Table 3,
where the bootstrapped DQN is denoted as the BDQN due
to space constraints. In addition, the experimental results in
Section 6.1 are the results shown in the table with K� 10 and
N� 20. In Table 3, the algorithm can learn the optimal policy
in 10,000 epochs.

Regrettably shown in bold, it can be seen that the DQN
fails to fnd the optimal policy within 10,000 epochs in all
experimental settings, while the bootstrapped DQN only
works when K� 10, N� 10 (the size of the lattice world
decreases), or K� 30 and N� 20 (the number of learners
increases); the optimal policy can be learned in 10,000
epochs, while the BBDQN can learn the optimal policy in
10,000 epochs under all settings. It can also be seen from
Table 3 that when the size of the lattice world is small
(N� 10), the performance of the BBDQN algorithm and the
bootstrapped DQN algorithm is not much diferent because
the BBDQN adds a random initialization frst.
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Figure 3: Algorithm performance over epochs for rewards gain.

Table 2: Te number of episodes required to fnd rewards.

N l

5 560
10 792
15 1663
20 1828
25 2657
30 7697
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Te performance of the BBDQN is even slightly lower
than the bootstrapped DQN, but when the scale of the grid
world increases, the advantages of the BBDQN algorithm
proposed in this paper become more obvious, which is also
the embodiment of the BBDQN more suitable for solving
deep exploration problems; in addition, BBDQN algorithm

performance of the method does not increase with the
number of learners, which means that the space requirement
of the BBDQN is lower than that of the bootstrapped DQN
because the more the number of learners, the more space is
required to store each learned parameter, and these algo-
rithms all use neural networks as function approximators,
and the parameters of each network are in millions, and the
BBDQN does not need to increase the number of learners
like the bootstrapped DQN to improve algorithm perfor-
mance (as shown in Table 3), so the space requirement of the
BBDQN is lower than the bootstrapped DQN.

7. Conclusion

A variety of learning and optimization methods form the
foundation of computational intelligence. Terefore, in-
corporating cutting-edge learning methods to balance the
relationship between exploration and exploitation is an in-
spiring area, particularly whenmerging it with IOT. As a result,
IoT collected the scattered data and screened the information
out of it using computational algorithms, and reinforcement
learning performed the deep exploration with the ultimate
emphasis. While disregarding the issue of identifying and
taking advantage of the dilemma, the reinforcement learning
approaches developed in recent years havemostly concentrated
on integrating deep learning technology to enhance the al-
gorithm’s generalization capabilities. In order to increase the
efectiveness of exploration, a deep reinforcement algorithm
based on computational intelligence is proposed in this study,
using intelligent sensors and the Bayesian approach. In ad-
dition, the technique for computing the posterior distribution
of parameters in Bayesian linear regression is expanded to
nonlinear models such as artifcial neural networks; also, this
calculationmethod is combinedwith the bootstrappedDQN to
obtain the BBDQN algorithm.Te result of the experiments in
two environments proves that the exploration efciency of the
BBDQN algorithm is better than the DQN algorithm using the
ε-greedy strategy and the bootstrapped DQN algorithm.

Te direction of further research is when the method of
calculating the posterior distribution of the Q function
parameter in this paper is used to calculate the posterior
distribution of the policy function πθ parameter in the policy
gradient method, the policy gradient method can efectively
improve the face of the policy gradient method and ex-
ploration efciency when exploring problems in depth.
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