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Aim. Due to the growing availability of genomic datasets, machine learning models have shown impressive diagnostic potential in
identifying emerging and reemerging pathogens. Tis study aims to use machine learning techniques to develop and compare
a model for predicting bacterial resistance to a panel of 12 classes of antibiotics using whole genome sequence (WGS) data of
Pseudomonas aeruginosa. Method. A machine learning technique called Random Forest (RF) and BioWeka was used for
classifcation accuracy assessment and logistic regression (LR) for statistical analysis. Results. Our results show 44.66% of isolates
were resistant to twelve antimicrobial agents and 55.33% were sensitive. Te mean classifcation accuracy was obtained ≥98% for
BioWeka and ≥96 for RF on these families of antimicrobials. Where ampicillin was 99.31% and 94.00%, amoxicillin was 99.02%
and 95.21%, meropenem was 98.27% and 96.63%, cefepime was 99.73% and 98.34%, fosfomycin was 96.44% and 99.23%,
ceftazidime was 98.63% and 94.31%, chloramphenicol was 98.71% and 96.00%, erythromycin was 95.76% and 97.63%, tetracycline
was 99.27% and 98.25%, gentamycin was 98.00% and 97.30%, butirosin was 99.57% and 98.03%, and ciprofoxacin was 96.17% and
98.97% with 10-fold-cross validation. In addition, out of twelve, eight drugs have found no false-positive and false-negative
bacterial strains. Conclusion. Te ability to accurately detect antibiotic resistance could help clinicians make educated decisions
about empiric therapy based on the local antibiotic resistance pattern. Moreover, infection prevention may have major con-
sequences if such prescribing practices become widespread for human health.

1. Introduction

Antimicrobial resistance (AMR) is one of the leading public
health concerns of the 21st century, which hinders the ability
to efectively treat and prevent a wide variety of bacterial,
viral, and fungal infections [1]. AMR occurs when micro-
organisms (bacteria, viruses, fungi, and parasites) evolve and
lose their sensitivity to existing treatments, making in-
fections more challenging to treat and raising the risk of

disease transmission, severe illness, and death [2]. Te rapid
global spread of multi- and pan-resistant bacteria, also
known as “superbugs,” is particularly concerning because
these bacteria cause infections that cannot be treated with
current antimicrobial medicines like antibiotics [3]. At least
1.27 million people died from AMR-related cases in 2019,
according to the CDC (https://www.cdc.gov/drugresistance/
biggest-threats.html). Over 2.8 million people in the
United States year contract AMR, and over 35,000 people die
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directly [4]. Te most common multidrug-resistant bacteria
globally are Escherichia coli, Enterococcus faecium, Strepto-
coccus, Klebsiella, and Pseudomonas aeruginosa, and they are
responsible for an estimated 250,000 annual infections and
deaths [5]. For instance, the WHO priority pathogen list
calls for new antibacterials to treat infections caused by
Pseudomonas aeruginosa and carbapenem-resistant bacteria
(CRE) [6]. Tere are currently 32 antibiotics in clinical
development that target WHO priority pathogens, but only
six of them can be considered truly innovative [7].

Various researchers have talked about the resistance
prediction of antimicrobials [8]. Tis lack of treatment
options often requires broad-spectrum antibiotics, which
may be less efective or safe. Resistance also afects empirical
treatment, in which a clinician chooses an antibiotic for an
infection without obtaining microbiological results. Tis can
lead to an underestimation of the risk associated with
specifc infections and the use of inappropriate antibiotics. A
meta-analysis found that patients with Enterobacteriaceae
resistance are fve times more likely to delay receiving an
efective therapy than patients infected by a susceptible
strain [9, 10]. Tis may reduce the long-term efectiveness of
antibiotics, delay access to efective treatments, increase
treatment failure with complications, and increase fatality
rates. Infections caused by resistant Gram-positive and
Gram-negative bacteria increase hospital stays, surgery
needs, and mortality [11].

Another study by Yamani et al., calculated the health
burden of antibiotic-resistant bacteria (ARB) in European
Union/European Economic Area (EU/EEA) countries in
disability-adjusted life-years [12]. Teir models were pop-
ulated with estimated incidence from the European Anti-
microbial Resistance Surveillance Network (EARS-Net) and
the European Centre for Disease Prevention and Control
(ECDC) point prevalence surveys of healthcare-associated
infections and antimicrobial use in European acute care
hospitals [13, 14]. Systematic reviews of published literature
showed attributable case fatality and length of stay for
antibiotic-resistant infections [15, 16]. In 2014, 671689 in-
fections occurred in EU/EEA countries [13]. Tis ratio in-
creased globally between 2015 and 2022 [5, 10, 12]. Diferent
ARB contribute variably to the global burden, so prevention
and control strategies should be tailored to each country’s
needs. All countries must implement efective AMR strat-
egies to combat antibiotic overuse and misuse [17]. All
systemic antibiotics globally require a doctor’s prescription.
Most prescriptions are written in primary care, not sec-
ondary or tertiary [6].

In 2018, 74% of all antibiotics prescribed by the Na-
tional Health Service (NHS) in England were for general
practitioners (GPs) patients [18]. GPs are the most frequent
antibiotic prescribers, so they focus on primary care lit-
erature. Nurse practitioners and community pharmacists
play a key role. In the last 10 years, nurses’ roles have
expanded to include prescribing in many countries and are
on the policy agenda in many more [19]. Nurse prescribing
was introduced to better utilize the skills and knowledge of
health professionals, improve medication access, and re-
duce the workload of doctors. In China, the number of

nurses qualifed to prescribe has steadily risen over the last
5 years, and 31,000 nurses now have the same prescribing
ability as doctors [20]. Pharmacists in China can register as
independent prescribers, often specializing in diabetes
prescriptions. More pharmacists work in secondary care
than primary. Lastly, dentists are considered antibiotic
prescribers because they write fewer prescriptions than
general practitioners. Further, most antibiotic pre-
scriptions are for respiratory, urinary, skin, or tooth in-
fections [21]. In addition, most antibiotics are given for
acute respiratory tract infections (RTIs) [13]. Some RTIs,
such as community-acquired bacterial pneumonia, are
treatable with antibiotics, but most acute RTIs are viral and
self-limiting.

P. aeruginosa has high baseline antibiotic resistance and
can acquire new resistance mechanisms through chromo-
somal mutations or horizontal gene transfer (HGT), in-
creasing the risk of inefective antibiotic treatment [22].
Mutations can cause a failed therapeutic outcome during
treatment, while resistance increases mortality, hospital
stays, and costs. When microorganisms become resistant to
antimicrobials, standard treatments are often inefective.
Disc difusion and minimum inhibitory concentration
(MIC) are the most common antimicrobial susceptibility
tests [23]. Identifcation of resistance-specifc markers by
PCR or microarray hybridization is useful for epidemio-
logical purposes and the validation of phenotypic results. As
DNA sequencing throughput and costs increase, whole-
genome sequencing (WGS) becomes a viable option for
routine resistance profle surveillance and identifying
emerging resistances [24]. Pathogenic P. aeruginosa alters
genome sequences and protein expression to resist. Re-
sistance disrupts biochemical pathways and protein chan-
nels [25]. Antibiotic resistance and susceptibility must be
linked to specifc resistance genes; all genes in an isolate are
added to predict susceptibility [26]. ResFinder, CARD, and
Resfams predict genotypes from phenotypes [27]. More and
more often, computational tools like machine-learning al-
gorithms are used to build models correlating genomic
variations with phenotypes [28]. Both a stimulus and an
outcome are present in every supervised learning example.
Te algorithm will succeed only if it learns a model that
faithfully transforms any input into the desired output.

Considering the above, the fundamental objective of
this study was to develop an accurate phenotype pre-
diction model against antimicrobials. For this purpose,
machine learning approaches called bio-Weka [29], and
random forest (RF), and logistic regression (LR) [30–32]
were used on the data mining platform called Weka
(v3.9.2) (an open source java-based software) [33–35] for
acquiring classifcation accuracy assumptions to accu-
rately predict the phenotypes against a panel of twelve
antimicrobial agents, including ampicillin, amoxicillin,
meropenem, cefepime, fosfomycin, ceftazidime, chlor-
amphenicol, erythromycin, tetracycline, gentamycin,
butirosin, and ciprofoxacin from whole genome sequence
data of P. aeruginosa. Signifcantly, this study can further
enhance the antimicrobial predictions of various bacterial
agents in clinical trials.
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2. Methods

2.1. Data Collection. Te WGS reads of Pseudomonas aer-
uginosa and binary resistance phenotypes of antimicrobial
agents utilized in this study were obtained by accession
numbers provided in various studies, consisting of diferent
countries, including China and 65 others (developed and
under development), and downloaded from the open access
repository called GenBank at NCBI (https://www.ncbi.nlm.
nih.gov/genbank/), which is the NIH genetic DNA se-
quences database. All the descriptive information about the
raw data is present in the Supplementary fle. Te metadata
consists of various attributes, including genome name, NCBI
taxon id, genome status, associated strains, GenBank ac-
cession numbers, country name, number of contigs, genome
lengths, isolation sources, resistance genes, twelve antibi-
otics, and many more.

2.2. Model Framework and Parameters. In this study, anti-
microbial resistance of P. aeruginosa was predicted using
a data mining assessment framework by machine learning
algorithms, as shown in Figure 1. Tere were a total of six
stages involved in reaching these conclusions, including the
following: objective; data collection and preparation; ma-
chine learning techniques on a data mining platform; model
building; evaluation and assessment; and implications.
Initially, we collected the data and did some preliminary
preprocessing to pick the right attributes. Afterward, this
data was used for analysis and assessment. Secondly, Weka
(v3.9.2), “a java-based machine learning and data mining
platform,” was used to measure and evaluate classifcations
with the most recent bio-Weka and RF plugins. In addition,
the results of machine learning classifers were used in lo-
gistic regression (LR) to evaluate the resistance phenotype
assessment to twelve diferent antibiotic drugs, namely,
ampicillin, amoxicillin, meropenem, cefepime, fosfomycin,
ceftazidime, chloramphenicol, erythromycin, tetracycline,
gentamycin, butirosin, and ciprofoxacin.

Furthermore, the data was divided into two sets (training
set and testing set) by a ratio of 60 : 40. Overftting was
prevented by using 10-fold cross-validation, and training
data were used further as efciently as possible to determine
the optimal hyperparameter settings. Te training model’s
evaluation results were based on an average of the hyper-
parameter values that fared best in the 10-fold scross-
validation procedure. Sensitivity, specifcity, accuracy, and
precision were used to assess the model performance of bio-
Weka and RF by equations (1)–(4). Te number of strains
that turned out to be resistant was the true positive (TP), the
number of strains that turned out to be sensitive was the true
negative (TN), and the number of strains that turned out to
be resistant when they should have been sensitive was the
false positive (FP), and the number of strains that should
have been sensitive when they should have been resistant
was the false negative (FN) [36].

Sensitivity �
TP

(TP + FN)
, (1)

Specificity �
TN

(TN + FP)
, (2)

Accuracy �
(TP + TN)

(TP + FN + TN + FP)
, (3)

Precision �
TP

(TP + FP)
. (4)

2.3. BioWeka and Random Forest Prediction of Phenotypes
Resistance. Weka’s datasets are used and stored in a unique
fle format known as attribute relation fle format (ARFF).
Due to the wide variety of fle types used for biological data,
it implements a format-conversion input layer that can
transform common fle types into the ARFF format. Weka
flters any classes that can be applied to a dataset to alter it,
and bio-Weka has flters for working with biological se-
quences. It enabled us to compare and match sequences with
BLAST and other sequence alignment tools. In addition,
alignment-based classifcation was performed using auto
alignment score evaluation schemes.

A java-based machine learning algorithm called bio-
Weka and RF was used to perform the predictive model-
ing.Te DSK (k-mer counting software) [37, 38] was used to
generate K-mer profles (abundance profles of all unique
words of length k in each genome) from the assembled
contigs, with k� 31. Tis is a common length for analyzing
bacterial genomes [39]. In order to create the dataset, the 31-
mer profles of all strains were combined using the combine
kmers tool in SEER [40]. Te combined 31-mer counts were
converted into presence/absence matrices to be used for
model training and prediction. 10-fold cross-validation was
used to select the best conjunctive and/or disjunctive model
with a maximum of ten rules for binary classifcation
analysis (using S/NS phenotypes based on the two diferent
breakpoints for each drug) [41, 42], which involved testing
the suggested broad range of values for the trade-of
hyperparameter to determine the optimal rule scoring
function (https://aldro61.github.io/kover/doclearning.
html). In addition, classifcation (BW-mC) and regression
(BW-R) models were constructed from log2 (MIC) data in
bio-Weka and RF for the purpose of comparing the per-
formance of binary classifers to MIC prediction [29, 43].

Furthermore, the RF method uses a majority voting
strategy (MVS) to classify samples based on the results of an
ensemble of decision tree (DT) [44]. In other words, the RF
method relies on the class indicated by the vast majority of
the DT. Having a diverse ensemble of trees is essential for
boosting RF performance with respect to a single DT. One
way to achieve it is by using bootstrapping with replacement
to generate the training set for developing each DT’s unique
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feature set. However, features considered for splitting each
node are not chosen from the full feature set but rather from
a subset of features [45]. In addition, be aware that RF is
more akin to an unintelligible black box model. In RF, as in
individual DT, the CART algorithm is taken into account.

Multiple metrics were used to evaluate the model’s ef-
fcacy, including sensitivity, specifcity, accuracy, precision,
and the overall bACC (the average of the sensitivity and
specifcity) [46]. Since the bACC represents false positive
and false negative rates equally, regardless of the imbalance
in the dataset, it was chosen as the overall measure of model
performance. Two measures of MIC prediction accuracy
were evaluated: frstly, the proportion of isolates for which
the predicted MIC was identical to the phenotypic MIC
(rounded to the nearest doubling dilution in the case of
regression), and secondly, the proportion of isolates for
which the predicted MIC was within one doubling dilution
of the phenotypic MIC (1-tier accuracy). Te MIC testing
criteria for exact match rates and 1-tier accuracies have been
removed to include predictions within 0.5 doubling di-
lutions or 1.5 doubling dilutions of the phenotypic MIC,
respectively, to account forMIC variation [47]. Each analysis
had 10 replicates, and the mean and 95% confdence in-
tervals were calculated for all metrics. Mean bACC was

compared between replicate sets using two-tailed unpaired t-
tests with logistic regression (LR) correction for unequal
variance (α� 0.05) to assess diferential model performance
across datasets or methods. In addition, P values were
calculated using the results of these unpaired t-tests.

2.4. Regression Statistics. Kappa statistics are reliable be-
cause they can be tested repeatedly [48, 49], ensuring that
researchers have access to accurate, comprehensive data
regarding research samples. It evaluates the predicted
classifcation accuracy against a random classifcation [50].
We used a kappa statistic that relies on binary values, where
0 is considered as a null value and 1 represents the pre-
dicted outcome of the evaluation as in equation (5)–(7)
[51]. It also serves as an indicator of the reliability of the
evaluation. Not only that, but the LR variables help resolve
the two-way binary classifcations. When applied to the
feld of binary numbers, it makes predictions in the form of
continuous values that allow for the preservation of sen-
sitivity [36]. If the value is greater than the threshold
(value > threshold), then the value assigned is 1; otherwise,
the value measured is 0 as determined by the equations
(8)–(11) [52].
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Figure 1: Te data mining assessment framework used in this study.
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K �
[P(A) − P(E)]

[1 − P(E)]
, (5)

P(A) �
(TP + TN)

N
 , (6)

P(E) � (TP + FN)∗ (TP + FP)∗
(TN + FN)

N
2 , (7)

P � α + β1X1 + β2X2 + · · · + βmXm, (8)

σ(x)
1

1 + e
− x ∈ [0, 1], (9)

Pr (Y � +1|X) ∼ β.X, (10)

Pr (Y � −1|X)

� 1 − Pr (Y � +1|X).

(11)

3. Results

A total of 1200 isolates of P. aeruginosa were included in this
study, out of which 44.66%were resistant to 12 antimicrobial
agents and 55.33% were sensitive, as shown in Figure 2. Of
which 44.66% resistant isolates, 44 were resistant to ampi-
cillin, 37 to amoxicillin, 58 tomeropenem, 60 to cefepime, 45
to fosfomycin, 30 to ceftazidime, 52 to chloramphenicol, 58
to erythromycin, 39 to tetracycline, 30 to gentamycin, 20 to
butirosin, and 63 to ciprofoxacin. In addition, of 55.33% of
sensitive isolates, 56 were sensitive to ampicillin, 63 to
amoxicillin, 42 to meropenem, 40 to cefepime, 55 to fos-
fomycin, 70 to ceftazidime, 48 to chloramphenicol, 42 to

erythromycin, 61 to tetracycline, 70 to gentamycin, 80 to
butirosin, and 37 to ciprofoxacin, respectively. Te most
resistant genes to these twelve antimicrobial drugs were
included blaOXA-396, blaPAO, aph(3′)-IIb, catB5, qacE,
blaOXA-488, aac(6′)-Ib-cr, aph(3′)-Iia, aph(6)-Ic, aac(6′)-
Ib3, fosA, sul1, catB7, blaPAO, aac(3)-Ia, aac(6′)-Il, aph(3′)-
Iib, sul1catB7, blaPAO, blaOXA-396, blaOXA494, qacE,
crpP, catB7, blaPAO, and blaOXA-488. Furthermore, from
the analysis total of 19,371,434, k-mers were obtained of
length 31. Which were compared from the ResFinder k-mer
genes database, and a range of (1,302,507) k-mers of fosA,
catB7, crpP, aac(6′)-Ib-cr, fosA, tet(G), aadA6, aph(3′)-Iib,
sul1, aph(3′)-XV, aac(6′)-Ib3, blaOXA-488, blaGES-13, blaGES-7,
blaGES-5, blaGES-6, blaPAO, qacE, crpT, aph(3′)-Iib, aadA13,
blaOXA-50, and qacE genes were detected in genome of 360
stains.

Te accuracy percentage obtained from the results of
BioWeka was more than 98% (as a mean percentage) in-
cluding the training set and testing set, as shown in Figure 3
for all twelve antimicrobial drugs, namely, ampicillin,
amoxicillin, meropenem, cefepime, fosfomycin, ceftazidime,
chloramphenicol, erythromycin, tetracycline, gentamycin,
butirosin, and ciprofoxacin with the confdence factor of
0.25% by 10-fold-cross validation. After the loop tests, the
fnal mean accuracy for ampicillin was (99.31%), amoxicillin
was (99.02%), meropenem was (98.27%), cefepime was
(99.73%), fosfomycin was (96.44%), ceftazidime was
(98.63%), chloramphenicol was (98.71%), erythromycin was
(95.76%), tetracycline was (99.27%), gentamycin was
(98.00%), butirosin was (99.57%), and ciprofoxacin was
(96.17%).

In addition, Figure 4 shows the resulted classifcation
accuracy percentage of RF algorithm in contrast to twelve
antimicrobial drugs. Te mean classifcation percentage was
calculated more than 96% including the training set and
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Figure 2: Number of resistant and sensitive isolate counts.
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testing set, as shown in Figure 5. After the loop testing, the
fnal accuracy by RF for ampicillin was (94.00%), amoxicillin
was (95.21%), meropenem was (96.63%), cefepime was
(98.34%), fosfomycin was (99.23%), ceftazidime was
(94.31%), chloramphenicol was (96.00%), erythromycin was
(97.63%), tetracycline was (98.25%), gentamycin was
(97.30%), butirosin was (98.03%), and ciprofoxacin was

(98.97%). Furthermore, the standard deviation and average
percentages of sensitivity, accuracy, precision, and specifcity
measured on the testing dataset are shown in Table 1. Our
results of the testing dataset show that the antimicrobial
drugs, namely ampicillin, amoxicillin, meropenem, cefe-
pime, ceftazidime, tetracycline, butirosin, and ciprofoxacin,
have no false-positive and false-negative bacterial strains.
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Figure 3: BioWeka classifcation accuracy percentage of the training set and testing set of twelve antimicrobial drugs.

A
m

pi
ci

lin
e

A
m

ox
ic

lli
n

M
er

op
en

em

Ce
fe

pi
m

e

Fo
sfo

m
yc

in

Ce
fa

zi
di

m
e

Ch
lo

ra
m

ph
en

ic
ol

Er
yt

hr
om

yc
in

Te
tr

ac
yc

lin
e

G
en

ta
m

yc
in

e

Bu
tir

os
in

Ci
pr

of
ox

ac
in

e

100

80

60

40

20

0

A
cc

ur
ac

y 
Pe

rc
en

ta
ge

Testing Set
Training Set

Figure 4: Random forest classifcation accuracy percentage of the training set and testing set of twelve antimicrobial drugs.
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4. Discussion

A number of studies have highlighted the increasing global
prevalence of antimicrobial resistance [12–16, 21,
24, 27, 53–57]. Tis is related to the challenges of treating
bacterial infections, the consequences of which can be se-
vere. P. aeruginosa is one of the most common bacterial
species, and its families are responsible for some of the most
dangerous infections ever seen in humans. Tere is a cor-
relation between the resistance of these bacteria to multiple
antibiotic classes and the severity of the infection, which
complicates treatment. Antibiotic resistance among these
microorganisms has been rising steadily over the years, and
it is now common to fnd clinical samples resistant to
multiple drugs. Te development of antibiotic resistance
causes doctors to delay administering the most efective
treatment methods and prescribe a larger dosage of anti-
biotics than is necessary.Tis is particularly important in the
intensive care unit, where patients’ health conditions ne-
cessitate longer courses of antibiotics. Te extensive use of
expensive medical interventions, increased mortality rates,
and lengthened hospital stays are all consequences of an-
timicrobial resistance [58]. Another topic of great interest is
the need to prevent the spread of bacteria resistant to an-
tibiotics and to identify them in advance so that patients can
be isolated as soon as possible. Since this is the case, novel
approaches must be proposed for detecting antimicrobial
resistance and taking appropriate action without delay. In
addition, gaining insight into the factors that contribute to
the spread of nosocomial infections is possible by identifying
relevant features.

In this paper, we propose a data mining strategy based on
two machine learning techniques, namely, bio-Weka and RF
with a statistical approach for detecting the antimicrobial

resistance of P. aeruginosa with diferent families of drugs.
BioWeka and RF has shown that machine learning-based
feature selection works with highly resulted accuracy as in
Table 2. Consideration of antimicrobial drug resistance and
susceptibility within data mining models and methods has
been demonstrated to be useful in accelerating the workfow
of clinical centers. Benefts for the individual, the healthcare
system, and society may result from the early identifcation
of patients at high risk of being resistant to one or more
families of antibiotics. In addition, benefts include potential
use in selecting the best antimicrobial treatment
immediately.

Furthermore, the best performance achieved when
testing this model strategy for resistance identifcation of
antimicrobial drugs was a ROC area of 0.91 with a mean
accuracy of more than 97% with all twelve drugs, indicating
that our model can distinguish between the diferent classes
of antibiotic susceptibility based solely on the type of the
examined sample, the Gram stain classifcation of the
pathogen, and prior antibiotic susceptibility testing results.
We can foresee the sensitivity results from the various re-
searchers using the model presented in this study.Te ability
to accurately detect antibiotic resistance could help clini-
cians make educated decisions about empiric therapy based
on the local antibiotic resistance pattern. Tere may be
major consequences for infection prevention if such pre-
scribing practices become widespread.

Te model proposed in this study has only the limitation
with the process of fltering by 60 : 40 ratio with 10- fold
cross-validation. If the ratios change then the accuracy and
sensitivity of model might get afected. In addition, once the
patient’s clinical characteristics are added to the antimi-
crobial susceptibility dataset, the prediction performance of
our model will signifcantly increase in terms of resistance
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prediction accuracy to diferent drugs. However, still, any
such inclusion must incur the cost of retrieving the relevant
data, which may be an exercise that involves a number of
healthcare units, thereby increasing communication costs
and complicating the need to align protocols that may
operate across departments. After incurring such in-
formation, it is important to evaluate how well the additional
knowledge acquired in terms of the improved accuracy
metrics of the model can be incorporated into the practice of
the hospital physicians, who may need to reevaluate their
decision-making processes in the context of supporting or
contradicting recommendations from a decision support
system. To sum up, we think of this study as a node on
a spectrum of cost-efectiveness studies that data mining
approaches and machine learning techniques will spark in
the healthcare industry.
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