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An accurate assessment of the spatial and temporal radio frequency channel characteristics is essential for complex signal
processing and cellular network optimization. Current research has employed numerous models to fgure out how much signal
propagation loss occurs along the propagation paths. However, there are issues in fnding the right model for a particular terrain
because these models are not universally applicable. By employing the lognormal function and the Maximum Likelihood model, a
hybrid probabilistic statistical distributionmodel was evolved.Tree LTE cell site locations in Port Harcourt, Nigeria, were used to
create a hybrid model that describes the functional stochastic signal propagation loss in the area. Te evaluated Maximum
Likelihood model accurately estimates the relevant wireless channel properties based on observed feld data. Te minor square
regression approach and the proposed hybrid parameter estimation methodology are compared. When it comes to estimating
standard deviation errors as well as the root mean square errors, theML-based approach consistently outperforms the least square
regression model. Finally, the proposed hybrid probabilistic statistical distribution model would be useful for mobile broadband
network planning in related wireless propagation conditions.

1. Introduction

Adequate knowledge of spatial radio frequency channel
parameters is critical to cellular network engineering [1–4].
Accurate estimation of the network parameters is necessary
for estimating the location probability and shadow margin
computations, aiding efective network planning and opti-
mization processes [5–9]. Te work in [5] investigated
macrocell path loss prediction employing artifcial

intelligence techniques. On the measurements of radio feld
strength and pathloss determination in UMTS networks,
Isabona et al. [6] characterized the signal propagation loss in
typical 3G wireless networks. In the built-up area of South-
South Nigeria, Isabona and Peter [7] described signal
propagation loss based on feld measurements at 1.9GHz. In
[8], the authors presented radio frequency measurements
and capacity analysis for industrial indoor environments.
Te work presented focuses on measurements campaign,
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including feld testing, modeling, and a comparative analysis
of multifrequency band propagation characteristics for
cellular networks. By using experimental and simulated
propagation data, estimating the spatial and temporal radio
frequency channel parameters is key to addressing the
proliferating issues in complex signal processing, cellular
network systems design, and optimization [10–14].

In order to address the problem of determining the most
suitable model for a specifc environment, several parameter
estimation approaches have been exploited recently [15–20].
Specifcally, the work in [15] examined transmit power
estimation focusing on the signal strength of the wireless
network with cooperative receiver nodes using the Maxi-
mum Likelihood (ML) estimation [21, 22]. Te authors
applied the experimental fndings to validate the explored
ML estimation. In [16], the authors investigated the Max-
imum Likelihood estimation combined with signal statistics
to determine the performance of intensity-modulated fbre
optic links.

In related work, the authors in [17] reported realistic
predictive modeling of stochastic path attenuation losses in
wireless channels over microcellular urban, suburban, and
rural terrains using probability distribution functions.
Teir study revealed that the normal distribution was most
suitable for the statistical predictive modeling of signal path
loss data. Similar predictive analyses have been reported
[18–20]. Specifcally, the work in [18] presented a study on
empirical path loss models to accurately predict TV signals
for secondary users. Te authors of the work in [19] posed
and answered a question on why is shadow fading log-
normal. In [20], the authors investigated the fading
characteristics of wireless channels on a high-speed railway
in hilly terrain. In [23–25], the least square and absolute
deviation regression methods were applied to estimate the
parameters of the deployed radio frequency channel
measurements from diferent wireless propagation envi-
ronments. In particular, the work in [23] reported an
experimental study of UMTS radio signal propagation
characteristics, employing feld measurements in the GSM
band. In [24], the authors presented RF propagation
measurement and modeling to facilitate network planning
of outdoor wireless local area networks operating in the
2.4 GHz band.

Similarly, the work in [25] examined path loss prop-
agation prediction and optimization, employing the pop-
ular Hata model at 800MHz in an urban area. In a similar
study, Gentile et al. [26] proposed a suitable methodology
for benchmarking radio-frequency channel sounders
through a system model. Te current contribution
exploited an efcient parameter-based ML estimation
model combined with the lognormal distribution function
to estimate spatial variations of wireless propagated signals.
Te study focused on practical feld tests performed on a
commercial mobile broadband network. Te fndings of
this work demonstrated that the proposedML-based model
estimates the relevant wireless channel parameters for the
tested environments, in comparison with the measured
data, with minimal errors. Te main contributions of the
paper are outlined as follows:

(i) An efcient parameter-based ML estimation model
combined with the lognormal distribution function
to estimate spatial variations of wireless propagated
signals is proposed

(ii) Te performance of the proposed hybrid parameter
estimation model compared with the least square
regression method was examined

(iii) Te cumulative hazard plots of propagation loss
distribution of ML and LS models with the mea-
surement obtained from diferent site locations were
demonstrated

(iv) Te mean prediction error with ML and LS esti-
mated parameters on measured pathloss loss data
were determined

Te remainder of this paper is organized as follows: in
Section 2, the preliminaries are highlighted briefy. Section 3
gives an overview of the simulated and experimental mea-
surements and analyses. Section 4 presents the results and
discussions. Finally, Section 5 provides a concise conclusion
to the paper.

2. Materials and Methods

Tis section briefs the measurement campaign, signal
propagation model, and maximum-likelihood estimators.

2.1. Measurements Campaign and Signal Propagation
Modeling. Te measurement campaign was conducted in the
built-up areas of Port-Harcourt, Nigeria. Te tested 4G LTE
network operates at 1900MHz. Field measurements were taken
using drive test tools in and around the investigated environ-
ment [27–29]. Real-time 4G LTE signal strength obtained from
the evolved base station (eNodeBs) was processed and analyzed
inMATLAB. In particular, the Reference Signal Received Power
(RSRP) was extracted from the logged fles and processed
similarly to earlier works [30–32]. According to Rappaport [33],
the experimental received signal power and propagation loss are
logarithmically related to the propagation distances, di, and
transmit power PTX is defned by the following equation:

PdBm,i � PTX − Loff − 10α log10 di(  − Xi, (1)

where Xi and Lof express the location-specifc fading and
ofset parameters, respectively. Equation (1) describes the
signal propagation loss model. Specifcally, it is assumed that
Lof can be precisely achieved using a small reference
measurement number. In the model, the shadow fading
parameter Xi is assumed to be a specifc random variable
such thatXi∼N(0, σ2).Te key attenuationmodel parameters
such as α and σ2 are derived relative to their dependence on
the actual wireless propagation environment [27, 29, 34, 35].

2.2. Maximum Likelihood Estimators. Te Maximum Like-
lihood (ML) estimation is an indispensable and efective
channel parameter estimation method that fnds practical
application in signal processing [36–39]. Te ML method
can be deployed to examine the behaviour of channel data
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parameters. Tis study employs the likelihood function
[40–42] to determine the ML estimation parameters in the
measured pathloss data. Specifcally, the likelihood function
of the lognormal distribution for Pi (i� 1, 2, 3, . . ., n) dataset
is achievable by considering the product of the probability
densities expressed in equations (2) to (6):
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f(·) signifes the lognormal distribution with parameters:
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and

μi � cPTX − Loff − 10α log10 di( . (6)

Te lognormal distribution log-likelihood function for
Pi (i� 1, 2, 3, . . ., n) dataset can be obtained by exploring the
natural log of the likelihood function (7) to (11):
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Te next step is to fnd μ and ω2, which maximize
L(P/μ,ω2). Tus, for μ, we have the following equation:
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Equation (11) also implies that equations (13) and (14)
hold:
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Similarly, to fnd ω2, which maximize L(P/μ,ω2),
according to (15) to (17):
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Equation (17) implies the defnitions in (18) and (19):
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By applying the expression in equations (15) and (19) can
also be written as follows:
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Terefore, the ML estimation model parameters are
defned in (21):μ � 
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3. Results and Discussions

Te results of the characterized parameters and predictive
analysis of the propagation loss data using the ML estimate
approach are briefed. Te parameters of the pathloss data
obtained via the least square (LS) regression estimation are
provided for deductive comparison [15, 16]. Te cumulative
hazard plots are presented in Figures 1–3. Table 1 shows the
measured loss estimated parameters and their estimation
accuracies using the two approaches. Te cumulative hazard
plots are employed to visually examine the ML and LS
models and their distributive prediction and reliability on
the measured propagation loss. From the plotted mean
prediction graphs of Figures 4–9 and the summarized
prediction results in Table 2, it is evident that the ML es-
timation is superior to the LS approach. In Table 2, for

Computational Intelligence and Neuroscience 3



instance, employing the mean absolute error (MAE), mean
percentage error (MAPE), root mean square error (RMSE),
and standard deviation error (SDE) statistics, the MLmodel,
attains 1.82, 3.97, 1.99, and 0.79, respectively, in site location
1. In contrast, the LS model achieved 2.70, 11.85, 3.44, and
2.13, respectively. Te ML posed similar parameter esti-
mation and prediction performance over the LS approach, as
revealed in Table 2 for site locations 1 and 2.

Figures 10–12 show exponential CDF plots to demon-
strate the accuracy attained by the ML approach in esti-
mating (predicting) the measured path loss values acquired
over three study locations. It can be found from the three
graphs that the ML-based estimation closely maps the

Table 1: Estimated propagation loss parameters with the ML and
LS models.

Model estimated loss parameters μ ω α

Site 1 ML 134.3 7.48 2.6
LS 134.2 6.17 2.0

Site 2 ML 123.5 7.45 2.6
LS 123.5 5.81 1.4

Site 3 ML 123.8 9.12 2.8
LS 123.8 5.77 2.2
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Figure 1: Cumulative hazard plots of propagation loss distribution
of ML and LS models with the measurement obtained from site
location 1.
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Figure 2: Cumulative hazard plots of propagation loss distribution
of ML and LS models with the measurement obtained from site
location 2.
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Figure 3: Cumulative hazard plots of propagation loss distribution
of ML and LS models with the measurement obtained from site
location 3.
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Figure 4: Mean prediction error with ML estimated parameters on
measured loss data obtained from site location 1.
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Figure 5: Mean prediction error with LS estimated parameters on
measured loss data obtained from site location 1.
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measured path loss values up to 70% each before deviations.
In contrast, the LS-based approach could only accurately
predict 30–50% of the measured path loss values sample.Te
prediction error attained by engaging the ML-based and

ML-based estimation approaches is quantitively defned in
Table 3.
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Figure 6: Mean prediction error with ML estimated parameters on measured loss data obtained from site location 2.
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Figure 7: Mean prediction error with LS estimated parameters on measured loss data obtained from site location 2.
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Figure 8: Mean prediction error with ML estimated parameters on measured loss data obtained from site location 3.
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Figure 9: Mean prediction error with LS estimated parameters on measured loss data obtained from site location 3.

Table 2: Estimated propagation loss parameters with ML and LS models using standard metrics.

Model and loss estimation error MAE MRE RMSE SDE

Site 1 ML 1.82 3.97 1.99 0.79
LS 2.70 11.8 3.44 2.13

Site 2 ML 1.18 0.95 1.34 0.63
LS 3.51 2.86 4.69 3.11

Site 3 ML 1.46 3.75 1.58 0.59
LS 5.81 14.9 7.11 4.10

110
0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CD
F

120 125 130 135 140115
Path Loss [dB]

Measurement
LS Estimation
ML Estimation

Figure 10: Path prediction attained with LS-based estimation and ML-based estimation approaches from site location 1.
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4. Conclusions

Tis study considers parameter estimation for spatial vari-
ations of a radio frequency channel based on experimental
measurements derived from an operational 4G LTE
broadband network. Te work developed a combined

maximum-likelihood estimation model and a lognormal
distribution function.Te exploredML-basedmodel reliably
estimates the specifed wireless channel parameters com-
pared with measured feld data for the investigated envi-
ronments. In order to test the validity of the proposed
model, standard statistical metrics were employed for
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Figure 11: Path prediction attained with LS-based estimation and ML-based estimation approaches from site location 2.
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Figure 12: Path prediction attained with LS-based estimation and ML-based estimation approaches from site location 3.

Table 3: Precision estimation accuracy attained by LS-based estimation and ML-based estimation at diferent study locations.

Location Locations MAE MRE STE RMSE

LS-based estimation
1 0.169126 11.39 0.0966802 0.19481
2 0.174385 12.17 0.1007700 0.201407
3 0.164623 10.92 0.0964925 0.190818

ML-based estimation
1 0.0604279 1.58 0.0457335 0.0726338
2 0.0558125 1.42 0.0401722 0.0687666
3 0.0539799 1.39 0.0413426 0.067993
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benchmarking. Regarding the mean absolute error (MAE),
Mean percentage error (MAPE), root mean square error
(RMSE), and standard deviation error (SDE) statistics, the
ML model approach attains 1.82, 3.97, 1.99, and 0.79 in site
location 1. In contrast, the LS model achieved 2.70, 11.85,
3.44, and 2.13 values, respectively, for the same site location.
Similar parameter estimation and prediction performance of
the ML method over the LS approach are demonstrated for
site locations 1 and 2. Future work would focus on opti-
mizing the parameters of the proposed hybrid model for
optimal performance in a related wireless propagation
environment.
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