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As the noise reduction performance of submarines continues to improve, it is difcult to detect and track submarines through
acoustic detection techniques. Terefore, nonacoustic submarine detection techniques are becoming more and more important.
Te submarine movement will leave a wake vortex, and the information of the wake vortex can be used to invert the maneuvering
state of the submarine. However, the wake vortex is constantly dissipated in the evolution process, and the strength of the wake
vortex is constantly reduced, resulting in the gradual weakening of the characteristics of the wake vortex, which makes the
inversion of submarine operating state difcult and less accurate. In order to solve the above problems, this paper proposes an
improved wake vortex-based inversion method for submarine maneuvering state. Firstly, a random fnite set of submarine wake
vortex observation features is established to obtain the feature with the highest correlation degree with submarine maneuvering
state in the random fnite set. Secondly, the multiscale fusion module and attention mechanism are used to re-encode the weak
features of the wake vortex image, and the salient features of the wake vortex image are extracted. Finally, the manipulation state of
the wake vortex image is retrieved by the extracted salient features. Te experimental results show that the average inversion
accuracy of the proposed algorithm is improved by 1.27% in terms of manipulating state inversion of weak feature wake vortex
images. Te algorithm in this paper can realize the inversion of submarine maneuvering state in the case of weak submarine wake
vortex image features and incomplete feature information. It provides the basis for the detection technology based on the
submarine wake characteristics.

1. Introduction

Due to its great depth, long range, and good concealment,
submarines have gradually become the marine military
equipment vigorously developed by various countries [1].With
the continuous improvement of underwater target conceal-
ment performance and the infuence of complex marine en-
vironment, the difculty of underwater target discovery is
increased [2].Terefore, it is urgent to develop new underwater
target detection technology to improve the detection ability.

Submarines are usually highly covert and difcult to
detect. In the process of submarine movement, the inter-
action between the submarine and the surrounding
water medium will form the wake vortex [3, 4]. Tese

wake-vortices can bemaintained for a long time in the water,
and the steering state of the submarine can be retrieved
through the wake -vortices [5–7]. However, the submarine
wake vortex is constantly dissipated in the evolution process
[8], and the strength of the wake vortex is constantly re-
duced, resulting in the gradual weakening of the charac-
teristics of the wake vortex, which makes the inversion of the
submarine steering state difcult and low accuracy [9]. In
order to solve the above problems, this paper proposes an
improved wake vortex-based inversion method for sub-
marine maneuvering state. Tis is shown in Figure 1. Tis
method can be used to retrieve the maneuvering state of
submarine when the features of the wake vortex image are
weak and the feature information is incomplete.
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For this paper, the main contributions are as follows:

(1) Construct the submarine wake vortex image ob-
servation feature model, and use random fnite set to
represent the submarine wake vortex observation
feature set. Tis method can efectively solve the
problem of stochastic change of wake vortex char-
acteristics caused by uncertainty evolution.

(2) Te weak feature wake vortex extraction network is
established in this paper. Te multiscale fusion
module and continuous attentionmodule are used to
learn the salient features of submarine wake vortex
image, which improves the feature extraction ac-
curacy of weak feature wake vortex image.

(3) Te inversion method of submarine maneuvering
state by wake vortex is proposed. Te inversion
network of submarine maneuvering state is con-
structed, and the model is trained by Perceptual loss
function and Cross-Entropy loss function to achieve
accurate judgment of submarine maneuvering state.

2. Related Work

Submarines produce vortices in the wake of the submarine
during underwater navigation. Based on the characteristics
of the submarine wake vortex, it can be detected. Literature
[10] demonstrates that the in situ thermohaline distribution
of submarine wake contains the key information of sub-
marine detection. Using the method of large eddy simula-
tion, a stratifed temperature and salt wake model was
established to realize submarine detection according to the
change of wake temperature and salinity. In literature [11],
submersion test and fow around self-propelled SUBOFF
submarine model were conducted. Te results show that the
submarine interacts with the surrounding water to produce
wake fow, and the size, speed, and course of the submarine
can be judged according to the characteristics of wake fow.
Te literature [12] characterizes the submarine wake by
means of large eddy simulations and compares it with ex-
perimental results of particle image velocimetry, showing
that the submarine wake is rich in coherent structure and
important features of the submarine parameters. In the
literature [13], a numerical simulation method of strongly
stratifed fow based on a two-layer model was proposed to

numerically simulate the near-feld motion of the SUBOFF
submarine model in the strongly stratifed fow, and it was
confrmed that the submarine would generate an internal
wave wake when sailing underwater, and the efects of the
density leap layer, water depth, and airspeed on the internal
wave wake were also analyzed. In the literature [14], the
vortex structure and wake in homogeneous and stratifed
fuids were studied, and a thermocline model was proposed
to solve the density-varying stratifed fuid, and an improved
delayed separation vortex simulation method was used to
solve the coherent vortex structure and turbulent wake
accurately and efciently, which laid the foundation for
realizing the detection of submarines using wake informa-
tion in a real marine environment. Te literature [15]
proposes that the interaction between a moving submarine
and seawater produces a characteristic wake and demon-
strates the feasibility of using visible polarization imaging to
detect the wake of a submarine. In the literature [16], the
range and intensity of electromagnetic features in the near-
feld wake of a submarine were obtained by numerical
simulation, and it was proposed that the anomalous elec-
tromagnetic feld in the wake could be used as a scheme to
detect submarines. Te above studies demonstrate the fea-
sibility of using wake stream for submarine detection from
diferent aspects, and provide a theoretical basis for using
wake information for submarine maneuvering state inver-
sion in this paper.

However, the wake can be infuenced by evolutionary
factors and is uncertain. Te literature [17] proposes that the
submarine wake evolution can be divided into three periods,
and the characteristics of the wake change randomly in
diferent periods. Te literature [18] investigated the wake
characteristics of a model submarine navigating in a uniform
linearly stratifed fuid and demonstrated that the stratifed
fuid afects the formation and evolution of the submarine
wake. In the literature [19], the wake vortex evolution was
studied by particle image velocimetry and the change
process of the wake vortex structure was discussed. In the
literature [20], the large-scale coherent vortex structure and
its evolution were studied, and it was found that the wake
vortex scale grows to a maximum and then undergoes two
stages of decay.

Te evolution of the submarine wake has led to a gradual
weakening of the wake characteristics, which poses
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Figure 1: An improved wake vortex-based inversion method for submarine maneuvering state.
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difculties in using wake information to invert the sub-
marine maneuvering state.

Inversion of target states parameters with wake infor-
mation. In the literature [21], based on the analysis of the
joint linear Kelvin wake kinematics and water-wave dis-
persion relationship, a hybrid method is proposed to
decompose and reconstruct the ship wake features in the
spectral, spatial, and SAR image domains, which improves
the extraction efciency of the ship wake information and
the estimation accuracy of the ship parameters. In the
literature [22], the possibility of using wake information
for underwater vehicle detection was investigated and an
algorithm for identifying the shape, size, speed, and dive
depth of underwater vehicles using surface waves was
proposed. In the literature [23], a sea surface target motion
parameter estimation algorithm was proposed to perform
a two-level low-rank plus sparse decomposition of the
wake in SAR images using Radon transform, which ef-
fectively improves the detection accuracy of wake. In the
literature [24], a ship wake detection method for complex
marine environments is proposed, where waves and ship
wake are superimposed to simulate real sea surface SAR
images to improve the adaptability of the wake detection
algorithm. In the literature [25], a CNN-based optical
image wake detection method is proposed and a novel
wake detector (WAKENET) is designed to improve the
accuracy of wake detection. In the literature [26], an ap-
proximate method for calculating the wake of a ship is
proposed, which can quickly predict the ship parameters.
In the literature [27], a ship speed estimation method
based on the two-dimensional spectrogram of SAR image
wake is proposed, which does not require a priori
knowledge of SAR parameters and improves the accuracy
of the estimation results. In the literature [28], the rec-
ognition features of the ship wake in the SAR images of the
Yellow Sea were statistically analyzed and the ship motion
parameters were extracted, and the results showed that the
ship motion parameters could be accurately obtained
based on the ship wake.

Te existing research addresses the problem of weak
target characteristics during target detection. Te literature
[29] improved the correlation fltering algorithm to efec-
tively solve the problem of target tracking afected by oc-
clusion conditions. Te literature [30] designs a
multifeature fusion method and establishes the correlation
between multichannel features and correlation flters.
Experiments show that the algorithm efectively improves
the target tracking accuracy. Aiming at the problems of
structure disorder and texture detail blur in image resto-
ration, the literature [31] proposes an image restoration
network driven by multilevel attention mechanism. By
compressing the advanced features of the full resolution
image, fnegrained image restoration, and reconstruction
can be achieved. Te literature [32] adapts to a more
complex trafc sign detection environment by adding more
realistic trafc scene images. Experiments show that the
algorithm has higher robustness and real-time perfor-
mance. Te literature [33] proposes an underwater dis-
tortion target recognition network (UDTRNET).

Underwater weak feature targets are recognized more
accurately by fusing salient features and spatial semantic
features. A salient target detection network (TSEID) is
proposed in the literature [34]. Using a dual-stream en-
coder and an interactive decoder to balance the feature
domain diferences, the algorithm efectively improves the
salient features of targets and enhances the detection
performance of weak feature targets. A hierarchical feed-
back network containing multilevel spatial pyramids is
proposed in the literature [35]. Context-aware multiscale
features with diferent receptive feld sizes are obtained, and
the multiscale information is decoded using an attention
mechanism. Te algorithm has strong robustness for weak
target recognition in diferent scenarios. An attention-in-
tensive spatial pyramid module was designed in the lit-
erature [36]. Dilated convolution is used to acquire local
and global features, thereby improving its performance for
detecting weak feature targets. Te literature [37] proposes
a dense multiscale inference network (DMINET). Trough
the convolution operation of diferent receptive feld and
dense connection, the multiscale context features are ef-
fectively captured and utilized, which improves the ability
of target detection in complex background. For incomplete
target representation data, a GAN-meta-learning-based
target recognition method is proposed in the literature [38]
to make up for the missing target information. A good
generalization capability is demonstrated by experiments.
A pixel-by-pixel contextual attention network (PICANET)
is proposed in the literature [39]. Te attention graph is
generated in the contextual region of each pixel, and the
saliency features of the target are improved by selectively
combining features of useful contextual locations to con-
struct attentional contextual features. Experiments show
that the algorithm has excellent generalization ability. In
the literature [40], a dual attention residual module and
hierarchical feature screening module are designed to
achieve residual refnement and obtain more global con-
textual knowledge. Te algorithm efectively improves the
detection performance of weak feature targets.

3. Proposed Method

3.1. Wake Vortex Observation Model. Te submarine has
straight, yaw, pitch, and other maneuvering movements
underwater, and the submarine would produce wake vortex
in the wake area when sailing underwater. Under diferent
operating states, the shape characteristics of the submarine
wake vortex are diferent [41]. In this paper, the wake
evolution process of the fully attached SUBOFF submarine
model under diferent maneuvering states is simulated, as
shown in Figure 2.

In the inversion of submarine maneuvering state, the
evolution of the submarine wake vortex is uncertain, leading
to random changes in the characteristics of the wake vortex
[42]. Te observed submarine wake vortex is modeled as set
M, and the submarine steering state is modeled as set N. Te
observation feature set of submarine wake vortex and the
manipulation state set of submarine are, respectively,
expressed as follows:
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M � m1, m2, . . . , mk􏼈 􏼉 ∈ F(M),

N � n1, n2, . . . , nk􏼈 􏼉 ∈ F(N),
(1)

where mk is the k th class of wake vortex features; F(M)

denotes the observation space of wake vortex features; nk is
the k th class of submarine maneuvering state; and F(N)

denotes the submarine maneuvering state space. Te ob-
servation space of wake vortex features and submarine
maneuvering state space contain all submarine wake vortex
features information and all submarine motion state forms,
respectively.

In the submarine observation feature set M, the set
element mi(i � 1, 2, 3, . . . , k) varies randomly, while the set
base |M| � k also varies randomly. Submarine observation
feature set M � mi􏼈 􏼉

|M|

i�1 is regarded as random fnite set, and
the probability density is

p(M) � p(|M|)(|M|)!U
|M|

p|M| m1, . . . , m|M|􏼐 􏼑 , (2)

where p(|M| � k) � p(k) is the discrete basis distribution,U
denotes the unit hyperspace, and pk(m1, . . . , mk) is the
symmetric joint eigen density for a given basis |M| � k.

Te probability that the feature set M can characterize
the maneuvering state of the submarine is obtained, and the
probability density associated with the shape features of the
submarine wake vortex in the observed feature set M is
calculated. Te features corresponding to the maximum
correlation probability density are fltered and fed into the

submarine wake vortex feature extraction network. It can be
expressed as follows:

mt � f pmax(M)( 􏼁, (3)

where mt denotes the feature with the highest probability
associated with the shape feature in the submarine obser-
vation feature set M; f(∙) denotes the mapping function of
the probability density of the submarine observation feature
set M to the set elements.

3.2.WeakFeatureWakeVortex Extraction. According to the
wake vortex description model, it is known that the wake
vortex uncertainty evolution would cause the wake vortex
features to become weaker. Terefore, the encoder network
is used to re-encode the features of the wake vortex image,
reduce the interference of the uncertain evolution factors on
the wake vortex features, and realize the efcient extraction
of the weak features of the wake vortex.

Te receptive feld of the input wake vortex image is
learned by three branches, and its convolution kernel size is
3 × 3, 5 × 5, and 7 × 7, respectively. In order to measure the
semantic correlation between the output feature maps under
diferent convolution kernel sizes, reduce the semantic in-
formation interference between the feature maps, and re-
duce the semantic gap, a multiscale feature fusion module
(MSFM) is designed.Temultiscale feature fusion module is
shown in Figure 3.
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Figure 2: Evolution of SUBOFF wake vortex under diferent maneuvering conditions.
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In the multiscale feature fusion module, the correlation
between pixels in diferent feature maps is calculated by
matrix multiplication in order to reduce the computational
burden. And the correlation is used as the weight vector of
the feature map output by larger convolution kernel. As
shown in the following equation,

t
c

αβ �
exp Aα · Bβ · Cc􏼐 􏼑

􏽐
N
α,β�1exp Aα · Bβ · Cc􏼐 􏼑

, (4)

where t
c

αβ is the correlation between the α th position and the
β th position in the output feature map of the smaller
convolution kernel and the c th position in the larger
convolution kernel output feature map. N pixels are present
in the image. A and B denote the feature maps obtained by
convolving and reshaping the output of the smaller con-
volution kernel. C denotes the feature maps obtained by
convolving and reshaping the output of the larger convo-
lution kernel. Te multiscale fusion calculation process is
show in the following equation:

Gc � ξ 􏽘
N

α,β�1
t
c

αβcαβ􏼒 􏼓 + Zc, (5)

where ξ denotes the learning weight; cαβ denotes the α th
position and the β th position of the lower feature map; and
Zc denotes the c th position of the upper feature map.

To avoid extractingmore irrelevant features and to better
adapt to the complex and changing underwater environ-
ment, the attention mechanism is used to improve the
feature extraction accuracy of the model. Te feature at-
tention module is shown in Figure 4.

Feature attentionmodules use local residual structures to
pass output features into the convolution layer. Ten the
output results and the input features are superimposed by
converting the Leaky ReLU activation function to nonlin-
earity. Te superimposed features are passed through the
convolutional layer and used as the input to the channel
attention. In channel attention, the fast one-dimensional
convolution with kernel size d is used as the fully connected
layer, and the learning parameters are shared between
channels. As shown in the following equation,

Wc � σ Conv1Dd gc( 􏼁( 􏼁, (6)

where Wc denotes the channel weights, σ denotes the
sigmoid function, Conv1D denotes the one-dimensional
convolution, and gc denotes the result of global average
pooling of the channel attention input features.

Te channel attention input features are multiplied pixel
by pixel with the channel weights and then passed to the
pixel attention layer. Te pixel attention layer consists of the
PReLU activation function and the Sigmoid activation
function. Te pixel weights are obtained through the pixel
attention layer, and fnally the obtained pixel weights are
used to weigh the pixel attention input features.

Te continuous attention module (CAM) is used to
further improve the performance of the wake vortex feature
coding network. However, continuous attention module will
increase network depth, and excessive increase of network
depth will lead to weakened expressive ability [43]. Te
salient features are learned adaptively and the shallow fea-
ture information is transferred to the deep layer. Global
average pooling is used to adaptively obtain the feature
vectors of diferent channels, and then the feature vectors are
multiplied with the output features of the continuous at-
tention module. As shown in the following equation,

FM � SG Oc( 􏼁⊗ SCAM Oc( 􏼁⊕Os, (7)

where FM is the output of adaptive learning, SG and SCAM
perform global average pooling and continuous attention
operations, respectively, Oc is the input feature of the
continuous attention module, and Os denotes shallow
information.

3.3. State Inversion Network Model. In this paper, CNN is
used as the basic network structure, and the wake vortex
feature coding network is embedded in the backbone net-
work model, so as to establish the submarine maneuvering
state inversion network. Specifcally, the submarine ma-
neuvering state retrieval network in this paper can be di-
vided into two stages. In the frst stage, aiming at the
problem that the characteristics of the wake vortex are
weakened and the feature information is incomplete caused
by the uncertain evolution factors of the wake vortex, the
encoder network is used to re-encode the features of
the wake vortex image to achieve the efcient extraction
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Figure 3: Multiscale feature fusion module (MSFM).
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of the weak features of the wake vortex. In the second stage,
the feature map obtained from the wake vortex feature
coding network is used as input, and the submarine steering
state is retrieved in the fully connected layer.

In addition, to avoid overftting and gradient disap-
pearance during training, a CNN path adjustment module
(CNN-PAM) is added to the submarine maneuvering state
retrieval network, as shown in Figure 5.

Te output results of the wake vortex feature coding
network are transferred to the module, so as to reduce the
number of parameters of the submarine maneuvering state
inversion network, reduce the training time of the network,
and improve the accuracy of the submarine maneuvering
state inversion. Finally, the output of the CNN path ad-
justment module is taken as input through two fully con-
nected layers (FC1 with 1024 output neurons and FC2 with 8
output neurons), and the Softmax function is used to predict
the label of the submarine manipulation state.

3.4. Loss Function. Te CFD technique is used to simulate
diferent maneuvering states of the submarine during un-
derwater motion and to obtain information on the sub-
marine wake vortex data. Te wake vortex images at
different positions of the submarine wake are intercepted
and formed into a training dataset Tdata �

(f1, l1), (f2, l2), · · · , (fi, li)􏼈 􏼉, i ∈ R, where f denotes the
acquisition of the submarine wake vortex image information
and l denotes the submarine wake vortex image label. Te
submarine maneuvering state inversion network is trained
by the training dataset Tda ta, and the optimal weight pa-
rameters of the inversion network are calculated to ensure
that the model has a good generalization capability.

Perceptual loss and cross-entropy loss are used as loss
functions. Te weak features of the wake vortex image are
extracted using the perceptual loss function. Te perceptual
loss function can be expressed as follows:

Ls �
1

CWH
􏽘

C

c�1
􏽘

W

w�1
􏽘

H

h�1
P O

c
c,w,h − P O

g

c,w,h􏼐 􏼑􏼐 􏼑􏼐 􏼑
2
, (8)

where C, W, and H denote the channel, width, and height of
the image, respectively. Og denotes the wake vortex sig-
nifcant feature map output by the wake vortex weak feature
extraction network. P denotes the nonlinear transformation.

Te cross-entropy loss function is used to portray the
distance between the actual output of the inverse network

submarine manipulation state and the desired output.
Probabilities are indicated more closely when cross-entropy
is smaller. Suppose, the actual output of a sample is p and the
expected output is q, then there is a deviation between p and
q. By continuously training the network model iteratively,
making p closer and closer to q. Te mathematical ex-
pression is as follows:

H(p, q) � −􏽘
x

p(x)log q(x). (9)

Terefore, the total loss function is as follows:

Lloss � Ls + λH(p, q), (10)

where λ is a weighting factor that regulates the ratio of the
two loss functions.

4. Experimental Results and Analysis

4.1. Experimental Dataset. In this paper, CFD technology
was used to simulate the wake evolution characteristics of
the fully attached SUBOFF model under diferent ma-
nipulation states, and Submarine Wake Dataset (SWD)
used in this experiment was constructed. Te SWD
dataset has 6797 label images. Te images in the dataset
contain fve control states during the underwater
movement of the submarine, namely, straight, left, right,
up, and down. Te SWD dataset was randomly divided
into training dataset and test dataset according to the
ratio of 7 : 3. Te training dataset included 968 straight
images, 939 left-skewed images, 950 right-skewed images,
954 uptilted images, and 949 downtilted images. Te test
set consists of 414 straight images, 402 left-skewed im-
ages, 407 right-skewed images, 408 uptilted images, and
406 downtilted images. Te SWD dataset statistics are
shown in Table 1.
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Figure 5: CNN path adjustment module (CNN-PAM).
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4.2.ExperimentalPlatformandParameters. Te training and
testing of this experiment were carried out on PyTorch
platform under Ubuntu18.04 operating system. Te device
confguration is as follows: 64GB RAM and two RTX 2080Ti
GPUs. Te experimental code is mainly based on Python
language, including data preprocessing and algorithm
implementation.

Stochastic gradient descent (SGD) optimizer is used for
model training. Te initial learning rate is 0.001. Te mo-
mentum parameter is 0.9. Te weight decay is 0.0005. Te
total number of epochs for training is 300.

4.3. Experimental Results. Tis paper presents an improved
wake vortex-based inversion method for submarine ma-
neuvering state. Due to the uncertainty of evolution, facing
the problem of weakening the features of submarine wake

vortex image caused by evolution factors, Gaussian noise
and random pixel zeroing are, respectively, added to the
wake vortex image to characterize the weak feature of
submarine wake vortex image. Terefore, this paper sets up
three groups of submarine maneuvering state inversion
simulation experiments. Te efectiveness of the proposed
method is verifed by comparing the results of submarine
maneuverability state inversion with MFENet [44], SA-
SPPN [45], DAFNet [46], and APAN [47] algorithms. Te
evaluation criteria of the algorithm are mean average ac-
curacy (mAP) and overall accuracy (Acc).

4.3.1. Signifcant Wake Vortex Image Inversion Results.
Figure 6 shows the inversion result of manipulation state of
submarine salient wake vortex image by the proposed al-
gorithm. In Figure 6, each row of images represents the

Table 1: SWD dataset statistics.

Class Training Testing
Straight 968 414
Left 939 402
Right 950 407
Up 954 408
Down 949 406

MFENet SA-SPPN DAFNet APAN Ours

Figure 6: Inversion results of signifcant wake vortex image manipulation state.
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inversion accuracy of each algorithm for diferent control
states of the submarine, which are fve types of control states:
straight, left, right, up, and down. Table 2 shows the average
accuracy and overall accuracy of the algorithm for retrieving
the manipulation state of submarine salient wake vortex
image. It can be seen from the inversion results of the fve
algorithms on submarine maneuvering state that the average
accuracy of the proposed algorithm is the best, which is
0.7857. Te algorithm in this paper is also the highest in the
inversion accuracy of the maneuvering state of submarine
left and right deviation, which were 0.7910 and 0.7173,
respectively. However, the overall accuracy of the proposed

algorithm is slightly lower than that of MFENet, with an
overall accuracy of 0.7785. Te MFENet algorithm has the
highest inversion accuracy of 0.7730 for the maneuvering
state of the submarine up. Te SA-SPPN algorithm has the
highest inversion accuracy of 0.9102 for the maneuvering
state of the submarine straight. Te DAFNet algorithm is
slightly higher than the algorithm in this paper in terms of
inversion accuracy of the maneuvering state of the sub-
marine down, which is 0.8230. In terms of overall accuracy,
the MFENet algorithm has the best efect, which is 0.7876.
From the above analysis, it is shown that the proposed al-
gorithm is the best in the average accuracy of submarine

Table 2: Signifcant wake vortex image manipulation state inversion mAP and Acc.

Method Straight Left Right Up Down mAP Acc
MFENet 0.8594 0.7792 0.6929 0.  30 0.7541 0.7717 0. 8 6
SA-SPPN 0.9102 0.7014 0.7058 0.7051 0.7775 0.7600 0.7648
DAFNet 0.8740 0.7061 0.6672 0.7431 0.8230 0.7627 0.7724
APAN 0.7967 0.7735 0.6906 0.7718 0.7939 0.7653 0.7631
Ours 0.8659 0. 910 0. 1 3 0.7503 0.8042 0. 85 0.7785
Ours are the results of the inversion of the algorithms in this paper. Te bold values represent the excellent metrics for each algorithm.

MFENet SA-SPPN DAFNet APAN Ours

Figure 7: Result of inversion of manipulated state of Gaussian noise wake vortex image.
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maneuvering state inversion, but it is not ideal in the in-
version of submarine direct navigation and upturn ma-
neuvering state.

4.3.2. Weak Feature Wake Vortex Image Inversion Results.
Figure 7 is the inversion result of manipulation state of
submarine wake vortex image with Gaussian noise by the
proposed algorithm. Te fve columns in the fgure, re-
spectively, represent the inversion accuracy of the fve
control state types of the submarine under diferent algo-
rithms: straight, left, right, up, and down. Table 3 shows the
average accuracy and overall accuracy of manipulating state
inversion of submarine wake vortex image with Gaussian
noise. It can be analyzed from the table that the manipu-
lation state inversion result of the algorithm in this paper is
the best when facing the submarine wake vortex image with
weak features. Te average accuracy and overall accuracy of

submarine maneuvering state inversion are 0.7645 and
0.7572, respectively. Te average inversion accuracy of the
proposed algorithm is improved by 1.27%. In addition, the
algorithm in this paper still maintains the highest inversion
accuracy for the maneuvering state of the submarine left
deviation and right deviation, which are 0.7501 and 0.6969,
respectively. However, SA-SPPN algorithm has the highest
inversion accuracy of 0.8789 for direct navigation of sub-
marine. Te DAFNet algorithm is higher than the algorithm
in this paper in terms of maneuver state inversion accuracy
for submarine down, which is 0.8095. Te APAN algorithm
has a slightly higher inversion accuracy of 0.7539 than the
proposed algorithm for the inversion of the maneuvering
state on the submarine up. From the above data, it can be
seen that the proposed algorithm has the highest average
accuracy and overall accuracy when retrieving the ma-
nipulation state of submarine weak feature wake vortex
image.

Table 3: Gaussian noise wake vortex image manipulation state inversion mAP and Acc.

Method Straight Left Right Up Down mAP Acc
MFENet 0.8682 0.6626 0.6498 0.7449 0.7081 0.7267 0.7292
SA-SPPN 0.8 89 0.6503 0.6516 0.6175 0.7421 0.7081 0.7045
DAFNet 0.8723 0.6748 0.6644 0.7380 0.8095 0.7518 0.7495
APAN 0.7812 0.6323 0.6469 0. 539 0.7352 0.7099 0.7074
Ours 0.8423 0. 501 0.6969 0.7426 0.7908 0. 645 0. 5 2
Ours are the results of the inversion of the algorithms in this paper. Te bold values represent the excellent metrics for each algorithm.

MFENet SA-SPPN DAFNet APAN Ours

Figure 8: Te result of manipulation state inversion of random pixel zeroing wake vortex image.
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Figure 8 is the inversion result of manipulation state of
submarine wake vortex image with random pixel zeroing by
the proposed algorithm. Each column in the fgure repre-
sents the inversion accuracy of diferent algorithms for fve
types of submarine control states: straight, left, right, up, and
down. Table 4 shows the mAP and Acc of manipulating state
inversion of submarine wake vortex image with random
pixel zeroing. According to the inversion results in Table 4, it
can be seen that the MFENet algorithm has the highest mAP
of 0.7437 for the inversion of the maneuvering state of the
weakly featured wake vortex image of the submarine. Te
Acc was 0.7403. Te DAFNet algorithm has the best Acc of
0.7445. Although the average inversion accuracy of the
proposed algorithm is 1.85% lower than that of the
MFENet algorithm, the inversion results of the maneuvering
state of the submarine with left and down are much better in
this paper.

5. Conclusion

Due to the infuence of evolution factors, the feature in-
formation of submarine wake vortex is not complete. It is
challenging to invert the maneuvering state of submarine
using the weak feature wake vortex image. In this paper, an
inversion method for maneuvering state of submarine based
on wake vortex is proposed. Firstly, the observation features
of the submarine wake vortex are modeled as a random fnite
set, and the best features of the set are screened out. Sec-
ondly, the multiscale fusion module and attention mecha-
nism are used to re-encode the weak features of the wake
vortex image, extract the salient features of the wake vortex
image, and reduce the interference of uncertain evolution
factors on the characteristics of submarine wake vortex.
Finally, the manipulation state of the wake vortex image is
inverted by the salient features extracted from the wake
vortex feature coding network. Te experimental results
show that the average accuracy of the proposed algorithm is
improved by 1.27% when the wake vortex image features are
weak. However, the interference of ocean turbulence on
submarine wake vortex is not considered in this study, and
the correction of submarine wake vortex distortion under
the interference of ocean turbulence can be studied in future
work.
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