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For multiagent communication and cooperation tasks in partially observable environments, most of the existing works only use
the information contained in hidden layers of a network at the current moment, limiting the source of information. In this paper,
we propose a novel algorithm named multiagent attentional communication with the common network (MAACCN), which adds
a consensus information module to expand the source of communication information. We regard the best-performing overall
network in the historical moment for agents as the common network, and we extract consensus knowledge by leveraging such
a network. Especially, we combine current observation information with the consensus knowledge to infer more efective in-
formation as input for decision-making through the attention mechanism. Experiments conducted on the StarCraft multiagent
challenge (SMAC) demonstrate the efectiveness of MAACCN in comparison to a set of baselines and also reveal that MAACCN
can improve performance by more than 20% in a super hard scenario especially.

1. Introduction

In real life, multiple autonomous agents need to work to-
gether to complete a large number of complex tasks, such as
formation control [1], autonomous vehicles [2], unmanned
aerial vehicle [3], and multiplayer confrontation games [4].
Multiagent reinforcement learning (MARL) has made sig-
nifcant progress in optimizing the cumulative global re-
wards in these multiagent systems [5]. However, several
open problems are still not well solved in the feld of MARL.
One of the problems is to learn cooperative behaviours
between agents under the partial observation.

For the partially observable multiagent cooperative task,
one approach is to use value-based reinforcement learning
[6]. Independent Q-learning [7] is a typical representative of
applying single-agent reinforcement learning methods di-
rectly to multiagent problems. Although independent Q-
learning has good scalability, it brings nonstationarity due to
the constant changes in the strategies of other agents in the
training process, where the performance of each agent is
often poor. Based on the series of value decomposition

methods [5, 8, 9], the paradigm of the centralized training
and decentralized execution (CTDE) [10] is adopted to deal
with the situation, in which all agents are centrally controlled
during training and each agent individually utilizes a dis-
tributed policy during execution. Another way is to exploit
the communication in MARL. Te CommNet method
proposed in [11] employs a continuous communication
channel in which an agent gets the sum of the information
transmitted by other agents. Te communication module is
also utilized for engaging with other agents inside policy or
critic networks [12]. Typically, agents take the current ob-
servation or hidden layer information as the raw in-
formation input for communication [13], which limits the
source of information.

To address the issues, we add an additional common
network for each agent to preserve the historically best-
performing overall policy network. Te overall policy
consists of the policies of all agents. Te common network
with the best historical performance, which represents the
optimal overall policy to a certain extent, can predict the
goals to be achieved by future agents. Te ultimate goal of
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training is to obtain the optimal policy, and similarly, the
historical optimal overall network can infer the future strategy
information of other agents. We name the historical optimal
overall network as the common network, and the information
obtained from the common network is called consensus in-
formation. Signifcantly, by integrating this consensus in-
formation, the communication message can contain the
guidance information of the optimal network for the current
state in diferent periods, where an agent can have more raw
information to flter, and the common network is screened by
the average score of each episode of an agent during the test.
Terefore, we integrate the consensus information and ob-
servation information, extract the information based on the
attention mechanism, and then utilize the extracted in-
formation for decision-making to accelerate cooperative
learning among agents. Additionally, the common network,
being historically best-performing, can be regarded as an expert
network to guide the policy search [14]. We exploit the dataset
aggregation (DAgger) framework [15], which collects the data
from experts and the current policy to enhance the training
dataset. Furthermore, we separately assess the viability of the
common network as an expert network to improve the per-
formance of agents within the DAgger framework.

In this paper, we add communication channels between
each agent to cooperate better. Traditional communication
ways, such as directly fxed communication messages, the
exchange of discrete information, or a simple summation of
consecutive communication messages, are too plain to be used
in complex cooperative tasks. Te number of communication
messages received by agents increases as their number in-
creases, which is not conducive to their decision-making.
Terefore, we propose to add communication channels for
each agent, allowing the communication information between
agents to be extracted by the multihead attention mechanism.
Te attention-based communication module can better deal
with the change in the number of agents.

Te proposed approach, which is multiagent attentional
communication with the common network (MAACCN) for
partially observable cooperation problems, adopts a CTDE
framework. Te main contributions of the algorithm in this
paper are as follows:

(1) We add an additional common network to save the
historically optimal overall policy for all agents,
which gives each agent another source of in-
formation to make decisions

(2) We process communication and consensus in-
formation via the attention mechanism in order to
extract more efective information

(3) We demonstrate additional experiments in the
DAgger framework to verify the feasibility of the
common network as an expert network to gather
data and improve the performance of agents on the
StarCraft multiagent challenge

2. Related Work

After reaching outstanding results in the single-agent setting
[16], researchers move on to the more challenging

multiagent environment [17, 18]. Te most straightforward
approach to multiagent learning is to have each agent train
and learn on their own [19]. Tis early approach, known as
the independent Q-learning (IQL) method, was one of the
frst of its kind, although it does not generally fare well in
practical applications. Despite this, many challenges employ
IQL as the baseline for experimental comparison due to the
ease of implementation and strong scalability as the number
of agents increases.

To further the application of deep deterministic policy
gradient (DDPG) to the feld of multiagent systems [20], the
multiagent DDPG (MADDPG) algorithm was suggested in
[21] as part of the research algorithm for multiagent co-
operative tasks. In the training phase, MADDPG can obtain
the behaviours of all agents, allowing it to solve the problem
that each agent in a hybrid environment has its own local
reward. Based on MADDPG, the authors of [22] propose
shared memory as a form of communication, and a diferent
MADDPG-MD [23] algorithm with improved robustness is
inspired by dropout.

Another way to deal with the problem of global reward
credit allocation is through value function decomposition.
TeVDN algorithm presented in [8] decomposes a global Q-
function into the sum of the individual local Q-functions of
the agent, alleviating the problems of lazy agents and credit
allocation among agents. In addition to adding a hybrid
network and a nonlinear component to the decomposition
on the foundation of VDN, the Q-value mixing network
(QMIX) [9] guarantees that the global Q function is mo-
notonous in the local Q function.Te COMA [24] algorithm
measures the contribution of an agent to the global reward
based on the counterfactual baseline. In order to be suited
for tasks that satisfy the decomposition conditions but not
monotonicity in QMIX, the QTRAN [25] algorithm reduces
the structural limitations of QMIX in order to be able to
handle more generic problems. Teoretically, Qatten [26]
provides a generic decomposition of the value function that
explicitly models the infuence of intelligence on the whole,
based on multihead attention. Te regularized softmax
(RES) algorithm [27] is an enhancement of QMIX that solves
the overestimation of the Q-value, which employs the
softmax approach while computing the target.

In terms of multiagent communication, the authors of
[28] frst introduce communication information into deep
reinforcement learning with the goal of resolving the discrete
communication channel problem, which combines DQN
and IQL applied to multiagent problems. Te
CommNet algorithm permits multistep communication,
and the gradient can be transmitted back to each agent via
the continuous communication channel. BiCNet [29]
presents a bidirectional recurrent network to each agent,
which conceals the information exchange between agents. In
order for agents to learn to communicate better, the IC3Net
proposed in [13] includes a gate control for each agent so
that they can decide whether or not to communicate with
other agents.

In terms of screening efective information, the attention
model has been widely used in computer vision [30], plant
species recognition [31], resource allocation [32, 33], and
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reinforcement learning as a successful method. Te ATOC
algorithm suggested in [34] gives agents the ability to choose
whether or not to contact one another, as well as which other
agents they want to connect with. Te method of targeted
multiagent communication (TarMAC) [12] uses a signature-
based soft attention mechanism during several communi-
cation rounds to gauge the importance of communication.
Te G2ANet [35] method employs a two-stage attention
network model, using the hard attention mechanism to
defne the interactive agent and the soft attention mecha-
nism to determine the weight of the interaction, and au-
tomatically learns the relationship between the constantly
changing agents in large-scale complicated games.

In the feld of multiagent modeling, several earlier eforts
have learned the models of other agents through observa-
tion. Te SOM [36] algorithm employs its own approach to
forecast the behaviours of adversaries, infers the target in-
formation of other agents, and then makes decisions based
on this target information. By providing agents with in-
trinsic rewards that have a causal impact on the behaviour of
other agents, the social infuence approach [37] seeks to
create coordination and communication in MARL through
a unifed strategy. However, both of these approaches in-
volve extra work to build this predictive network using
supervised learning methods.

Most of these communication algorithms are limited to
the hidden layer information of the policy network at the
current moment. Our MAACCN algorithm expands the
source of communication information by incorporating the
common network, and the algorithm of MAACCN selects
the algorithm fow of the classical value decomposition series
as the fundamental framework to improve both the con-
sensus information module and the communication mod-
ule, which extract the efective communication information
for better collaboration among agents, and in contrast to the
SOM algorithm, we select a common network with the best
historical performance as the expert network without ad-
ditional training. Additionally, we take advantage of the
DAgger framework, which gathers information from experts
and current policies to improve the training dataset.

3. Background

Tis section introduces some of the ideas behind the DAgger
framework and MARL based on the value-based algorithm.

3.1. DAgger. With the DAgger framework, we can run both
the expert policy we want to clone and the novice policy we
need to teach at the same time, expanding the capabilities of
conventional supervised learning techniques [15]. By ag-
gregating additional expert evidence, the reward structure
and the fundamental model are revealed.

DAgger collects more training instances from a combi-
nation of the current policy π and the expert policy π∗ in an
iterative manner. A decision rule governs the interaction of
the current policy and the combined expert with the en-
vironment during a certain episode, following the new
policy:

πθi
� αiπ
∗

+ 1 − αi( π, (1)

where αi is annealed progressively from 1 to 0.1. DAgger
takes the new dataset D by the new policy πθi

with each
iteration to retrain the next policy as follows:

D← D∪Di, (2)

where Di is gathered by the expert policy π∗ and D is the
previous set.

3.2. Reinforcement Learning. MARL involves many agents and
numerous states, which is the combination of the Markov de-
cision process and thematrix game, whereas theMarkov decision
process involves one agent and multiple states and the matrix
game involves multiple agents and one state. Te evolution of
MARL is inextricably linked to game theory [38], and the partly
observable multiagent cooperation problem (Dec-POMDP) can
be characterized as 〈N,S,A, R, P,O, c〉. It is defned for N
agents by the global states S, action sets A � A1, . . . ,AN ,
reward function R, environmental state transition function
P: S × A1 × · · · × AN⟶ S, observation space
O � O1, . . . ,ON , and discounted factor c. Te learning policy
of the agent i is πθi

: Oi × Ai⟶ [0, 1]. At time t, the agent i

receives a reward rt
i : S × Ai⟶ R from the environment after

executing action at
i . In this study, we investigate a purely co-

operative task in which each agent receives the same reward, and
the overall objective is to discover the most efective cooperative
method in order to maximize the cumulative reward
G � 

T
t�0c

trt.
Te VDN [8] method is a value decomposition struc-

ture based on DRQN [39] to learn the action value function
of distinct agents using only global benefts, thereby re-
solving the issue of partially observable fake gains and lazy
agents. Te value decomposition function of VDN is as
follows:

Q h1, h2, . . . , hd( , a1, a2, . . . , ad( (  ≈ 
d

i�1

Qi hi, ai( . (3)

QMIX [9] is an enhanced version of VDN that employs
a hybrid network to combine local agent functions and global
state information to give positive weights for the hybrid net-
work during training. Taking argmax for the joint action value
is the same as taking argmax for each local action value
function as follows:

argmaxuQtot(τ, u) �

argmaxu1
Q1 τ1, u1( 

⋮

argmaxun
Qn τn, un( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4)

QMIX converts the preceding expression into a mono-
tonic constraint, which is realized by a hybrid network. Te
following is the restriction:

zQtot

zQi

≥ 0,∀i ∈ 1, 2, . . . , n{ }. (5)
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4. Multiagent Attentional Communication with
the Common Network

In order to more efectively handle the problem of multi-
agent communication and cooperation and assure the ad-
equacy and efcacy of communication information, we
propose the multiagent attentional communication with the
common network (MAACCN) learning algorithm, which
regards the common network as the expert to each agent
based on the DAgger framework and employs the atten-
tional mechanism to process the consensus information and
communication information. Tis section elaborates on the
concept of our algorithm and the structure before in-
troducing the attention unit and further explores the in-
fuence of the common network.

4.1. Te Framework of MAACCN. In the problem of mul-
tiagent cooperation, agents can make better decisions if they
can infer the consensus information of other agents based on
their states, actions, and thoughts. From this perspective, we
suggest the common network with the highest historical
performance of agents, from which we obtain the consensus
knowledge. More efective information can be gathered
through the attention mechanism to extract consensus in-
formation, and this part of the information can be in-
corporated into the policy of each agent, which can enhance
the capacity of the agent for decision-making.

Te framework of the proposed multiagent attentional
communication with the common network (MAACCN)
algorithm is shown in Figure 1, which is divided into three
stages. Te frst stage of MAACCN is the processing of
information features, in which the common network can be
accessed by each agent. Te structure of the common net-
work is the aggregation of the policy networks of all agents.
Te common network contains policies of all agents.

Terefore, inputs of the common network are the obser-
vations of all agents. Te feature hi

t is obtained by processing
the action-observation(oi

t, ai
t− 1) through the gated recurrent

unit (GRU) network. Te attention mechanism is used to
assign weights to the consensus information ( h1

t , . . . , hn
t ) of

other agents collected through the common network in
order to generate the output ci

t. Te second stage is the
communication module, which expands the communication
channel among agents based on the multihead attention
mechanism. Each agent broadcasts the information to be
conveyed and selects the important information received
from other agents based on the multihead attention
mechanism in order to get the information that is efective
for its own decision-making. Before making a decision, an
agent engages in numerous iterations of communication
with other agents to ensure an adequate exchange of in-
formation. Te third stage involves integrating the local Qi

function using the mixing network to get Qtot.
In the framework of the method described above, all

agents share the same set of network parameters, and dif-
ferent types of information can be acquired based on the
observations and the ID numbers of agents at diferent times.
Terefore, the historically optimal policy of each agent is the
same. In order to alleviate the challenges caused by partial
observability, actions and communication information are
passed to agents at the next moment. In the second stage,
only one GRU neural network can be utilized for cyclic and
iterative communication since the twoGRUneural networks
that the communication module needs to transit through
can share parameters.

Te algorithm of MAACCN utilizes ofine updating to
add the state, action, reward, and termination state of nu-
merous agents interacting with the environment to the
experience pool, where a batch of complete episodes is
selected for learning. Similar to DQN, our algorithm con-
structs a target network and duplicates the current network
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Figure 1: Overall framework of multiagent attentional communication with the common network. Right: the agent i frst obtains consensus
information of other agents from the common network.Te feature hi

t is the hidden layer output of the agent i policy at times t.Te feature ci
t

is the output of the agent i through the attention unit at times t. Left: the communication module between agents is implemented via the
attention mechanism. Te feature hn

t is the hidden layer output of the agent n policy at times t. Te feature cn
t is the output of the agent n

through the attention unit at times t.
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parameters every fxed steps to calculate the value of the next
moment, which can expedite convergence and contribute to
the stability of the algorithm. Te loss function of the al-
gorithm is

loss � 
T

t�1


n

i�1
y

i
t − 

n

i�1
Qi o

i
t, a

i
t; θ ⎛⎝ ⎞⎠

2

,

y
i
t �

r, if teminal

r + cmaxa′ Q
target

o
i
t+1, a
′
; θ′ ,

⎧⎪⎨

⎪⎩

(6)

where θ′ is a parameter for the target network Qtarget. Te
procedure of MAACCN is described in Algorithm 1 in
Appendix, which is a value-based algorithm. In the
MAACCN training procedure, the optimal Q-value function
estimation is found by minimizing the loss function. During
the learning process of agents, the previous common net-
work needs to be replaced by the policy network, which has
better performance.

4.2. Common Network and Attention Mechanism. Among
the many approaches that can be taken to mitigate the
problem of instability in a multiagent environment, it is
more helpful to model the behaviours of other agents and
infer the consensus information of other agents than to
simply treat the other agents as part of the environment.
Humans use the aims, beliefs, and preferences of other
groups with whom they interact to make better judgements,
according to cognitive science research. Humans mimic the
behaviours of others based on their observations, a cognitive
process that enables them to better comprehend the con-
sensus and actions of others and to react appropriately in
social circumstances. Inspired by this, we add a common
network for all agents.

In contrast to other methods of modeling the aims or
actions of other agents, the common network is a replication
of the historically optimal overall network, which is judged
according to the average score of each episode during the
test. Each common network is the same for each agent due to
parameter sharing. Tus, an agent can deduce from the
common network the consensus information of other agents
for communication. In light of one of the fundamental
assumptions of the algorithm, namely, that the common
network can be used temporarily as the optimal policy
network, we investigate the efect of the common network
based on the DAgger framework in order to establish the
validity of consensus information.Terefore, the policy π∗ of
the common network and the current policy π jointly decide
on the fnal policy πθi

.
Te policy network of each agent receives the obser-

vation oi
t, which is then passed through the fully connected

layer and RELU function before being input fci
t into the

GRU cyclic neural network in order to generate the output
hi

t. Te other input of GRU comes from the output hi
t− 1

obtained after processing the information the last time. Te
formula is as follows:

r � σ Wirfc
i
t + bir + Whrh

i
t− 1 + bhr ,

z � σ Wizfc
i
t + biz + Whzh

i
t− 1 + bhz ,

h
i′

t− 1 � h
i
t− 1 ⊙ r,

hi
′ � tan h Wihfc1i

t + bih + Whhh
i′

t− 1 + bhh ,

h
i
t � (1 − z)⊙ h

i
t− 1 + z⊙ hi

′,

(7)

where σ and tanh are the activation function, W and b

represent the weight matrix and the bias to be trained, and r

and z, respectively, represent reset gates and update memory
gates to make more efective use of past data and alleviate
local observation constraints.

As visualized in Figure 2, the information from these
hidden layers is processed using the multihead attention
mechanism so that additional valuable information can be
collected to help agents cooperate. Te attention unit can be
depicted as the given information input X � (hi

t,
h1
t , . . . , hn

t ),
the vector hi

t being the information of an agent at the current
time, and the scoring mechanism score � keyTq/

��
d

√

employing the scaling dot product model, where d is
a constant. Te attention function maps a query and a set of
key-value pairs to the following output:

q � Qh
t
i ,

key � KX,

value � VX,

h
c
i � value × softmax(score).

(8)
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Figure 2: Extracting signifcant information from the common
network based on the multihead attention mechanism, where
linear(Q) means Q is a linear layer and K and V are also linear
layers.
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Table 1: Training parameters of the MAACCN algorithm.

Parameters Value Descriptions
Lr 0.0005 Te learning rate
Epsilon 1 Probability of exploration
Min_epsilon 0.05 Minimum probability of exploration
Anneal_steps 50000 Te annealing steps of exploration
T_max 2000000 Te total step size of training
N_episodes 1 Te number of episodes sampled at an epoch
Evaluate_cycle 100 Te interval of the evaluation cycle
Evaluate_epoch 32 Frequency of evaluation
Batch_size 32 Te batch data size for training
Bufer_size 5000 Te size of the bufer
Target_update_cycle 200 Te update interval of the target network
hidden_dim 64 Te dimension of a hidden layer
Head 8 Te number of the multihead
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Figure 3: Experimental results of the MAACCN-QMIX algorithm on SMAC.

Table 2: Maximum median performance % of the algorithms tested.

Scenarios MAACCN-QMIX QMIX VDN IQL Heuristic QTRAN Qatten COMA
2s_vs_1sc 100 100 100 100 0 100 100 96
3s5z 97 91 87 9 42 20 95 0
5m_vs_6m 75 75 78 59 0 58 74 0
3s_vs_5z 100 97 73 46 0 15 97 0
6h_vs_8z 30 3 0 0 0 0 4 0
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First, a linear feature transformation is applied to the
current vector ht

i , in order to generate a new vector q. Te
key and value vectors are then obtained following matrix
transformations for the input data X. Te score is then
computed, followed by the various weights of the value. Te
fnal attention information hc

i is then obtained by multi-
plying these vectors by the corresponding weights.

5. Experiments

Tis section introduces the experimental setting and assesses the
performance of MAACCN, and we describe the SMAC exper-
iment scenarios, experimental parameters settings, and baseline
algorithm before analyzing the performance of MAACCN and
the ablation experiment fndings to verify the efectiveness of the
algorithm. Additionally, the viability of the historical optimum
network as the common network is examined.

5.1. Setting. Te gaming settings of SMAC are meticulously
crafted so that agents must master one or more micro-
management skills in order to vanquish their adversaries
[40]. Each scene involves a clash between two forces, with
the initial position, number, and kind of each force varying
from scene to scene.

Each agent receives a local observation of its feld of
vision at each time step, which contains map data within the
circular area of each cell. Specifcally, the feature vector
comprises both friendly and hostile attributes inside the

range of view. In this partial observation, an agent is unable
to discern whether the remaining agents are out of sight or
dead. Following previous work [8, 9], we adopt various
hyperparameters. In particular, Table 1 in Appendix con-
tains the algorithm parameters.

5.2. Evaluation of MAACCN. Te comparison experimental
results of the MAACCN algorithm with baseline algorithms
in fve experimental scenarios of SMAC are frst shown in
this section, and these results are then further investigated.

Te game win rate is chosen as the ultimate evaluation
criterion since the goal of these experimental scenarios is to
learn how to guide the team under our direction toward
success. Every evaluate cycle time during algorithm
training, the algorithm evaluates the learned policy of an
agent. An agent runs evaluate epoch rounds of game tests in
the associated setting and provides our game victory per-
centage by tallying the number of victories. To avoid losing
generalizability, various random seeds are utilized in the
algorithm, four repeated tests are undertaken, and 95%
confdence intervals are employed. Following training,
statistics of the winning rate are used to draw the curve.

We conducted a comparative experiment in fve sce-
narios, where complicated scenarios necessitated more ef-
fective cooperative tactics. As depicted in Figure 3, we add
the MAACCN structure to the QMIX algorithm. QMIX is
currently recognized as an algorithm with excellent per-
formance, which employs a mix network to nonlinearly

VDN
MAACCN-VDN
IQL

VDN
MAACCN-VDN
IQL

VDN
MAACCN-VDN
IQL

VDN
MAACCN-VDN
IQL

VDN
MAACCN-VDN
IQL

0

20

40

60

80

100

w
in

_r
at

e (
%

)

0.00 0.500.25 0.75 1.00 2.001.501.25 1.75
T (×1000000)

0

20

40

60

80

100

w
in

_r
at

e (
%

)

0.00 0.500.25 0.75 1.00 2.001.501.25 1.75
T (×1000000)

0

20

40

60

80

100

w
in

_r
at

e (
%

)

0.00 0.500.25 0.75 1.00 2.001.501.25 1.75
T (×1000000)

0

20

40

60

80

100

w
in

_r
at

e (
%

)

0.00 0.500.25 0.75 1.00 2.001.501.25 1.75
T (×1000000)

0

20

40

60

80

100

w
in

_r
at

e (
%

)

0.00 0.500.25 0.75 1.00 2.001.501.25 1.75
T (×1000000)

2s_vs_1sc 3s5z 3s_vs_5z

5m_vs_6m 6h_vs_8z

Figure 4: Experimental results of the MAACCN-VDN algorithm on SMAC.
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combine local agent functions, and QMIX has good scal-
ability [10, 26], which adopts the paradigm of centralized
training and decentralized execution. MAACCN-QMIX is
a method for multiagent attentional communication with

the common network, while QMIX and IQL are the baseline
algorithms. In the majority of situations, our
MAACCN-QMIX algorithm provides signifcantly en-
hanced performance over the baseline method. In simple
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Figure 5: Ablation study of the communication composition.
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Figure 6: Experimental results of the CN-QMIX algorithm on SMAC.
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scenario 3s5z and hard scenario 3s_vs_5z, the
MAACCN-QMIX algorithm produces faster convergence
and superior fnal outcomes than the baseline method. In
extremely challenging scenario 6h_vs_8z, the existing
baseline algorithms achieve outcomes close to zero, while the
approach presented in this research achieves an average
victory rate of almost 25%.

Table 2 shows the fnal performance of diferent algo-
rithms during testing (the maximum median of all test
results obtained in the last 250k steps of the training pro-
cess). In the majority of scenarios, the results indicate that
agents can cooperate more efectively and attain optimal
performance by utilizing the MAACCN approach. Te di-
rect use of the global reward to update policies produces
nonstationarity, which becomes more severe as the number
of agents increases, resulting in a low win rate for IQL. Te
loose limitations in complex scenarios may reduce the ac-
curacy of its updating, which lowers the QTRAN algorithm’s
performance.

5.3. Ablation. We focus on three aspects of experimental
analysis in particular. Te frst is to remove the mixture
network from the third module of the MAACCN structure
and replace it with the VDN summation method, therefore
minimizing the efect of the mix network on the experiment.
Te second is the ablation experiment of the communication
module. One of the contrasted algorithms is the TarMAC-
VDN algorithm, which removes the common network and
preserves the multihead attention communication module,
and the other is the CommNet-VDN method, which

removes the module of the communication network and
replaces it with the communication structure of the
CommNet [11] algorithm. Te MAACCN-without-DAgger
algorithm abandons the DAGGER framework but keeps the
common network. Te fnal point to consider is the feasi-
bility of using the common network as the expert network to
guide the decisions of agents based solely on the DAgger
framework.

Figure 4 shows the results of comparing the
MAACCN-VDN algorithm and the baseline method in
three diferent scenarios. In all scenarios, the convergence
rate is demonstrably superior to alternative baseline algo-
rithms, and the performance is superior as well. In scenario
3s5z, our MAACCN-VDN algorithm achieves a high win
rate frst and is markedly superior to the baseline method of
VDN. Tis demonstrates that the MAACCN approach has
a high degree of universality, allowing it to be used with
other value-based algorithms.

Figure 5 verifes the validity of the communication mode
in our algorithm. In all three scenarios, CommNet-VDN
performs the poorest since an agent merely uses the action-
observation sets of every agent and simply merges them.
Both TarMAC-VDN and MAACCN-VDN perform better
than CommNet-VDN, indicating that the hidden layer has
richer information. Also, it demonstrates that the multihead
attention communication structure described in this study is
able to extract useful information from a complicated en-
vironment. Te performance of the TarMAC-VDN algo-
rithm can catch up with the MAACCN-VDN algorithm in
scenario 3s5z, but not in other scenarios. Compared with
TarMAC-VDN, the results of MAACCN-without-DAgger

Table 3: Experimental results of GPU memory cost for diferent algorithms.

Scenes MAACCN-VDN TarMAC-VDN CommNet-VDN VDN
2s_vs_1sc 1490M 1120M 690M 680M
5m_vs_6m 1550M 1150M 710M 680M
3s_vs_5z 2010M 1480M 750M 730M
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Figure 7: Experimental results of time cost for diferent algorithms.
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demonstrates that extracting consensus information from
the common network as communication information is
more benefcial than extracting communication information
simply from the action-observation sets or the hidden layers
of the current network, validating the efcacy of the com-
mon network module. Te results of scenario 3s_vs_5z and
scenario 6h_vs_8z show that the method of
MAACCN-VDN outperforms the existing communication
methods in terms of performance and convergence speed
within the DAgger framework.

We validate the impact of the common network within
the DAgger framework. Based on QMIX, the CN-QMIX
algorithm adds only the common network without any
additional attention mechanisms or communication struc-
tures. Compared to benchmark algorithm QMIX, a signif-
cant performance disparity may be detected. As the number
of training steps increases in Figure 6, the CN-QMIX al-
gorithm tends to converge faster and become more stable.
Tis clearly demonstrates the viability of the main hy-
pothesis that the common network can be utilized as an
expert to aid agents in making better judgements in big and
complicated situations.

Table 3 displays the GPU memory requirements of
various algorithms. After each algorithm is trained over
a period of time (epoch� 1000), the GPU memory con-
sumption is obtained by calculating the mean several times.
Te ordinate of Figure 7 represents the average amount of
time consumed per epoch by each algorithm. Te experi-
ment is conducted on scenario 2s_vs_1sc, as all algorithms
can quickly identify the optimal strategy there. In order to
minimize interference from other variables, each algorithm
runs on a single GPU. Te VDN algorithm has the smallest

memory and time overhead, whereas the TarMAC-VDN
algorithm with a communication module signifcantly in-
creases memory and time overhead. Compared to the
TarMAC-VDN algorithm, the MAACCN-VDN algorithm
requires more memory due to the addition of a common
network. Since the communication module is essential and
the time cost of adding a common network is tolerable, we
employ the MAACCN algorithm for better performance.

6. Conclusion

Tis paper proposes a consensus storage mechanism to
model the consensus information of other agents by
adding an additional common network to store the his-
torically best-performing policy networks. Te commu-
nication module is utilized to enhance the depiction of the
entire network via a multihead attention mechanism. Te
MAACCN algorithm may fully utilize the knowledge of
the common network, expanding the source of in-
formation while not limiting the information of the
current policy network. In addition, under the DAgger
framework, we regard the common network as an expert
network to guide the policy of the agent, and the feasi-
bility of this operation is verifed through ablation
experiments.

Appendix

A. Algorithm

Te procedure of MAACCN which is a value-based
algorithm.

(1) Initialize Q(; θ), QT(; θ′), and common network QC(; θc)

(2) Initialize experience replay D and variable rewardmax

(3) Initialize number of step

(4) for episode � 1, M do
(5) for t � 1, T do
(6) Choose an action at

i according to the greedy policy ϵ or new policy πθi
� αiπ∗ + (1 − αi)π

(7) Perform joint actions at � (at
1, . . . , at

n) on the environment and then get a collective reward rt

(8) Store samples (s, a, r, s′)

(9) end for
(10) Calculate the average score r aver per episode during the test.
(11) Replace variable reward max when variable r aver is greater than reward max and then update the common network QC

with θc←θ
(12) Put samples collected throughout the episode into experience replay D

(13) for t � 1, T do
(14) Batch sampling min i batch and calculate consensus information ci

t by formula (8)
(15) Obtain Q

j
i (ot

i , at
i ) of each agent, after the communication module

(16) Calculate the target value y
j

i � rj + cmaxa′Q
T(ot+1

i , a′; θ′)
(17) Calculate the loss by formula (6)
(18) end for
(19) Update the estimate network Q(; θ) with a gradient descent step
(20) Replace the target network QT(; θ′) with θ′←θ, every target upda te cycle epochs
(21) end for

ALGORITHM 1: Multiagent attentional communication with the common network.

10 Computational Intelligence and Neuroscience



B. Parameters

Parameters required for MAACCN training are shown in
Table 1. Choosing from the controller the action that cor-
responds to the maximum Q-value is the strategy of an
agent. Multiple agents utilize their own techniques to in-
teract with the environment, collect sample data from each
episode into the experience replay, and then choose batches
of data from the bufer to train agents. Te agent generates
and loads N episode s sample data into the memory pool at
each epoch. After receiving (batch, episode s da ta) data, an
agent calculates the current Q-value at each moment of each
batch, as well as the target Q-value for the next moment,
depending on the value-based mode. Te total loss is cal-
culated by frst summing the two portions of Q values for all
agents, then calculating the loss of each batch of each episode
at each instant l � (Q − (r + maxa Qtarget))2, and fnally
summing the loss of all episodes at all times. Te loss was
fnally optimized using the RMSProp optimization
approach.

Data Availability

Experiments were conducted on the StarCraft multiagent
challenge (SMAC). Open source environment can be found
in the paper “the StarCraft multiagent challenge.”
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