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Per-user pricing is possible with cloud computing, a relatively new technology. It provides remote testing and commissioning
services through the web, and it utilizes virtualization to make available computing resources. In order to host and store frm data,
cloud computing relies on data centers. Data centers are made up of networked computers, cables, power supplies, and other
components. Cloud data centers have always had to prioritise high performance over energy efciency. Te biggest obstacle is
fnding a happy medium between system performance and energy consumption, namely, lowering energy use without com-
promising system performance or service quality. Tese results were obtained using the PlanetLab dataset. In order to implement
the strategy we recommend, it is crucial to get a complete picture of how energy is being consumed in the cloud. Using proper
optimization criteria and guided by energy consumption models, this article ofers the Capsule Signifcance Level of Energy
Consumption (CSLEC) pattern, which demonstrates how to conserve more energy in cloud data centers. Capsule optimization’s
prediction phase F1-score of 96.7 percent and 97 percent data accuracy allow for more precise projections of future value.

1. Introduction

Cloud computing is an extension of grid, parallel, and
distributed computing techniques [1]. To achieve cloud
computing, it conveys an assortment of equipment ad-
ministrations, framework administrations, stage adminis-
trations, program administrations, and capacity
administrations over the Web. Clients of cloud computing
can utilize it on-demand, pay for it on-demand, and scale it
up and down easily. Data centers have grown in size as cloud
services have grown in popularity, necessitating a consid-
erable amount of energy consumption. Te authors pointed
out in [2] that data centers consume 1.5% of the yearly
control created within the assembled states, agreeing with

insights from the US Division of Energy. China’s data
centers are projected to consume about the same amount of
energy as the United States and have surpassed the Gorges’
yearly power generation. Te estimation of energy con-
sumption has become the most difcult challenge in today’s
data center, so reducing energy consumption is a pressing
issue that needs to be addressed in cloud computing re-
search. One of the most predominant ways of bringing down
vitality utilization is virtual machine solidifcation. Te
overload/underload location, virtual machine de-
termination, virtual machine arrangement [3–5], and virtual
machine relocation [6, 7] are all cases of positive virtual
machine combination. Virtual machine movement can take
a long time, squander a part of assets, and meddle with the
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working of other virtual machines on the server, resulting in
a decrease in framework execution. Virtual machine re-
location too requires the utilization of additional organized
capacity [8]. Te detailed descriptions of energy con-
sumption architecture and data fow are given below in
Figure 1.

Virtualization is an important method in data centers
because it allows customers to share resources by using
virtual machines (VMs). Each virtual machine is separated
and utilized to run customer applications, with storage
capacity, primary memory, CPU, I/O capabilities, and
network bandwidth requirements [9]. Some of the impor-
tant characteristics that promote cloud computing perfor-
mance are physical machine consolidation, fault tolerance,
and load balancing. Physical Machine (PM) consolidation
occurs through Virtual Machine (VM) migration, which
occurs when a virtual machine’s requested resources are
unavailable on the physical machine, causing the virtual
machine to be relocated. Te VM is moved to another
physical computer to meet the VM requirement [10]. Te
suggested method forecasts the power of each VM before
VM migration, and then VMs are migrated to certain PMs
based on this prediction and resource availability. Te VM
power prediction improves system availability, reduces in-
frastructure complexity, and lowers cloud providers’ oper-
ational costs, allowing customers to pay less [11]. To manage
operations faster and deliver more reliable services to clients,
it is necessary to forecast the VM’s power in advance. Power
conservation can be achieved by using various machine-
learning approaches to forecast power use. Tis machine-
learning-based technique is used in this study to forecast
virtual machine power consumption, enrich cloud com-
puting infrastructure, and improve service for IT industries.
Furthermore, the power consumption of virtual computers
is forecasted before they are assigned to physical
machines [12].

Te proposed technique is exceptionally good at fnding
acceptable computer resources in unknown networks since
it incorporates a great positive input instrument and a dis-
persed look strategy. Tis article has provided a user-ex-
perience-based procedure for fnding energy-saving virtual
machines. Te strides roulette likelihood choice component

guides and maintains a strategic distance from the calcu-
lation entering the basic information to untimely joining,
viably decreasing vitality utilization, and accomplishing an
adjustment between vitality utilization and client encounter
by altering the pheromone and heuristic calculate upgrade
strategies and characterizing the parameter administrative
calculate. Cloud information centers ofer various benefts,
including on-demand assets, elasticity, fexibility, portabil-
ity, and calamity recuperation [13]. One of the most im-
portant aspects of the cloud worldview is adaptability, which
enables an application to grow its asset requests at any time
[14]. Instead of purchasing and controlling computing re-
sources, it has become more common to rent hardware,
software, and network resources. With an Internet con-
nection, users can take advantage of the entire processing
infrastructure. It can be used in a wide variety of contexts,
including commercial management, academic research,
hospital administration, manufacturing, marketing, and
many more [15].

Te following is our contribution:

(i) Using historical data, we investigate and analyze the
energy use of the data center. Te results of this
article are utilized to create a statistical model that
links meteorological variables to energy use.

(ii) To use the statistical model to create a forecast model
that can predict the data center’s energy usage based
on the weather forecast. Te model is validated by
comparing it to real-world resource usage data ob-
tained using the capsule optimization technique.

(iii) To provide data center operators with an energy
consumption forecast technique that allows them to
optimize their power distribution and energy
consumption by providing estimations of their
resource utilization.

Te structure of the paper is laid out underneath. Section
2 has literature from past inquiries about workload esti-
mation and vitality utilization in a cloud information center.
Te proposed framework for controlling utilization based on
ML-based approaches is examined in Section 3. Section 4
depicts the proposed approach’s performance evaluation
and serves as a conclusion in Section 5.

2. Literature Review

In the context of cloud server energy consumption man-
agement, the background of research, such as CPU utili-
zation forecasting and resource usage forecasting and
management, is one of the most successful techniques for
anticipating the future.Te amount of power required to run
and cool down the devices in the cloud data center increases
day by day, increasing cloud service providers’ operational
costs. For better performance of a complex function, power
consumption prediction is utilized to estimate the nonlinear
future value. In [16], the author discussed an adaptive
threshold method, local regression, and robust local re-
gression to evaluate overloaded servers in IaaS infrastructure
based on CPU use. Te threshold is automatically changed
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Figure 1: Energy consumption architecture.
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based on previous data analysis and manipulation with
estimators such as mean absolute deviation and interquartile
range. Te author [17] focused on applying autoregressive
linear prediction to anticipate network demand. In this
strategy, the data samples utilized for training to discover the
link between attributes were smaller using cross-validation
and the black box method. Te author in [18] introduced
a tree regression (TR)-based model to compute VM power
usage. Te black box method is used to collect information
on the VM and server features. For their prediction model,
they used data as linear values. Te author discussed the
linear regression approach for forecasting cloud service
workload [19]. Tey also used the auto-scaling technique to
lower the operational costs of virtual resources by scaling
them both vertically and horizontally. Using NASA trace
and Saskatchewan trace, we devised a self-adaptive difer-
ential evolution algorithm to estimate the workload used by
the cloud data center in [18]. Te author discussed ftness
function, mutation, and crossover in this method, which
they found to be superior to other approaches such as
particle swarm optimization (PSO), genetic algorithm (GA),
and others.

In [20], the author discussed three versatile models for
high vitality utilization and infringement of service-level
understandings. When selecting virtual machines from
overburden to decrease vitality utilization, SLA infringement
was taken into consideration. At the same time, the exe-
cution of cloud information centers can be ensured. In [21],
the author discussed the models for diminishing the vitality
utilization of portable cloud information centers amid pe-
riods when virtual machines are inadequate or over-
burdened. For virtual machine determination and energetic
blending, the recommended versatile heuristic energy-aware
calculation perceives the history of CPU usage, which di-
minishes add up to vitality utilization and improves beneft
quality. Compared to the most existing research, in [22], the
author explored two extra key variables while handling the
challenges of cloud data center energy usage and SLA vi-
olations: (1) Examining the stability of the CPU con-
sumption upper limit. (2) When picking the virtual machine
of the overburden based on the CPU utilization expectation,
the execution debasement time and SLA infringement are
diminished. To decrease vitality utilization with negligible
SLA taking a toll, a heuristic method is displayed to identify
the least-squares relapse of the overburden and select the
virtual machine from the overburden with the lowest uti-
lization estimate. In [23], the author discussed an energy-
aware energetic virtual machine choice calculation proposed
in [23] for the issue of virtual machine integration to co-
ordinate virtual machines from overburdened or under-
loaded to upgrade vitality utilization and expand beneft
quality. Tere are a few pieces of literature listed below in
Table 1.

In [31], the author discussed the problems of reducing
VM power usage and cloud vendor operational costs in
a cloud setting. Tey used an ad-hoc framework for VM
consolidation, but this method ignored VM requirements
such as disc space, network bandwidth, and the time it took
a VM to execute a task. Te author has suggested [32] the

use of a radial basis function (RBF) neural network to
examine the power of VM with normalized parameters that
satisfy the correlation coefcient of VM’s power. Tis
method used a tiny amount of samples for training and
testing data, resulting in a neural network that could not
make an accurate prediction. In [33], the author used
machine learning methods to estimate VM resource
management in the cloud platform based on Azure
workload parameters such as frst-party IaaS and third-
party PaaS services. Te authors used the fast Fourier
transform to determine the type of VM workload and the
cumulative distribution function to produce the graphs for
CPU, memory, CPU core utilization per VM, and VM
lifetime. After each prediction, accumulate the results in the
Dynamically Linked Library (DLL) and determine whether
the forecast was worthwhile. In [34], the author used su-
pervised learning algorithms to analyze the workload of
VM to reduce its power consumption. Tey compiled a list
of diferent scheduling strategies for reducing carbon di-
oxide emissions from a data center. Te prediction error
was calculated using statistical metrics such as RMSE, R
squared, and accuracy, which were calculated using an
algorithm. Te recurrent neural network was used to
forecast and manage resource allocation to a cloud server.
Tey used time-delay neural network (TDNN) and re-
gression approaches to compare the outcomes of the server
workload prediction. In [35], an adaptive selector neural
network was developed for selecting the strategy for active
VM reduction, and the results were compared to those of
linear regression. Te customer’s Service Level Agreement
(SLA) with the cloud service provider was also crucial to
this strategy; however, SLAs are still not met when cus-
tomer requirements change. Te contribution of this study
is also found in the description of a load-balancing algo-
rithm inspired by energy consumption patterns that shows
how we may save more energy in cloud data centers by
using appropriate optimization rules informed by our
energy consumption models in the literature.

3. Proposed Methodology

Te points of interest of the proposed demonstration
counting preprocessing step and demonstration portrayal
are given in the following segment. Te proposed model and
data fow are given in Figure 2. Tis work has been gathered
from input requests from a user and includes data cleaning,
data balancing, transformation, aggregation, and data nor-
malisation in the data preprocessing steps of the
proposed model.

Te estimation of energy consumption uses a machine
learning data model, which has been included in a Capsule
algorithm that drops out fully connected layers. Te cross-
entropy has been calculated using the Softmax layer. Te
evaluation metrics are calculated using the proposed model
and compare the accuracy of the model with the state-of-
the-art models (ant colony and random forest). Figure 3
depicts a visual representation of the data center.

Te request of a user has to supply in two ways request
such as power path to IT and power to secondary support.

4 Computational Intelligence and Neuroscience



Tedata center consisted of an uninterruptible power supply
(UPS) and a Paragon Development System (PDS), as well as
cabling and cooling light conditions. Furthermore, the data
request was transferred to the IT load. Tere are a few
abbreviations given in Table 2.

Te data fow of the proposed capsule signifcance level
of energy consumption (CSLEC) is given in the form of a few
steps, which are described in Algorithm 1 and Figure 4.

Step 1: the operational module gets the machine’s
current working status within the cloud data middle
and then performs state control on each host
Step 2: we exchange the host’s running status and
virtual machine line state to the client encounter
module and obtain the accessible assets based on the
CPU use edge you set
Step 3: within the virtual machine planning module,
initialize the pheromone for accessible resources
Step 4: we put all of the capsules on the accessible at
random
Step 5: the capsule chooses another by calculating the
likelihood determination instrument based on the

pheromone concentration, the heuristic fgure, and the
alteration factor
Step 6: in case the CSLEC algorithm completes the look,
upgrade the neighborhood and worldwide phero-
mones; on the of chance that it does not, return to
Step 5
Step 7: the framework produces the ideal assignment
scenario when the number of initialization emphases is
met; otherwise, it returns to Step 4
Step 8: we check to see if there are any virtual machines

Te complete steps have been described in Algorithm 1.
Te fowchart of the proposed CSLEC model is shown in

Figure 4. Te data are entered into the host voltage system,
where the information is controlled and the proft matrix is

In
pu

t

Data Cleaning

Data Balancing

Data
Transformation

Data
Normalization

Data Pre-processing

Supervised Learning
Model

Energy Saving
Calculation

Achieve final 97%
data accuracy

Machine Learning
Capsule Algorithm

Dropout Layer

Fully Connected
Layer

Softmax Layer

Compare the SLEC model data
accuracy with Ant colony and

Random Forest Algorithm

Figure 2: Te proposed model.

Power to
Data Center

Power Path to IT

Power to Secondary
Support

UPS
PDS

cabling
Switches, etc.

Cooling light
generator, etc.

Data Center

Power to IT

IT Load

Figure 3: Pictorial representation of data center.

Table 2: Te abbreviation used in the proposed algorithm.

Name Abbreviation
Fev Feature value
Sl Signifcance level
Cm Capsule model

Computational Intelligence and Neuroscience 5



calculated. Te performance of the host machine is ini-
tialized, and if it meets the iterations of the system, then the
output is calculated. If it does not meet the requirements,
then the capsule model is placed and put in VM after cal-
culating the transition probability with local and global
updates.

3.1. Fitness Function Design. Te suggested technique’s main
purpose is to provide tighter cloud load balancing. Cloud
computing has a certain number of PMs, each of which has
a certain number of VMs. Te frst item in equation (1) stands
for control utilization (P), the moment term stands for
movement taken a toll (MC), and the third term is for memory

Start

Getting Status information and controlling the
host voltage

Calculating profit matrix

Initializing the host machine pheromone

Iterations meet requirements?

No

Initialize Capsule

Yes

Place Capsule randomly on available VMs

Calculating the transition probability of Capsule

Local and Global pheromone update

End
No

Whether any VM is
allocated?

Yes

Output of optimal
allocation scheme

Figure 4: Flowchart of energy saving with the CSLEC algorithm.

Input: Signifcance Level (Sl)
Output: Fev Feature Value

(1) Calculate all the values of Fev.
(2) Te Sl signifcant level is selected for staying in the model.
(3) For all Fev ft Cm.
(4) Do
(5) Remove the Fev of highest values from the F � ((Fev)) Feature set.
(6) Fit capsule model with an updated feature set.
(7) Recalculate all the feature values.
(8) While (Fev ≥ Sl)

(9) Te set of independent variables for the forecast model is ready.

ALGORITHM 1: Capsule signifcance level of energy consumption (CSLEC).
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utilizes (MU). Te outright Euclidean separate (ED) of all the
energetic PM at the same time determines the framework’s
power usage.Te load-balanced system with the reduced ED is
thought to be better.When no assignment is run in the relevant
PM, the PM is turned of. Te power efcient factor (EF) of
each active node is calculated based on equation (2).

Fitness function � Min β1(q) + β2(MC) + β3(MU)( 􏼁.

(1)

Te frst component in equation (1) stands for control
utilization (q), the moment term stands for movement
taking a toll (MC), and the third term stands for memory
utilization (MU).Te outright Euclidean separate (ED) of all
the energetic PM at the same time decides the framework’s
control utilization. Te load-balanced framework with the
diminished ED is thought to be way better. When no task is
run within the signifcant PM, the PM is turned of. Con-
dition is utilized to decide the control profciency fgure (EF)
of each dynamic hub equation (3).

EF �

���

􏽘

d

k�1

􏽶
􏽴

V − VBesti( 􏼁
2
, (2)

where i⟶ Memory resources. Vi⟶ Given resource uti-
lization. VBesti⟶Best utilization of resource i for power
efciency in each physical node.

Power efciency at time t is calculated as follows in
equation (4):

PT � 􏽘 EF. (3)

System total power efciency is represented as

P � 􏽘
T

t�0
E

t
. (4)

Another consideration for the objective function is the
cost of migration. When the number of motions increases,
the MC of the VM expands. Te best load-balancing system
should have the least amount of movement. Te MC of the
entire cloud arrangement is calculated using the conditions
provided in

MC �
1
V

􏽘

v

i�1

No of migration in VMs

Total no of VMs

􏼠 􏼡. (5)

Another aspect of the load-balancing target function is
memory use. Memory is nothing more than a jumble. Te
heap structure is honestly based on the VM’s benefts for
setting up the assignments from various customers. CPUs
and memory storage are among the resources used by the
VM. Te storage utilization of the entire cloud setup is
calculated using conditional logic equation:

MU �
1

PM × VM
􏽘

PM

i�1
􏽘

VM

j�1

1
2

CPU Utilizationij

PUij

+
Memory Utilizationij

Memoryij

􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦. (6)

In condition (1), the objective work of our investigation
is indicated. In this paper, the overobjective work is getting
to be minimized by utilizing the ACSO calculation.

3.1.1. Data Balancing. Te class imbalance problem happens
when the quantity of samples in distinct classes of a dataset is
unequally distributed. Minority classes receive fewer samples
than other target groups, whereas majority classes receive more
samples [36]. Minority classes must be properly supplemented
since they are crucial for extracting information from un-
balanced datasets. A method for boosting the sample size of
minority groups is the Synthetic Minority Oversampling
Technique (SMOTE). Using this technique, new artifcial
samples are produced next to existing samples and then
arranged in a line. After that, samples from nearby minority
groups are matched with them. Notably, the sample features in
adjacent classes are unafected, permitting SMOTE to create
tests that drop interior with the most dispersion. Te recently
made counterfeit information, which is calculated and utilized, is

Dnew � Di D
∗
l − Di( 􏼁 × δ. (7)

It is a number between 0 and 1, where Di represents the
number related to minority samples and is the closest
neighbour. Te capacity to generate new samples close to
minority class data is one of the SMOTE technique’s most
noticeable advantages over other resampling techniques.
Tis strategy is less complex and simpler than other data-
balancing methods like cost-sensitive ones.

3.2. Feature Transformation. In our suggested model, label
encoding is employed to convert nominal properties into
numeric ones that may be interpreted by neural networks.
Label embedding takes into account a number between zero
and n−1 for each sample with nominal properties [18]. Te
reason for using this strategy is that it does not alter the
data’s dimensionality.

3.2.1. Data Aggregation. It envelops methods that result in
the creation of modern highlights by combining two ormore
existing features. In comparison to the frst highlights, the
modern highlights must be able to specify the dataset’s data
more successfully and totally. Te proposed work employ-
ments information accumulation to decrease dimensional

Computational Intelligence and Neuroscience 7



whereas moreover expanding the value of highlights and
information soundness [20].

3.2.2. Normalization. Te suggested model normalises the
input data using the Max-Min normalisation method. Tis
method applies a linear change to the original data while
preserving the correlation between them [13]. Te nor-
malisation approach is employed because the relationship
between independent variables and the correlation between
data are important in the prediction stated in

X(n) �
x − Min(A)

Max(A) − Min(A)
, (8)

where Min(A) and Max(A) denote the feature’s minimal
and maximum values, respectively, and x denotes the fea-
ture’s current value.

3.3. Proposed Model. A capsule may be a collection of
neurons whose movement vector speaks to the instantiation
parameters of a specifc sort of substance, such as a protest or
a question parcel [14]. To put it another way, capsules en-
capsulate in vector form all relevant information about the
status of the feature they are detecting [18]. Since the capsule
is a vector, the length of it is a probability of detection of
a feature, which means that even if the detected object has
rotated, the length of the vector will be the same (the
probability still stays the same), but the vector direction will
change in the direction of the change. For example, let’s
assume that the current capsule has detected a face within an
input image with a probability of 0.9. When the face starts to
change location across the image, the capsule’s vector will
change direction, which means that it still detects; however,
the length will be the same. Tis is exactly the form of in-
variance, which is not the max-pool ofer in CNN.

3.3.1. Fully Connected (FC) Layer. Fully linked layers in
neural networks are ones where all of the inputs from one
layer are connected to each enactment unit of the following
layer. Most common machine learning models’ fnal few
layers are complete related layers that combine the data
retrieved by earlier levels to produce the fnal result [15]. A
“Fully Connected (FC)” layer is planned to profciently
handle vector information. Te model’s depth should be
properly calculated. We used one layer of fully linked layers
in this example, but a service provider can alter it to establish
a balance between the target model’s complexity and the
complexity of the target model (better detection accuracy).

3.3.2. Dropout Layer. To avoid overftting, the dropout layer
is used. Dropout is a neural network regularization strategy
that reduces recurrent learning between neurons. As a result,
certain neurons are disregarded at random during the
training process [18].

3.3.3. Classifcation Layer (Softmax). In the last layer,
Softmax is utilized to categorise the data. Te last

classifcation layer of a neural network uses a nonlinear
activation function called Softmax [5]. Softmax is calculated
using equation (9), and the output values are normalized so
that the sum of the values is one.

P Y � K, X � xi( 􏼁 �
e

sk

􏽐
m
j�1e

sj
, (9)

where k is the conventional exponential function applied to
each element of the input vector and is the k-dimensional
input vector. Te fraction’s denominator guarantees that all
output values are between 0 and 1. Te relevant class’s score
must be maximized in the next section.

4. Result and Discussion

Tis work has provided a comprehensive analysis of energy-
saving calculations based on the arrival, processing, and
response time of the virtual server. Tere are two diferent
factors: processor utilization and energy consumption. Te
experimental evaluation is carried out using the Clouds
toolkit. It is a common framework for simulating cloud
computing systems on local devices [37]. Cloud components
such as data centers, virtual machines, and resource pro-
visioning limits can be simulated using the CloudSim toolkit.
Also, for the experiment, choose a sample size of 100 tasks,
which were initially distributed over fve virtual
machines [38].

4.1. Evaluation Metrics. Te proposed model is evaluated
using the accuracy, precision, and recall metrics as given in
equations (10)–(12), respectively, where “TP” and “TN” refer
to correctly categorized true positive and true negative
samples [39]. Positive and negative instances that have been
erroneously categorized are also referred to as FP and FN:

Accuracy �
TP + TN

TP + FP + TN + FN
, (10)

Precision �
TP

TP + FP
, (11)

Recall �
TP

TP + FN
. (12)

Table 3 compares the proposed model’s accuracy to that
of other current models.

Te accuracy in Table 3 shows the comparison of dif-
ferent models; the proposed capsule model shows better
accuracy in comparison with other pretrained models. Tis
work compares the four diferent models, such as LR, PSO,

Table 3: Accuracy (%) comparison.

Sr. no Algorithm Accuracy (%)
1 LR 70
2 PSO 76
3 Capsule network 85
4 CNN 94
5 Proposed CSLEC model 97
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Capsule, and CNN, that achieved 70%, 76%, 85%, and 95%
data accuracy, respectively [40]. Te proposed CSLEC data
model has achieved 97% data accuracy, which is better than
anothermodel’s accuracy. Also, depending on the number of
parameters in the trainable stage, the time taken for the
training of the proposed model shows a better time in
comparison with the pretrained CNN model shown in
Table 4.

Te accuracy Table 3 shows the comparison of diferent
models; the proposed capsule model shows better accuracy
in comparison with other pretrained models. Also,
depending on the number of parameters in the trainable
stage, the time taken for the training of the proposed model
shows better time in comparison with the pretrained CNN
model shown in Table 4.Te proposed model has been using
25346 trainable parameters, and it has consumed 1577.87ms
of time. Tis work has compared the four diferent algo-
rithms: LR, PSO, Capsule network [41], and CNN. Te LR
algorithm has used 16896 trainable parameters and con-
sumed 588.31 training time. In comparison with the LR
model, the PSO model has been used with 17154 parameters
and a training time consumption of 946.52ms. Te other
training networks, Capsule and CNN, used 20960 and 33410
trainable parameters, respectively, consuming 967.14 and
1702.43 seconds. Out of this basic model, our proposed
model has been trained with a large number of data and
a 1577.87 consumption rate. Table 5 shows the diference in
energy consumption with the use of diferent servers in
Watts (W). As the level of workload increases, the per-
centage value of the Hitachi TS10 increases and reaches
a maximum of 86.2watts.

Te electric energy consumption has been considered
by Fujitsu M1, Fujitsu M3, Hitachi TS10, and Hitachi SS10
server capacities, which has been considered in the range of
0% to 100% workload, and maximum server capacity has
been estimated by Hitachi TS10 server as 41 42.9%, 44.3%,
46.6%, 49.9%, 53.9%, 58.9%, 66.2%, 74.9%, 81.9%, and
86.2%. Te maximum server capacity and accuracy in
Table 5 show the comparison of diferent server capacities;
the proposed capsule model shows better accuracy in
comparison with other pretrained models [42]. Also,

depending upon the number of parameters in the trainable
stage, the time taken for the training of the proposed model
shows a better time in comparison with the pretrained
CNNmodel shown in Table 4. Table 5 shows the diference in
energy consumption with the use of diferent servers in watts
(W). As the level of workload increases, the percentage value
of the Hitachi TS10 increases and reaches a maximum of
86.2watts.

Te server capacity of this work is shown in Figure 5.Te
Hitachi TS10 has shown maximum electric consumption.
Tis work has been estimating the electric energy con-
sumption using diferent four types of servers, such as the
“Fujitsu M1,” “Fujitsu M3,” “Hitachi TS10,” and “Hitachi
SS10.” Hitachi TS10 [30] has achieved the best energy
consumption accuracy of 86.2%.Tis work has also observed
that the Fujitsu M1, Fujitsu M3, and Hitachi TS10 do not
provide better energy consumption in terms of watts. Te
result of the capsule algorithm in the form of diferent tasks
is shown in Table 6.

Table 4: Comparison of the number of trainable parameters and training time for the proposed model and other models.

Sr. no Algorithm Trainable parameters Training time (ms)
1 LR 16896 588.31
2 PSO 17154 946.52
3 Capsule network 20960 967.14
4 CNN 33410 1702.43
5 Proposed CSLEC model 25346 1577.87

Table 5: Te electric energy consumed by the considered servers at diferent levels of workload in watts (W).

Server
capacity 0 (%) 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) 60 (%) 70 (%) 80 (%) 90 (%) 100 (%)

Fujitsu M1 14.4 19.4 22.2 24.5 27.6 30.7 35.8 41.8 47.9 58.5 61
Fujitsu M3 13.5 17.8 20.5 22.5 24.5 27.2 30.8 35.9 42 48.2 52.3
Hitachi TS10 41 42.9 44.3 46.6 49.9 53.9 58.9 66.2 74.9 81.9 86.2
Hitachi SS10 37 39.9 42.3 44.8 47.4 50.5 54.2 59.9 65.3 68 70.8
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Figure 5: Electric energy consumed by the considered servers.
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Tis work used the task, arrival time, response time,
processing time, and energy consumption estimated in the
unit of ms. Te task has been divided into fve diferent
terms, such as T0, T1, T2, T3, and T4. Te user request was
sent, and the server scheduled it based on the arrival time.
Te maximum arrival time for task T4 is 22ms, which is
better than other tasks in comparison with processing time.
But task T3 takes less processing time in comparison with
others and also utilizes the minimum processor with an
energy consumption of 54.7. Te energy consumed by the
considered servers is shown in the form of a graph in
Figure 6.

Te experiment was double-checked using a larger
number of tasks and virtual machines in this paper. Te
recorded results are also compared in order to assess the
research project [43]. Te PSO load balancer algorithm is
used to parse the simulations, and the results are then
logged.Te Firefy load balancer is then used to run the same
simulations. Te fndings are analyzed using fxed charac-
teristics such as CPU utilization, reaction time, and
throughput [44]. Te usage times of both approaches are
now calculated using the above-mentioned energy formula.

Table 6: Computed results for Capsule algorithm.

Task Arrival time Processing time Response time Processor
utilization Energy consumption

T0 0 9 9 27 29.5
T1 1 3 2 13 14.1
T2 8 5 2 42 43.5
T3 16 2 15 53 54.7
T4 22 5 16 82 84.1
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Figure 6: Energy consumed by the considered servers.
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For both the PSO and Capsule algorithms, this yields the
energy consumption parameter.Te information gathered is
analyzed and compared with the algorithms of PSO and
Capsule [45]. Te information gathered is analyzed and
compared [46].

Figure 7 compares the LR, CNN, and PSO models with
the proposed model in terms of memory utilization. Te
proposed model has efciently provided the accuracy of
memory utilization of 170000 nm. Te comparative study of
the energy consumption is shown in Figure 8.

Tis project explored a few versions before settling on a few
to graphically depict the status. Te processing usage of the
Capsule load balancer is higher than that of the PSO load
balancer [47]. Te fnal parameter for comparing the two al-
gorithms is energy consumption, which is calculated using this
utilization [48]. A Firefy load balancer’s average response time
is faster than a PSO load balancer’s. As previously stated, the
response time has a wide-ranging impact on energy use. As
a result of the faster response time, less energy is consumed [49].
Te amount of energy consumed is calculated by employing an
equation that utilizes a settled value for the greatest control that
can be devoured when the machine is completely stacked and
a foreordained value for the least control that will be devoured
when the machine is nearly still [50].

5. Conclusion

In a cloud data center, energy consumption is a major
concern. With the rise in requests and a broad selection of
cloud computing, it is presently fundamental to preserve
successful and efcient data center methodologies to meet the
approaching demands with the slightest amount of assets. In
this work, we compared the training parameters and training
time of diferent models, such as CNN, PSO, and Capsule,
with the proposed model of CSLEC. Te CSLEC model has
been used with 25346 training parameters and 1.57 training
minutes (ms). Te proposed model has achieved an accuracy
of 97%. Te proposed CSLEC algorithm’s mathematical ex-
planation has been thoroughly explained. Te experimental

outcomes are represented using a variety of measures. In
comparison to the existing method, the proposed strategy has
the briefest make span and employs the least amount of
vitality. In the future, we will actualize our strategy in real time
and place a greater emphasis on it. In addition, this work
calculated the energy consumed to assess the performance of
the Capsule Signifcance Level of Energy Consumption
(CSLEC). Comparative evaluations uncover that the proposed
strategy is more successful at optimizing the vitality utilization
parameter than theMolecule Swarm optimization calculation.
When compared to PSO, the energy consumption of CSLEC
is 10–14% lower.
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