
Research Article
A Method for Predicting Production Costs Based on Data
Fusion from Multiple Sources for Industry 4.0: Trends and
Applications of Machine Learning Methods

Masoud Soleimani ,1 Hossein Naderian ,2 Amir Hossein Afshinfar ,3 Zoha Savari ,4

Mahtab Tizhari,5 and Seyed Reza Agha Seyed Hosseini 6

1Department of Computer Engineering, University of Isfahan, Isfahan, Iran
2Amirkabir University of Technology, Tehran, Iran
3Department of Economics, Shahid Chamran University, Ahvaz, Iran
4Department of Management and Economics, Science and Research Branch, Islamic Azad University, Tehran, Iran
5Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran
6California Miramar University, School of Business, San Diego, CA, USA

Correspondence should be addressed to Hossein Naderian; h.naderian@aut.ac.ir

Received 4 July 2022; Revised 3 November 2022; Accepted 15 April 2023; Published 10 October 2023

Academic Editor: Hye-Jin Kim

Copyright © 2023 Masoud Soleimani et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Tere is a growing need for manufacturing processes that improve product quality and production rates while reducing costs.
With the advent of multisensory information fusion technology, individuals can acquire a broader range of information. Several
data fusion and machine learning methods have been discussed in this article within the context of the Industry 4.0 paradigm.
Depending on its purpose, a prognostic method can be categorized as descriptive, predictive, or prescriptive. ANN and CNN
models are applied to predicting production costs using neural networks based on multisource information fusion, and mul-
tisource information fusion theory is examined and applied to ANNs and CNNs. In this study, ANN and CNN predictions have
been compared. CNN has demonstrated more remarkable skill in predicting the six cost categories than ANN. When predicting
the true value of each cost category, CNN is superior to ANN. As a result, CNN’s forecast error for the current month’s total
income is 0.0234. Because of its improved prediction accuracy and more straightforward training technique, CNN is better suited
to incorporating information from several sources. Furthermore, both neural networks overestimate indirect costs, including
direct material costs and item consumption prices.

1. Introduction

In manufacturing, the fourth industrial revolution refers to
a general movement to adopt new communication systems
and protocols, cyber security norms, display devices that can
display multiple devices simultaneously, mobile and com-
pact communication devices with ever-increasing compu-
tation capabilities, and artifcial intelligence methods. As this
international trend has grown, the Internet has expanded to
permeate every facet of human life, including economics and
social life [1–3]. Digital technologies have also been widely

implemented within industrial manufacturing procedures
and investments due to this paradigm shift. Essentially, the
smart factories of tomorrow will be built on the convergence
of the physical and digital worlds. Despite the growing
popularity of deep learning and neural networks, there are
still obstacles to combining multiple sources of data and
information. Deep learning and neural networks remain
challenging when combining information from multiple
sources. In decision-making, Bayesian reasoning provides
a rigorous method for quantifying uncertainty [4]. Bayesian
inference quantifes uncertainty by combining multiple data
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sources and considering uncertainty related to model pa-
rameters. With multiple data sources and a Bayesian
framework, Chandra and Kapoor proposed a method for
transfer learning based on neural networks. Tey used the
Markov chain Monte Carlo method to get samples from the
posterior distribution in a multisource Bayesian transfer
learning framework. Despite the ambiguous experimental
results, the framework ofers a robust probability-based
foundation for decision-making. Pattern recognition and
artifcial intelligence communities have focused on self-
centered activity recognition due to its wide application to
human systems, such as dietary and physical activity as-
sessment and patient monitoring [5, 6]. Te authors
created a simple probability table based on a knowledge-
driven multisource fusion architecture to provide frequent
information regarding self-centered activities (ADLs) in
everyday life. Using statistics and support vector machines
based on information theory, a well-trained convolutional
neural network creates a set of text labels from regular
information and other sensor data. Te proposed method
can accurately recognize several previously challenging
sedentary activities, including 15 predefned ADL cate-
gories. Compared to previous methods, this method
provides better results when applied to data collected using
wearable devices. Tis research has not yet been widely
adopted, despite an average accuracy of 85.4% for
15 ADLs.

Several robotics-related research domains have recently
benefted from artifcial neural networks (ANNs) because of
their superior spatial feature abstraction and keyframe
prediction capabilities. An ANN is a connectionist model,
which makes them inherently wrong at making long-term
plans, thinking logically, and making multistep decisions. In
their study, Zuo et al. developed an enhanced ANN (SANN)
model of state calculator and result (SOAR) that combines
the feature detection abilities of ANN with the long-term
cognitive planning capabilities of SOAR [7]. A logical
planning module is added to the classic ANN to improve its
performance by imitating the cognitive operation of the
human brain. Te SOAR planning probability vector was
merged with the original feature array of data via a data
fusion module [7–12]. Experiments have shown that the
suggested architecture is efcient and accurate and has
excellent potential for more challenging tasks requiring
quick categorization, planning, and learning. It is possible to
recognize grasping sequences when multiple objects are
involved and perform metaobject cooperative grabbing.
However, the benefts of these applications are limited [3]. A
diagnosis based on data fusion is an exciting application of
the Industrial Internet of Tings for the efcient use of
motor monitoring data. A multimodal neural network
(DRMNN) based on dynamic routing was introduced by
Wang et al. to follow the concept of deep multimodal
learning (MDL) [8, 9]. Tey proposed a strategy for di-
mensionality reduction and invariant feature capture using
vibration and stator current signals to extract multimodal
features from multisource data. Te decision-making layer
implements a dynamic routingmethod to assign appropriate
weights to various modes based on the relative relevance of

each mode. DRMNN is practical and durable in a motor test
platform trial.

To implement robot demonstration programming,
Wang et al. suggested an implicit interaction technique
based on forearm sEMG (surface electromyography) and
inertial multisource information fusion [10]. An M-DDPG
method for modifying assembly parameters was presented
based on the demonstrator’s demonstrations and lessons
learned to improve adaptability to diverse assembly com-
ponents. To improve generalization performance and ac-
curacy of gesture identifcation, they proposed an improved
PCNN (1D-PCNN) based on one-dimensional convolution
and pooling to extract feature inertia and EMG. Previous
studies found that retailers’ prior disclosure of imprecise
information fow would reduce the supply chain’s proft-
ability and cost retailers’ money. By mentioning the pos-
sibility of manufacturers infltrating and confronting
uneconomical or economical manufacturing, Zhao and Li
expand the study on information sharing. Manufacturing
costs do not have to be addressed when retailers expropriate
manufacturers and share demand information with pro-
ducers [11]. A further incentive may be provided by pro-
ducers to retailers in order to increase the accuracy of their
demand estimations.

Te manufacturer infringes and experiences production
diseconomy, the retailer benefts from information ex-
change, and the manufacturer benefts from minimal pro-
duction combined with exceptional conditions. It has not
been examined whether retailers gain more from the fol-
lowing factors when demand becomes more variable or
when demand signals become more accurate [6]. Tere is
a tendency in the educational publishing industry to create
a great deal of stock for “on-demand manufacturing,” but
modifying the itemmight lead to obsolescence problems. He
et al. addressed two distinct but related problems [12]. A
variety of printed items are forecasted and managed using
predictive models. Demand estimates can now be more
precise, and inventory obsolescence can be reduced. Also,
educational publishing merchants beneft from contracts
that have knowledge asymmetries.

Consequently, proft margins have not been optimized
throughout the supply chain, and manufacturer profts are
also low. In order to increase the proftability of the supply
chain, the report recommends encouraging merchants to
provide accurate data.Te suggested approach was validated
based on an empirical investigation of Taiwan’s top edu-
cation publishers. As a result of the suggested printing
choice model, prediction accuracy is increased by 3.7%, and
costs are reduced by 8.3%. As a result of the contract design,
the manufacturer’s and supply chain’s proftability increases
by 0.5% and 2.7%, respectively [7]. However, the initial
capital expenditure is excessive [13]. Multisource in-
formation fusion and neural networks are discussed in this
study. Te research has contributed to the advancement of
related professions. Data analysis and methodologies can
provide us with a great deal of knowledge. However, the use
of neural networks to predict production costs has received
very little attention. Te study of this feld requires a thor-
ough implementation of these algorithms.
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We present two neural network-based information fu-
sion techniques that combine neural networks with in-
formation fusion systems. In order to combine the benefts
of multisource signals with neural networks, it is necessary
to integrate the multisource data processing mechanism
within the neural network. Using artifcial neural networks
(ANNs) and conclusion neural networks (CNNs), we
demonstrate the superiority of multisource data fusion over
single-source data fusion. For the neural network to learn, it
does not require any new data; it can assemble information
from multiple sources and conduct experiments as it learns.

2. Related Literature

By measuring the geometric characteristics of a product, the
dimension meter determines whether it meets its geometric
tolerance criteria (form, orientation, profle, runout, size,
and location). A dimensionmeasurement can be obtained by
rigorous monitoring methods, such as complex measuring,
and automated inspection methods, such as automatic
measuring machines, such as CMMs and OMPs [14–16].
Manual inspection techniques can sufer from unpredictable
error sources, including operator errors, causing signifcant
measurement errors. As a result of its efciency, versatility,
and precision, coordinate metrology has become crucial for
industrial dimension metrology [17, 18]. A meaningful
uncertainty statement requires considerable efort because
CMM measurements are sensitive to various variables, in-
cluding random and systematic infuences. Also, CMSs can
be used to compare coordinate measurements of workpieces
with measurements of calibrated master components that
have the same nominal geometry [19–22]. In order to assess
the uncertainty associated with coordinate’s observations,
a signifcant percentage of the systematic efects associated
with the CMS must be modeled. Since comparative co-
ordinate measurements are based on relative measurements,
it is not easy to establish the traceability route associated
with them.

In addition, workpieces that inherit part of their mea-
surement uncertainty from the calibration process of the
master part will do so as well. Nevertheless, this uncertainty
component is often straightforward to calculate [13, 23–25].
A nonrepeatable fxturing confguration is particularly
susceptible to process variations. Tese can include part
misalignments due to rotations of geographic coordinate
frames generated during the mastering and measurement
modes. In addition, calibrating a part using a calibrated
CMM is often necessary to produce a master component for
comparator measurement. CMMs and manual measuring
tools are often used in traditional component quality
evaluation techniques, creating production bottlenecks and
slowing down production. As process control and moni-
toring methods are being developed using Artifcial In-
telligence (AI) methods and live monitoring data, there has
been a push to minimize nonvalue-adding activities such as
dimensional inspections and make timely judgments. Ma-
chine learning process models have been used to map
process variables to product quality criteria, such as surface
roughness, as part of Business 4.0 [26].

Based on material hardness, process parameters, and
force data, an artifcial neural network (ANN) can predict
surface roughness and tool wear in dry hard turning [27]. A
single inexpensive accelerometer sensor was used to gen-
erate vibration data that could enhance surface quality
monitoring in CNC turning [28]. Plaza et al. [29] developed
least squares support vector machines (LS-SVMs) based on
cutting settings and tool geometry parameters. Huang de-
veloped a neural-fuzzy monitoring system for end-milling
operations to predict surface roughness based on process
parameters and force data. According to Huang et al. [30],
surface roughness is modeled by fuzzy logic and regression
analysis based on machining parameters. A factorial design
was used by Kovac et al. [31] to predict cutting forces and
waviness based on feed per tooth, tool diameter, and radial
and axial depth of cut during thin-wall component ma-
chining. A variable-parameter drilling approach was in-
troduced by Bolar et al. [32] for multihole components made
of difcult-to-cut materials. Te spindle speed, feed rate,
outside corner wear, thrust force, and torque were used to
predict hole surface roughness using radial basis function
(RBF) networks. Based on vibration and power data, Han
et al. [33] proposed a machine learning-based monitoring
system for milling machines and processes. Moore et al. [34]
employed Bayesian networks and ANNs to predict surface
roughness in high-speed milling based on workpiece ge-
ometry, material hardness, machining parameters, and
cutting forces. As a result of this classifcation challenge,
Bayesian networks proved to be easier to read and per-
formed better than ANNs.

Correa et al. [35] presented a multisensor DP multi-
sensor fusion decision-theoretic method that combines
force, vibration, and acoustic emission (AE) inputs to detect
anomalous process drifts in ultraprecision machining. In
contrast to standard classifcation techniques such as ANNs
and SVMs, their system can identify ultraprecision ma-
chining process drifts with greater accuracy. Beyca et al. [36]
developed an adaptive experimental strategy for de-
termining the ideal combination of parameters to maximize
the material removal rate by using a Bayesian learning
technique. Te authors of Karandikar et al. [37] proposed
using vision and sound to monitor the material removal rate
during the grinding process. A prediction model for material
removal rate monitoring was developed with the help of
a light gradient boosting machine and the best feature
subsets. Wang et al. [38] proposed an online tool condition
monitoring system based on sensor fusion and machine
learning. Even though power and sound sensors are more
informative for forecasting tool conditions than displace-
ment and AE sensor signals, they evaluated several classi-
fcation algorithms using experimental data. In a simulation
of the operation of a water heater, Nazir and Shao [39]
outlined a principle for monitoring systems based on
Bayesian networks. Under the assumption that sensors are
uncorrelated, Atoui et al. [40] developed a method of sensor
monitoring based on a linear state-space model that si-
multaneously estimates measurement noise covariance and
state variable probabilities. A quadruple water tank exper-
iment was used to evaluate the variational Bayesian inference
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procedure by estimating the joint posterior distribution
using two diferent proposal distributions.

In the ramp-up phase of an MMP, Zhao et al. [41]
developed a Bayesian monitoring approach based on a linear
state-space model to estimate control parameters and set
cause-selecting chart limits. As suggested by Tran et al., two
one-sided Shewhart-type charts are proposed to account for
situations in which the production run is fnite. Teir so-
lution to the quality control problem was based on simu-
lation data from the food industry. In order to detect minor
to moderate shifts in the process mean, Du et al. [42] de-
veloped Bayesian posterior predictive exponentially
weighted moving average control charts. As of yet, no
validation has been conducted in the manufacturing sector.
Riaz et al. [43] employed a lab-scale distillation column to
combine the fndings of numerous heterogeneous defect
detection and identifcation approaches to overcome the
limitations of individual heterogeneous defect detection and
identifcation approaches. Ghosh et al. [44] merged the
fndings of various approaches for detecting and identifying
defects in industrial processes using a fusion system. As
a step in preprocessing data, resampling was used to improve
the performance of the fusion system. To merge judgments
from several models, the Dempster–Shafer evidence theory
was applied. From categorization to fault assessment,
Bayesian and machine learning approaches have been ap-
plied to several production phases and industrial processes.

In-process form and inspection data have never been
merged for monitoring dimension product health, to the
best of our knowledge. Te most common approach to
detecting the condition of fnish-machined components,
specifcally surface metrology features, has been based on
machine learning algorithms that monitor only the ma-
chining process and do not improve predictions when new
data becomes available. An approach based on multisensor
fusion is presented in this paper to address this defciency.
Data collected from various manufacturing phases will be
used to develop an intelligent, dimensional product health
monitoring system that delivers probabilistic predictions
about the fnal product’s status. A Bayesian information
fusion technique is developed to update this forecast using
fresh measurements, such as OMP. A Bayesian updating
procedure combines machine learning knowledge with new
information collected from OMP. Tis paper evaluates the
performance of an EN24Tsteel-bearing housing component
fabricated based on a case study. Manufacturing procedures
include all stages of production, including heat treatment,
grinding, hardness testing, machining, and in-process and
postprocess inspections.

3. Methods and Materials

3.1. Data Fusion Background. Many applications of data
fusion can be found, including surveillance and re-
connaissance, environmental monitoring, and environ-
mental danger identifcation [2–5]. It has been possible to
integrate multiple sensors under heterogeneous data con-
fgurations using several approaches described in the liter-
ature. Multiple approaches to data fusion are being

developed due to the numerous sensors and the heteroge-
neous nature of the data. Several felds were involved in
developing these approaches, such as machine learning,
pattern recognition, and statistical estimation. As a result of
this extensive literature, trafc engineering has naturally
benefted. A wide range of methodologies can be applied,
depending on the application, ranging from sample arith-
metic means to more advanced DF approaches. A three-way
split might be proposed:

(i) Data mining engines use weighted combinations,
multivariate statistical analyses, and their most
modern versions to evaluate data. Using the
arithmetic mean is the simplest way to merge data.
Because estimators and classifers perform difer-
ently, this method is not applicable [7–9].

(ii) Multisensor data fusion typically relies on stochastic
approaches, including Bayesian networks and state-
space models [10], expectation-maximization
methods and Kalman flter-based data fow (DF)
[11, 12], possibility theory [13], probative reasoning,
and especially proof theory [14–16]. A Bayesian
approach may be considered an extension of this
method [15–17].

(iii) AI, genetic algorithms, and neural networks all
belong to the domain of neural networks and ar-
tifcial cognition. Tis latter method is often used
both to create classifers and estimation methods
and to create fusion architectures between classifers
and estimators [6, 8].

Although DF approaches have been used to model
complex systems for a long time, their use in transportation
systems is gaining popularity [18–20]. DF approaches might
be able to deliver the expected advantages in the case of road
trafc. Although such techniques are feasible and efective,
analyzing their feasibility, efectiveness, and utility presents
considerable challenges [21–23]. With the introduction of
ITS, DF has become an increasingly popular topic in the
trafc engineering literature. Te DF was frst discussed in
Sumner’s article in the early 1990s [24]. In ITS systems, DF
plays an essential role in enhancing efciency. Te use of DF
in engineering has been discussed in several articles
[22, 25, 13].

In order to better manage trafc on streets and highways,
data processing methods designed by the Department of
Defense can now be used [26–29, 45]. Data fusion in the
DoD is organized hierarchically into fve stages. Data from
the source is processed at Level 0 as a preliminary step. Data
can be normalized, formatted, sequenced, compressed, and
batch processed [2, 28]. Tere may even be a method for
identifying subobjects or data characteristics that will be
used in Level 1 processing. Trafcmanagement at the Level 1
level involves the collection of data from all relevant sources,
including real-time point and wide-area trafc fow sensors,
transit operators, toll data, cell phone calls, emergency call
carton reports, investigating vehicle and roving tow truck
texts, and commercial truck transmissions [13, 46]. Based on
Level 1 processing, Level 2 processing identifes the likely
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scenario behind observed data and events using additional
sources and databases. In addition to patrol reports and
databases, road layout drawings, local and national weather
reports, trafc mix predictions, and dates of construction
and special events, this information can also be compiled
using data from patrol reports and databases. Te Level 3
processing identifes trafc patterns based on the likelihood
of trafc events (e.g., trafc congestion, incidents, con-
struction, preplanned special events, fres, or police actions)
afecting trafc fows. During level 4 processing, predictions
and evaluations are continually improved, and new sources
of information are analyzed to enhance the overall data
fusion procedure.Tere are times when a sixth level is added
to address concerns regarding an individual’s ability to
comprehend and implement the conclusions reached by the
fusion process. According to trafc literature, the DF process
includes fundamental functions such as aligning input data
chronologically or geographically, combining data, and
mining data for knowledge extraction. It is also possible to
achieve this goal through the fusion of multiple sources of
information [30].

3.2. Neural Network. Te neural network is based on bi-
ological nervous systems, which utilize many parallel fea-
tures. A structure consists of an input layer, one or more
hidden layers, and an output layer. Interconnected neurons
receive related information during the preceding layers [47].
Data collected and analyzed by neural networks can rec-
ognize patterns, categorize data, and predict the future.
Compared with a group data management technique and
linear regression, Ghritlahre and Verma [48] concluded that
neural networks produced the lowest error rate. As reported
by Ghritlahre et al. [49], neural networks are superior to
group data handling methods when it comes to predicting
the thermal performance of a solar air heater. Ghritlahre and
Prasad found that the neural network model had the lowest
root mean square error compared to numerous predictive
models. According to Ghritlahre and Prasad [50, 51], radial
basis function networks provide the best energy efciency
for solar air heaters. With 14 neurons and one hidden layer,
Ghritlahre and Prasad [52] could predict the performance of
a solar air heater with a shallow error rate.

3.3. Machine Learning and Data Fusion for Industrial
Forecasting. To classify and analyze industrial prognosis
literature, a variety of criteria can be used, including the
industrial sector, the data handled by the models, and the
asset/process for which prognostic models are helpful. As
opposed to prediction as a data-driven approach designed to
attain one of three objectives, this research focuses on the
following:

(i) Using the data collected in the industrial plant,
characterize the investigated use case without
making assumptions about its origin or signifcance.
As a result, descriptive prognostic models do not
depend on any a priori assumptions that might
afect their insights, focusing instead on blind,

unbiased extraction of added value. Many docu-
mented practical applications of industrial pre-
diction rely on clustering algorithms and outlier
detection methods.

(ii) Predict when and how a failure in monitored
equipment will occur and its consequences. Pre-
dictive prognostic models will typically use his-
torical fault data from which a learning algorithm
can determine whether a particular asset’s data are
associated with a particular target variable (such as
a probability, severity, or the point in the process
chain where the fault occurs). Supervised learning is
predominant in machine learning.

(iii) As soon as a plant malfunction alert is received,
prescribe optimum actions. A prescriptive prog-
nostic model adjusts the operational parameters and
variables of the industrial process to reduce the
likelihood of a fault occurring before a predictive
model raises an alert. By optimizing rerouting assets
or allocating human resources for unscheduled
repairs, a model from this category would minimize
the impact of a confrmed fault on an industry’s
output.

(iv) Predictive prognostic models are often used to
determine this scenario’s objectives, often treated as
an optimization problem. Optimization solutions
dominate this category.

Despite the categorization, contributions to the in-
dustrial prognosis literature will not be distinguished and
categorized only as descriptive, predictive, or prescriptive.
For multiple objectives, distinct model types are often hy-
bridized to meet the needs of a particular application sit-
uation. In one of the most representative and intuitive
examples of this combination of approaches, predictive
prognosis—e.g., predicting whether a machine will have
a fault—is combined with prescriptive prognosis—adjusting
the machine confguration so that faults are less likely to
occur. Tis analytical criterion will now analyze the most
recent literature on industrial forecasting. Data-based
prognosis has been studied in several industrial areas in
recent years, including models and data fusion methods.
Figure 1 shows the industrial prognostics scenarios and
data-driven methodologies discussed in this study.

3.4. Establishment of Production Cost Prediction Model

3.4.1. Establishment and Quantifcation of Index System.
Several factors infuence manufacturing costs. In summary,
production costs are composed of direct materials, direct
labor, and manufacturing overhead. Predicting production
costs is primarily guided by factors related to space and time.
Due to the intricate impression aspects in various periods
and the human factor inherent in historical data, we do not
focus much on the time-infuencing variables. Among the
spatial elements of manufacturing costs, site circumstances
and natural disasters play a signifcant role. To assess the
impact of geographical factors on product production, the
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complexity coefcients are computed using the unconfrmed
assessment model. Based on the current fnancial system, the
policy elements are computed directly.

In type 1, cost items are evaluated not only by space
elements but also by time factors; in type 2, cost items
concentrate mainly on time factors; and in type 3, cost items
are determined by national and business fnancial policies.
As a result, it becomes essential to accurately describe
normalcy to identify deterioration patterns or trends,
following the basic structure in Figure 2. Using mathe-
matical algorithms (machine learning models) on training
data obtained from the process or asset under investigation,
one can describe behavioral patterns of interest. A variety
of problems (hypotheses) can then be solved with new,
unknown data (test data), including prediction, classif-
cation, and anomaly detection. Modern monitoring sys-
tems and intelligent devices require enormous amounts of
data and extra information, making this task particularly
challenging.

3.4.2. Cost and Quality Relationship System and Impact.
In order to meet industry growth requirements and cost
projections, manufacturing cost components will change
from being uncontrollable to controllable as time passes and
the frm expands. Figure 3 shows the current relationship
between production cost and quality in the manufacturing
industry and its impacting factors.

Tere is no guiding concept or guideline for choosing
which several layers of layer nodes to use in the ANN. In
order to obtain an adequate number of hidden layer nodes, it
is necessary to repeat the process several times. Te training
error for neural networks with hidden layer nodes is cal-
culated based on the exact training durations (3000 and 5000

times). Based on the training prediction model, Figure 4
shows the prediction result for the test sample.

4. Prediction of Production Costs Using
a Multisource Information Fusion
Machine Learning

Te learning and performance of the ANN are afected by
the number of layers of layer nodes. However, there are no
guidelines or concepts for choosing them. Repeated attempts
are needed to obtain enough hidden layer nodes. Training
a neural network with various hidden layer nodes using the
training sample set results in Figures 4 and 5. Figures 4 and 5
illustrate the training errors for the same training periods.
When there are too few or too many nodes, the error gained
from training the number of model nodes may be sub-
stantial. Figures 4 and 5 illustrate it. As the number of
training sample sets rises, both ANN and CNN neural
network models decrease their prediction errors, with CNN
performing better than ANN. An analysis of the quantitative
link between the various cost predictions and the actual
value in production is conducted with a neural network with
50– 82 nodes. Te impact of various cost categories on the
real value of various expenses is shown in Table 1 of the
production model. Tere is a need to compare the pre-
dictions of the neural network for each of the six major
categories of production costs in order to determine which
one is the best. Table 2 shows that the CNN predicts the
production cost better than the ANN. In contrast, Table 3
shows the overall outcomes of the production cost pre-
diction compared to CNN (see Figure 6).

After the MATLAB neural network analysis, perfor-
mance metrics are presented in Figures 7 and 8. Te

Diagnostic and
Prognostics Methods

Physcial-Based Application Specific

Data-Driven

Machine Learning

Bayesian-Based Models

Statistics

Knowledge Based

Experts Systems

Fuzzy Systems

Hybrid Methods

Figure 1: Industrial prognostics scenarios and data-driven methodologies.
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performance value graph trains, verifes, and evaluates input
and output data to predict tool wear.

Figures 7 and 8 show that CNN is better at predicting the
real value in each of the six cost categories than the ANN. In
this case, CNN network has a prediction error of 0.0234 for
the current month’s total income. As a result of its superior
prediction result and more efortless training procedure,

CNN is better suited for combiningmultisource information
than ANN. Furthermore, the two types of neural networks
misestimate indirect costs, such as direct material costs and
item consumption prices. ANN has a prediction error of
0.0453, and CNN has a prediction error of 0.0234 in the
direct material cost prediction. Direct material costs are the
sources of huge mistakes since they are unpredictable,

Training Data

Data Fusion and
Preparation

Machine Learning
Algorithm

Hypothesis PerformanceTest Data

Feedback

Figure 2: Te basic structure of the proposed method.

Process Part Cost

Process-Specific Parameters
for the Product

Availability

Performance

Quality

Batch Size

Set-up Time

Cycle Time

Material Price

Personnel

Labour
Costs

Number of
Personnel

Working Hours
per Shift

Country-
Specific Costs

Salary

Rental Costs
Connected to

Personnel

Benefits

Equipment

Energy Costs

Technical
Lifetime

Rent

Investment

Available
Production

Time

Tool

Tool Costs

Cost of
Additives

Maintenance

Spare Part
Costs

Labour Costs

Number of
Personnel

Workshop

Figure 3: Cost factors and parameters afecting process parts.
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including commodity prices and client purchases. Tese
contribute to direct material costs fuctuating wildly. Several
advantages of neural networks include their ability to train
and customize, their resilience and fault tolerance, and their
parallel structure and distributed storage capability that
enables the rapid realization of nonlinear input-to-output
mappings. Using a specifc learning technique and a specifc
topological structure, neural networks can rapidly absorb
samples’ knowledge via ofine learning. Once the connec-
tion weights and thresholds are saved, the trained neural
network can quickly integrate the fusion of the system’s
input data and output the fusion results. A single sensor may

5000 ITEM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ER
RO

R

5 10 15 20 25 30 350

ANN
CNN
Linear (ANN)

Figure 4: Prediction result obtained by applying the training and test prediction model (5000 items).
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0.8

1

1.2
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RO

R

10 20 30 40 50 60 700

ANN
CNN
Linear ( ANN )

Figure 5: Prediction result obtained by applying the training and test prediction model (3000 items).

Table 1: Te true value of various costs in the production model.

Item costs Actual
cost (million dollars)

Material cost 22.24
Machine price 19.45
Equipment 0.45
Energy 45.21
Living expenses 3.5
Labor cost 7

Table 2: Estimated production costs for ANN and CNN.

True value
Estimated value

ANN CNN
Cost of production 56.056 57.33 56.13
Diference predicted 0 0.52 0.3
Estimation error 0 0.0453 0.0234

Table 3: ANN and CNN predictions of total production costs.

Average accuracy Highest accuracy Time
ANN 0.8563 0.7645 967
CNN 0.9535 0.8746 775
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not be able to accurately estimate targets due to the in-
creasing complexity of modern technology.

5. Discussion

An integral part of the Industry 4.0 revolution is the concept
of intelligent services and “servitization,” which reinvent
asset maintenance. To minimize output damage, it is im-
perative to allow production line assets to fail early and
predict why, how, and when they will fail, as well as to
respond autonomously to these failures, including self-
healing capabilities. In the new aftersales industry, factory
equipment is maintained in a proactive, intelligent manner
rather than a preventive or corrective manner. Creating
a cloud-based service to deliver personalized and prognostic
services would be possible by vertically integrating data
monitored at the asset level with service processes in cloud-
based back-end systems.Tese cloud-based technologies will
reduce unscheduled equipment breakdowns and mainte-
nance costs. As part of the integrated production and
processes, the workbench components and the asset or
product will have intelligence embedded. Tus, this de-
centralization will increase the importance of addressing
emerging distributed computing paradigms, including edge
analytics and privacy-aware federated learning, with pro-
found implications for data fusion techniques and prog-
nostic modeling. For data-based technologies to be
implemented in business, highly trained and specialized
personnel are required. Due to the manufacturing industry’s
digital transformation, data scientists, engineers, architects,
database administrators, and business analysts are in greater
demand. As a result, there is a lack of professional profles
that can fully leverage all asset information and
manufacturing data in this area, a cause of difculty in
attracting and retaining bright professionals. Hopefully,
more academic degrees in industrial forecasting will become
available, and more staf training courses will be completed
to resolve this problem. Intelligent services and “servitiza-
tion,” reinventing asset maintenance, are another part of the
Industry 4.0 revolution. It is essential to allow production
line assets to fail early and predict why, how, and when, as
well as to respond autonomously to this failure, including
self-healing capabilities, to minimize output damage. In the
new aftersales industry, factory equipment is maintained in
a proactive, intelligent manner rather than a preventive or
corrective manner.

Creating a cloud-based service to deliver personalized
and prognostic services would be possible by vertically in-
tegrating data monitored at the asset level with service
processes in cloud-based back-end systems. Tese cloud-
based technologies will reduce unscheduled equipment
breakdowns and maintenance costs. As part of the in-
tegrated production and processes, the workbench com-
ponents and the asset or product will have intelligence
embedded. Tus, this decentralization will increase the
importance of addressing emerging distributed computing
paradigms, including edge analytics and privacy-aware
federated learning, with profound implications for data
fusion techniques and prognostic modeling. Data-based

technologies necessitate highly specialized and technical
personnel to implement them in business. Due to the
manufacturing industry’s digital transformation, data
scientists, engineers, architects, database administrators,
and business analysts are in greater demand. As a result,
there is a lack of professional profles that can fully leverage
all asset information and manufacturing data in this area,
causing difculty in attracting and retaining bright pro-
fessionals. Hopefully, more academic degrees in industrial
forecasting will become available and more staf training
courses will be completed to resolve this problem. Busi-
nesses must predict product costs, which, in part, afect
pricing, cost analysis, and management in terms of efcacy
and scientifc nature. Fusing data from multiple sources
will undoubtedly become essential for controlling and
processing sophisticated manufacturing equipment and
warfare systems. A method for developing and evaluating
the information fusion system and correctly evaluating its
results are essential to achieving the results of multisource
data fusion. Information fusion has just begun to develop
and be applied as a relatively new feld. Future de-
velopments in information fusion technology will follow
this course. As needed, neural network modules can also be
added to enhance tracking and prediction capabilities in
actual applications.

6. Conclusions

In this article, we have covered several methodologies for
data fusion and machine learning algorithms within the
context of the Industry 4.0 paradigm. Depending on their
primary objective, prognostic schemes can be classifed as
descriptive, predictive, or prescriptive. An assessment of the
various methodologies available within each category has
been conducted to conduct a well-informed analysis of the
research activity in this feld, focusing mainly on the chal-
lenges and industries that have implemented the reported
approaches. Te literature review identifes research trends
and directions in data-driven industry forecasting that will
capture the research community’s attention. Due to the
implementation of data-based modeling and fusion, there
are some signifcant questions and open technical chal-
lenges, not only regarding highly imbalanced data, non-
stationarity, and heterogeneity of information but also
regarding their application in real-world industrial settings.
As a result of new developments in data-driven prediction,
such as those in this study, such challenges will undoubtedly
be resolved in the coming years. Te implementation of
data-based technologies requires highly specialized and
technical personnel. In response to the digital trans-
formation of their industries, manufacturers need data
scientists, engineers, architects, database administrators, and
business analysts. Tus, there is a shortage of talent who can
fully leverage asset information and manufacturing data,
making it challenging to attract and retain bright pro-
fessionals in this area. It is hoped that more academic de-
grees will be ofered in industrial forecasting and that more
staf training courses will be conducted to resolve this
problem.
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