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Te classifcation and detection of trafc status plays a vital role in the urban smart transportation system. Te classifcation and
mastery of the trafc status at diferent time periods and sections will help the trafc management department to optimize road
management and implement rescue in real time. Travelers can follow the trafc conditions. We choose the best route to efectively
improve travel efciency and safety. However, due to factors such as weather, time of day, lighting, and sample labeling costs, the
existing classifcation methods are insufcient in real time and detection accuracy to meet application requirements. In order to
solve this problem, this article aims to efectively transfer and apply the pretrained model learned on large-scale image data sets to
small-sample road trafc data sets. By sharing common visual features, model weight parameter migration, and fne-tuning, the
road is fnally optimized. Trafc conditions classifcation is based on Trafc-Net. Experiments show that the method in this article
can not only obtain a prediction accuracy of more than 96% but also can efectively reduce the model training time and meet the
needs of practical applications.

1. Introduction

Te problem of trafc congestion has become a worldwide
problem. Tere are many factors that cause trafc conges-
tion, including the rapid increase in the number of vehicles,
insufcient rationalization of road planning, irregular
driving behavior, and trafc lights. Te resulting trafc
delays, increased fuel consumption, and trafc accidents
seriously afect people’s travel safety and hinder urban de-
velopment. Peak commuting, bad weather, and holiday
travel are usually high periods of road congestion and
secondary accidents. If we can collect enough data to ac-
curately describe and classify urban trafc conditions and
analyze the main causes of trafc congestion and secondary
accidents, especially when trafc emergencies occur, rapid
access to information is a key factor in organizing an optimal
response; therefore, monitoring the area of the efective
detection of trafc status is crucial for road trafc man-
agement. In recent years, a great deal of works have been
done on trafc classifcationmodeling, path planning, and in
the broader area of transportation, where path planning
algorithm [1] and energy-efcient information collection [2]

are an emerging key supporting technology in the feld of
intelligence transportation. Many road path planning
modeling and information collection methods [1–4] have
been developed to understand the causes of road trafc
congestion and to prevent and manage road congestion.

Our focus in this article is on the road trafc condition
classifcation prediction using transfer learning approaches.
At present, the solutions to the trafc condition classifcation
problem can be summarized into two major categories of
trafc condition classifcation methods that rely on the
traditional manual feature representation and automatic
feature extraction that rely on the deep neural network
models.

Traditional image classifcation models mainly rely on
manual feature representations, and such methods perform
behavioral classifcation recognition by interframe difer-
ence, HOG (histogram of orientation gradients), feature
back subtraction, hybrid Gaussian modeling, optical fow,
and other [5, 6] feature representations and then train SVM
(support vector machines) classifers [7, 8] based on the
feature representations. Te support vector machine
classifer approach is based on statistical learning theory
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with low prediction accuracy and limitations of data sample
dependence and strict requirement of identical distribution
for training and testing samples. Subject to the short-
comings of manual feature representation and SVM clas-
sifcation models, such methods cannot meet the
application requirements in terms of accuracy and real-
time performance.

Te deep convolution neural network (DCNN)
models, which combine automatic feature extraction and
classifcation recognition, build complex neural network
models in a data-driven manner with end-to-end learning
mechanisms, mainly consisting of RCNN (regions with
convolutional neural networks features) [9], Fast/Faster
RCNN [10, 11], R-FCN (region-based fully convolutional
networks) [12] as the two-stage approach based on region
candidate suggestions, SSD (single shot multibox detec-
tor) [13], YOLOvX (you only look once) [14–17] for re-
gression-based one-stage methods, and some other deep
learning [18–22] methods. SSD takes VGG16 [20] as the
base convolutional network architecture and adds a
multiscale convolutional map for prediction result fusion
of auxiliary network layer, combined with the default
boxes target preselection box similar to the anchor box
structure in Faster RCNN, solving the problem of diferent
sizes of input image targets. YOLOv3 uses Darknet53
network with the introduction of residual structure as the
base network, which is diferent from the single-level base
network input of SSD, and achieves multilevel input, with
higher accuracy in small target detection higher compared
to SSD; although the abovementioned methods have
achieved excellent results, they are limited by the lack of
data samples, sample labeling, and computational re-
sources. Tis type of method mainly sufers from overly
complex network models that easily lead to overftting and
high false detection rates under small-sample [23–25]
datasets.

To address the abovementioned problems, this article
proposes a sample-based augmented trafc condition clas-
sifcation model. Te contributions of this article can be
summarized as follows:

(1) Te collection includes Trafc-Net dataset provided
by OlafenwaMoses on GitHub, web images, and an
autonomously collected image dataset Trafc-Net
dataset V_HF for the created trafc condition
classifcation, which contains four trafc categories:
congested trafc, sparse trafc, accidents, and fres

(2) Based on ResNet50 (residual neural network),
VGG16 (Oxford Visual Geometry Group), and
GoogLeNet [26] pretrained networks, migration
learning is performed to fne-tune the four classif-
cations of trafc conditions, respectively

(3) Te original dataset was expanded by image ran-
dom geometric transformation preprocessing and
CutMix sample enhancement on the basis of Trafc-
Net Dataset V_HF, and the experimental results
before and after enhancement were compared and
analyzed

2. Pretraining Network Framework

Te pretraining network framework is described in the
following sections.

2.1. VGG Network Structure. In VGG, stacked small-sized
convolutional kernels are used instead of larger convolu-
tional kernels, and each convolutional layer is convolved
with a modifed linear unit (ReLU) as the activation func-
tion, using 3× 3 convolutional kernels for convolution and
2× 2 convolutional kernels for maximum pooling, so that
the number of channels can be doubled, and then, the
feature map can be continuously reduced, while at the same
time, more nonlinear transformations in the convolutional
structure of VGGNet decrease the computational efort and
increase the efciency of the CNN for image feature ex-
traction. Te VGG model in [27] has a total of six confg-
urations with diferent weight layers structure, as shown in
Figure 1.

2.2. GoogLeNet Network Structure. Feature fusion is
prominent in the GoogLeNet network. Its core lies in the
introduction of the Inception module, which has undergone
several versions of iterative development to assemble mul-
tiple convolutional pooling operations into one module,
which provides multiple kinds of convolutional kernels so
that feature extraction with diferent sensory felds can be
done and fnally stitched together. Another feature of
GoogLeNet is the introduction of an auxiliary classifer,
which allows intermediate results to be used as the output
and lets it be used with some weighting put into the fnal
classifcation prediction result so that model fusion is
achieved. It only works during training and is removed
during prediction. Te size of the original input image is
224× 224× 3 and is zero-averaged. Te network structure of
GoogLeNet Inception V1 is shown in Figure 2.

2.3. ResNet Network Structure. Te residual structure of
ResNet50 is shown in Figure 3. Te output results are as
follows:

H(X) � F(X) + X. (1)

When F(X) is 0, H(X) �X denotes the constant
mapping, which is represented as a curved line in Figure 3.

Te ResNet50 model has 50 layers and its structure is
shown in Figure 4 ResNet50 is divided into 5 stages; each
stage consists of a combination of residual structures; ex-
cluding the frst stage, the next Conv2_x, Conv3_x,
Conv4_x, and Conv5_x represent the remaining stages,
respectively.Te number of corresponding residual units are
3, 4, 6, and 3. In Figure 4, c64 means the number of channels
is 64, s1 means the step size is 1, and p0means the padding is
0. It can be seen that the ResNet50 network uses the
maximum pooling to halve the size of the feature map by
taking a step size of 2 except for the frst stage, and the other
stages use the convolution operation by taking a step size of 2
to achieve the same efect.
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3. Traffic Condition Classification Based on
Pretrained Network Model Migration

Although there are many reasons for diferent feature
distributions in diferent datasets [17], it is not difcult to
fnd that shallow networks can extract low-level features
such as edges and contours. As the layers of the network
deepen many local features will be formed, and then, they
are combined to form the whole. Due to the following
similarities, similar data, similar tasks, and similar models,
it then becomes possible to take a model trained in an old
domain and apply it to a new domain [18], and this process
is called migration learning. Due to the large and complex
structure of the deep neural networks, designing and
testing models are expensive and time-consuming, and one
of the convenient and efective ways to improve the ef-
ciency of model training (especially when the number of
samples is small) can be done by migration learning
techniques. Generally, migration learning methods using
pretrained models are divided into feature extraction and
fne-tuning, which can be chosen according to the sample

size and characteristics of a particular application area. In
this article, we choose a migration learning method based
on fne-tuning of parameters to improve the training speed
and recognition rate of pretrained models on domain-
specifc sample datasets by freezing the shallow weights and
fne-tuning the retraining for the deeper networks. Te
features learned in the convolutional layer are generalizable
to diferent samples, especially in the shallow network layer
because the shallow convolutional network layer learns
local subtle features, while the deep layer is more biased to
local or global object contour features. Te parameter fne-
tuning mechanism also efectively avoids overftting due to
the small number of samples, which leads to overly
complex model parameters.

In this article, three pretrained models are selected for
multistrategy fne-tuning experiments of weight parameters
in MATLAB2021a environment. Te parameter fne-tuning
strategies mainly include freezing the weights of shallow
layers, relearning the weights, and freezing all weights of the
fully connected layers. Algorithm 1 outlines the fowchart of
the proposed method.
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Figure 1: VGG model structure with diferent confgurations [16].
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3.1. Trafc Condition Type and Sample Construction. Te
experimental dataset Trafc-Net Dataset V_HF consists of
three main parts: (1) Trafc-Net Dataset V1 provided by
OlafenwaMoses on GitHub [28]; (2) images of the same
type on the network; (3) images collected from trafc in-
tersections. Four trafc categories are included: congested
trafc, sparse trafc, accidents, and accidental fres. Each
category has 2,000 images, of which 1,400 are used for
training and 600 for testing. In this experiment, each

category is placed under a folder named after the corre-
sponding category, and the training data are divided into
two parts: 70% of the training set and 30% of the validation
set, and the dataset images are displayed onMATLAB using
the montage () function as shown in Figure 5. Te training
set (train) is used to train the model, the validation set is
used to check whether the hyperparameter adjustment is
efective, and the performance of the model is evaluated by
the test set.
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Figure 2: GoogLeNet Inception V1 model structure.
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3.2. Data Preprocessing. Te diversity of data collection
brings image data in the dataset with diferent resolutions.
Using the constructed dataset for network training, the input
image must match the input size of the network model, and
according to the data situation and the classifcation target,
the sample data can be preprocessed and sample

enhancement operation, and the image preprocessing can
greatly improve the algorithm prediction accuracy.

3.2.1. Image Random Geometric Transformation. Tis in-
cludes image resizing, random rotation, random cropping,
random panning, color transformation, and other
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Figure 4: ResNet50 model structure.
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preprocessing operations, which result in diferent data in
each round due to the random nature of the operation. For
example, for the same image in some rounds fipped and
some rounds not fipped, so the data used for training in
each round are diferent, and the purpose of sample en-
hancement is achieved.

3.2.2. CutMix Sample Enhancement. CutMix generates a
new training sample (􏽥x, 􏽥y) by combining two training
samples (xa, ya) and (xb, yb); the new sample is used to
train the network model with the original loss function. Te
sample combination operation is defned as shown in the
following equation:

􏽥x � M☉xa +(1 − M)☉xb,

􏽥y � λya +(1 − λ)yb,
(2)

where M ∈ 0, 1{ }W×H denotes the marker mask for the image
cropping and retention region, the flled region is 1 and the
rest is 0, ☉ representing pixel-by-pixel, λ belonging to
Beta(z, z), and usually set to 1 in experiments z, i.e., λ
obeying a uniform distribution of (0, 1).

4. Experimental Results

Te experimental results are described in the following
sections.

Figure 5: Dataset display.

Input: Trafc-Net Dataset V1 for training.
Output: Classifcation results
1: Load pretrained network

pretrained network⟵ {VGG16, GoogLeNet, ResNet50}
2: Replace fnal layer to learn features specifc to Trafc-Net data set
3: FreezeWeights (layers)

for ii� 1: size (layers, 1)
props� properties (layers (ii))
for p� 1:NUMEL (props)
propName� props{p}
if∼is empty (regexp (propName, “LearnRateFactor$,” “once”))
layers (ii).(propName)� 0

end
end

end
4: Train network

miniBatch⟵ {5,6,8,10}
maxEpochs⟵ {5,10}
Optimizer⟵ {sgdm, Adam, rmsprop}
InitialLearnRate⟵ {0.001, 0.0003, 0.0001, 0.00001}
augmentedImageData⟵ {image resizing, random rotation, random cropping, random panning, color transformation,

CutMix}
5: Predict and assess network accuracy

accuracy⟵ {training, validation}
loss⟵ {training, validation}

ALGORITHM 1: Transfer learning model algorithm.
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(a)

(b)

Figure 6: Continued.
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4.1. Experimental Setup. Te hardware environment for the
experiments in this article is as follows: NVIDIA GeForce
GTX 2080TI GPU with 11G video memory and Intel(R)
Core (TM) i7-9700 CPU @ 3.00GHz 3.00GHz workstation;
software environment: MATLAB2021a; hyperparameter
settings: initial learning rate is set to 0.0001; using SGDM as
the network optimization algorithm, we replace the fully
connected layer of the pretrained network to modify the
classifcation category and freeze the remaining layer weight
parameters before retraining on the Trafc-Net Dataset V1
dataset; VGG16, GoogLeNet, and ResNet50 are the three
pretrained models in the case of MaxEpochs� 5 and Min-
iBatchSize� 10. Te validation set accuracy and training
elapsed time are shown in Table 1, and the training process is
shown in Figures 6(a)–6(c).

Comparing the training process time and validation
accuracy of each model, it is easy to fnd that ResNet50 takes
the longest time to train when the three models achieve close
accuracy.

4.2. Sample Augmentation Control Experiment Results.
Sample augmentation mainly includes the following. (1)
Te data augmentation operation comes with the deep
learning training in MATLAB, by randomly rotating,
panning, and resizing the training samples in each it-
eration of training, so that the sample data are diferent in
each round of training to achieve sample augmentation.
(2)Te number of samples is increased by collecting the
same type of image data on the network. However, the
downloaded photos cannot be converted to the same
dimension due to their diferent formats, so they are
converted to grayscale images while adding images. Te
“ColorPreprocessing” option in MatLab is used to ensure
that all enhanced images have the same number of
channels. (3) Using CutMix to select images from the
samples, local areas of the images are Cropping and are
used to superimpose local areas of the image onto other
sample images, and new training samples are generated to
enhance the dataset. As shown in Figure 7, the fnal
validation accuracy reached 96.14% using the GoogLeNet
pretrained model, which shows that the larger the dataset
is, the higher the validation accuracy is.

4.3. Experimental Results of Hyperparameter Settings. Te
experimental results of hyperparameter settings are
explained in the following sections.

4.3.1. Efect of Learning Rate Setting on Model Accuracy.
With MaxEpochs� 5, MiniBatchSize� 8, and the optimizer
as SGDM, setting the learning rate as 0.001, 0.0003, 0.0001,
and 0.00001, respectively, the accuracy of the validation set
obtained by using the GoogLeNet pretrained model is
93.70%, 94.35%, 94.77%, and 87.78%. It can be seen in
Table 2 that the model validation accuracy is strongly
infuenced by the initial learning rate when using the SGDM
optimizer.

4.3.2. Optimizer. Keeping other parameters unchanged and
changing only the model optimizer settings, Adam’s squared
gradient decrement factor is set to 0.99 and the accuracy of
the validation set using the GoogLeNet pretrained model is
89.91%, but the accuracy using SGDM is 94.35%.

4.3.3. Number of Training Rounds. Keeping the other pa-
rameters unchanged and changing only the number of
training rounds and MaxEpochs from 6 to 10, the ac-
curacy of the validation set using the GoogLeNet pre-
training model is changed from 95.53% to 96.21%,
respectively. From the results of the training process in
Figure 8, we can see that increasing the number of training
rounds does not change the model performance when the
model reaches convergence but only increases the training
time.

5. Analysis and Discussion

Te analysis and discussion are described in the following
sections.

5.1. Model Evaluation. Te trained model is tested on the
test set, and the confusion matrix is drawn as shown in
Figure 9, where the correct predictions are distributed on
the diagonal, and the rows and columns also show the
recall and accuracy rates for each class, respectively.
Recall, also known as the full rate, is shown in Figure 9,
where the denominator is the sum of the rows and the
numerator is the correct prediction for each class. Pre-
cision, also called accuracy, is shown in Figure 9, where
the denominator is the sum of the columns and the
correct prediction of each class is the numerator. Teir
numerators are the same, but the denominators are
diferent.

We calculate precision and recall of the integrative index
F1-measure, as shown in the following equation:

F1 − measure �
2

(1/Precision) +(1/Recall)
. (3)

Te value of F1-measure is distributed between (0, 1),
and the closer to 1, the better. Its value is calculated from
Figure 9 as 94.67%, which shows that the performance of the
model is good. It can also be visualized by visualizing the
intermediate network layers. Selecting the fully connected
layer, a detailed image of each classifcation with strong
activation was generated as shown in Figure 10. Te image
generated for the “fre” category contains obvious fre color
features.

5.2. Error Analysis. An example of one prediction result
error is shown in the frst panel on the left of Figure 11,
where the model incorrectly predicts congested trafc as
sparse trafc.

Te error example arises when the model has no eval-
uation criteria for the number of vehicles in sparse trafc and
predicts sparse trafc when the extracted feature is an empty
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road. Tis also refects the problem of how to solve this
problem when the model’s region of interest is not focused
on the correct category. Another reason for the error is that
the image is not captured with a clear vision, resulting in no
texture; then, the convolutional layer does not extract

features, and the congested trafc is discriminated as sparse
trafc. Te visualization error prediction of the incep-
tion_5a-5× 5 convolutional layer with the strongest acti-
vation channel is shown in Figure 12(a), and it can be seen
that the of-white pixels correspond to the original image in

Table 1: Comparison of training process time.

Pretrained models Accuracy (%) Time-consuming training
(min)

VGG16 95.23 2.44
GoogLeNet 94.77 3.37
Resnet50 94.92 6.38

Table 2: Comparison of diferent learning rates.

Accuracy (%) Learning rates
93.70 0.001
94.35 0.0003
92.13 0.0001
87.78 0.00001

Figure 7: Sample enhancement training process.

(c)

Figure 6: Training progress. (a) VGG16 pretrained model. (b) GoogLeNet pretrained model. (c) Resnet50 pretrained model.
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Figure 10: Visual full connection layer.
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Figure 8: Super parameter modifcation comparison training process.
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Act: densetraffic
Pred: sparsetraffic, 100%

Act: sparsetraffic
Pred: sparsetraffic, 100%

Act: sparsetraffic
Pred: sparsetraffic, 83.8%

Act: fire
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Figure 11: Examples of mispredictions.

(a) (b)

Figure 13: Continued.

(a) (b)

Figure 12: Visual error prediction. (a) Strongest activation region for incorrect prediction. (b) Te strongest activation area incorrectly
predicted after ReLU function activation.
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addition to the vehicle part being activated; there are distant
forests and open roads. Te image after the ReLU activation
is shown in Figure 12(b), and it can be seen that only the
vehicle part of the of-white is activated.

For better application deployment, the algorithm clas-
sifcation test results are displayed in combination with the
UI interface, as shown in Figures 13(a)–13(d).

6. Conclusion

In this article, we designed and implemented a trafc
classifcationmodel based onmigration learning on the basis
of the Trafc-Net V1 dataset and conducted a multidi-
mensional comparative analysis of various deep learning
frameworks with multiple strategies such as sample data
enhancement and fne-tuning parameters to improve the
model, and the experimental comparison results showed
that the model migration has good generalization ability,
and the classifcation recognition is applied on the dataset of
the target domain.Te accuracy rate reaches more than 95%,
which is well adapted to the classifcation recognition task in
the target domain.
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