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Current deep learning-based facial expression recognition mainly focused on the six basic human emotions and relied on large-
scale and well-annotated data. For complex emotion recognition, such a large amount of data are not easy to obtain, and a high-
quality annotation is even more difcult.Terefore, in this paper, we regard complex emotion recognition via facial expressions as
a few-shot learning problem and introduce a metric-based few-shot model named self-cure relation networks (SCRNet), which is
robust to label noises and is able to classify facial images of new classes of emotions by only few examples from each. Specifcally,
SCRNet learns a distance metric based on deep features abstracted by convolutional neural networks and predicts a query image’s
emotion category by computing relation scores between the query image and the few examples of each new class. To tackle the
label noise problem, SCRNet gives corrected labels to noise data via class prototype stored in external memory during the meta-
training phase. Experimenting on public datasets as well as on synthetic noise datasets demonstrates the efectiveness of
our method.

1. Introduction

Emotion recognition via facial expressions plays a very
important role in human-computer interaction and intel-
ligent medical treatment. Te major task of facial expression
recognition (FER) is to classify facial images into certain
predefned emotion categories. Most of the facial expression
datasets, such as CK+ [1], MMI [2], SFEW [3], and FER-2013
[4], provide facial image annotations according to the six
basic human emotions introduced by Ekman et al., including
happiness, surprise, sadness, fear, disgust, and anger [5].
However, human emotions are complicated, and subsequent
research has shown that a larger number of emotion cate-
gories exist in human facial expressions [6]. Terefore, a
simple classifcation model with basic emotion categories
cannot well refect people’s feelings in real life. However, the
annotation of complex human emotions, which is essential
for supervised machine learning, is a highly psychological

professional work. Terefore, compared with the six basic
emotions, datasets that provide more complex emotion
labels are rare. RAF-DB [7], for example, contains about
thirty thousand facial expression samples with six-class basic
emotions, whereas it only provides about four thousand
samples with 11-class complex emotions. Such a small
number of samples in these complex emotion categories
cannot meet the needs of training a convolutional neural
network (CNN) [8], which is a common algorithm for facial
expression recognition tasks these years. Focusing on this
problem, we propose to treat complex facial expression
recognition as a meta-learning task. During the meta-
training process, we utilize the basic expressions to simulate
the situation of few-shot classifcation and train the model to
obtain the ability to distinguish emotions given only a small
amount of data, so as to achieve the purpose of complex
emotion classifcation in the test phase using only a small
amount of data.
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Another problem with facial expression recognition is
the training data uncertainties. Tere are two ways of
datasets collection for FER, that is, “lab-controlled” and “in
the wild.” Widely used FER datasets such as JAFFE, CK+,
and MMI [1, 9–11] are “lab-controlled” datasets, the data of
which are collected by inducing volunteers to make corre-
sponding expressions according to the emotion prompts.
Te annotations of these datasets are trustworthy but the
facial expressions are less natural. FER datasets “in the wild,”
such as FER-2013, RAF-DB, and SFEW [4, 12], collect
natural human facial images from the internet or flms in the
frst place and then ask experts or volunteers to give these
samples emotion labels. Compared with the “lab-controlled”
scenario, FER in the wild is more practical but also more
challenging, because samples collected in the wild difer
from illumination, resolution, and background, and may
sufer from subjective annotations. Training with these data
uncertainties, especially the label noises, will do harm to the
meta-learning process. To address this issue, we propose a
self-cure relation net (SCRNet), which can suppress the label
uncertainties in the meta-learning process.

Our main contributions to this study are as follows:
We expand the facial expression recognition from the six

basic emotion categories to more complicated and com-
pound emotions. Considering the fact that annotation for
complex facial expressions is a highly professional work and
large datasets are hard to get, we propose to formalize this
task as a few-shot meta-learning problem.

Data uncertainties such as label noises will do harm to
the meta-training process; therefore, we propose a self-cure
relation net (SCRNet). Tis few-shot learning model will
detect label noises during the training process and give these
images corrected labels based on class prototypes.

2. Related Work

2.1. Facial Expression Recognition. In the broad scene, FER
includes the following technical steps: facial image pre-
processing (e.g., face detection and face alignment), feature
extraction, and feature classifcation, among which the
feature extraction is the most vital part. According to the
feature extraction strategies, current FER methods can be
grouped into two categories: predesigned feature-based
methods and learned feature-based methods. Predesigned
feature-based methods mainly focus on low-level features
such as textures and edge distributions.Te most commonly
used predesigned features are local binary patterns (LBP)
[13], histogram of oriented gradients (HoG) [14], scale-in-
variant feature transform (SIFT) [15, 16], and so on. As for
the learned features, methods based on deep supervised
learning are the most efective at present. Such algorithms
usually use a CNN as the feature extractor, such as VGG [17],
ResNet [18], and Mobilenet [19–21]. Ideally, with sufcient
high-quality labeled samples andmany iterations of training,
the CNNs can learn to extract high-level representations that
build from low-level features. Many studies have shown that,
for the basic emotion recognition, the facial expression
features learned by CNNs outperform predesigned features
and have achieved state-of-the-art performances [22, 23].

Compared with basic emotion recognitions, the studies
with complex facial expression recognitions are less con-
cerned. Li et al. [7] constructed a database RAF-DB that
contains compound expressions in the wild and proposed
DLP-CNN. To address the ambiguity and multimodality of
facial expressions in the wild, they introduce a locality-
preserving loss. Liang et al. [24, 25] proposed diferent
strategies to divide facial expressions with fne-grained
emotions and proposed classifcation algorithms accord-
ingly. Current supervised deep-learning FER methods need
large-scaled and well-labeled training datasets which can be
hard to get for complex facial expression.Te lack of samples
will hinder the deep models to generalize, resulting in
overftting.

2.2. Few-Shot Learning. Few-shot learning methods are
designed to learn how to recognize a new class of samples
with limited data. Vinyals [26] introduced a matching
network that illuminated the concept of an episode-based
strategy means detailing the task from mini-batch to mini-
batch. Te prototypical network was introduced by Snell
et al. [27] to compute the distance between a single prototype
representation and each class. In the embedding space, the
prototype of one class presents the mean of its support set.
Finding the nearest class prototype is the most necessary
condition to classify the embedded query. Sung [28] pro-
posed a relation network that learned a deep distance metric
during meta-learning and then classifed the new classes
with few samples by computing relation scores between it
and query images. Simon [29] introduced dynamic classi-
fers with a subspace method into few-shot learning. Tey
calculate a subspace of feature space for each category, then
project the feature vector of the query sample into the
subspace, and predict its category by measuring the distance
in the subspace. Zhu et al. [30] utilize a relation network to
recognize the facial expressions with insufcient samples.

2.3. Learning with Uncertainties. FER in the wild constantly
faces the problem of data uncertainties, including low-
quality or occluded images, ambiguous facial expressions,
and noisy labels. Zeng et al. [31] propose a framework to
leverage the annotation errors and bias between diferent
FER datasets. Wang et al. [32] introduce a region attention
network (RAN) that is occlusion robust for FER, and Wang
[33] designs a self-cure network (SCN) to suppress the label
uncertainties in FER datasets.

3. Methodology

3.1. Problem Defnition. Basic facial expression recognition
task is often considered as a supervised image classifcation
task. In such image classifcation tasks, training and testing
samples are all from the same group of categories, and a large
amount of well-annotated data are essential. As we can see
from Table 1, the number of samples of the six basic
emotions is relatively large. However, as shown in Table 2,
the number of complex expression samples is small. Such a
small number of samples are insufcient to train a deep
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classifcation model from scratch, and simple transfer
learning will result in overftting. Te expression categories
of basic expression and complex expression are diferent, but
they have certain similarities in feature characteristics.
Moreover, the basic expression dataset is relatively large,
which is suitable for the training process of meta-learning to
make the model acquire the ability to learn. Terefore, in-
stead of using complex expression data to train an emotion
classifcation model directly, we summarize the recognition
of complex expressions as a few-shot meta-learning prob-
lem. Figure 1 illustrates the meta-learning process of
complex facial expression recognition. Te meta-learning
process has two parts: the meta-training and the meta-
testing. During the training phase, only basic expression data
is used, and the small amount of complex expression data
only participated in the testing phase.

In the meta-training stage, we divide the training phase into
multiple episodes in order to imitate the situation of a small
number of labeled samples. Each episode is an N-way K-shot
experiment setting. We select N classes from the 7 classes of
basic emotions, and for each class, K-labeled samples are se-
lected as a priori knowledge, which is called the basic support
set, denoted as Sb � (xi, yi) 

m�K×N
i�1 , where xi denotes the

image, and yi is the corresponding label. We also selected v

samples from these same N classes, called the basic query set,
Qb � (xi, yj) 

v

j�1, where xj denotes the image, and yj is the
corresponding label. Te model M abstract image features and
classifes the query set samples into one of the N classes
according to feature similarities between the query and support
set. Te optimization goal of the model M is to minimize the
classifcation accuracy of the query set conditioned on the
support set. In this way, through enough episodes of training,
the model M can master the ability to classify human ex-
pressions given only a limited annotated support samples.

In the meta-testing stage, we give model M a small
support set Sc, containing N classes of complex expressions
that have never participated in the training stage. Te model
M trained by meta-learning will classify the test samples Qc

into one of the N classes of complex emotions.

3.2. Proposed Method

3.2.1. Meta-Learning Model Overview. Te architecture of
our meta-learning model for complex FER is a metric-based
few-shot learning network called label noise self-cure rela-
tion net (SCRNet). As is shown in Figure 2, it has threemajor
parts: (1) feature extractionmodule, (2) relationmodule, and
(3) label noise self-cure module.

For the feature extraction module, we use CNN as the
feature extractor fθ, mapping input image x into a feature
space, generation of feature maps fθ(x). As for the relation
module, we use a relation model gφ inspired by [28] to
measure the distance between query sample features and
support sample features, and the category of a query sample
is predicted based on the relation score. Te self-cure
module is designed to reduce the impact of label noise
during the meta-training process. We calculate the averaged
feature maps of each class as the class prototype, and by

comparing the similarity between the feature map of an
input image x with class prototypes P, the self-cure module
will generate a corrected label y for the input image x.

Te training of the proposed framework contains two
phases: the frst phase is to warm up and initialize the feature
extraction network with the original noisy label and the
second phase is to train the network with the self-cure
module. During the second phase, we calculate and update
class prototypes based on the network trained in the frst
stage. Tese prototypes are used to generate the corrected
label.

3.2.2. Model Initialization. We frst train the feature ex-
tractor and relation module with no label correction for
some episodes to warm up the framework and initialize the
training class prototypes. In this phase, for each class nϵN in
the support set, we frst calculate the averaged feature map:

f
n
θ xi(  � avg

yi�n

fθ xi(  . (1)

Ten, we combined fn
θ(xi)with the query sample feature

map fθ(xj) in-depth into a concatenated feature
C(fn

θ(xi), fθ(xj)). We fed C(fn
θ(xi), fθ(xj)) into the re-

lation module gφ to generate relation scores rn,j, which
indicate the similarities between the query image and class n.

Te training loss of the warm up phase is calculated and
optimized as follows:

LN− way← argmin
N

n�1


v

j�1
rn,j − yj �� n  

2
. (2)

3.2.3. Meta-Training with Label Noise Self-Cure Module.
Ideally, through enough episodes of meta-training, the model
should be able to obtain the ability to extract the emotional
features which have high interclass variations. However, be-
cause the training process of our few-shot learning algorithms
only uses a small number of samples at a time, the existence of
label noises will make it difcult for the model to fnd ap-
propriate high-level features for facial expressions and turn to
fnd some accidental diferentiation or low-level features in-
stead. In other words, the existence of training label noises may
afect the feature learning direction of the model and then afect
the convergence speed and classifcation accuracy.Terefore, in
themeta-training stage, it is necessary to take into consideration
of the label noise. After the warm up phase, training episodes
with label correction are conducted to further optimize the
model parameters.Te process of a training episode with a self-
cure module is illustrated in Algorithm 1.

Given an image x, we calculate the cosine similarity
between extracted features and prototypes and obtain the
corrected label y for each sample in Sb and Qb by

y � argmaxn cos fθ(x), pn( , n � 1, 2, . . . , N. (3)

Taking the corrected label into consideration, we cal-
culate the averaged feature map of the support set using
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Table 1: Te number of samples per class of the basic emotion categories in FER-2013 and RAF-DB.

Datasets Happiness Surprise Sadness Fear Disgust Anger Neutral
FER-2013 4406 1962 2978 2510 269 2428 3038
RAF-DB 5957 1619 2460 355 877 867 3204

Table 2: Te number of samples per class of compound emotion categories in RAF-DB.
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Figure 1: Meta-learning process for complex facial expression recognition.
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Figure 2: Architecture of meta-learning model SCRNet.
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f
n
θ(x) � (1 − α) × avg

yi�n

fθ xi(   + α × avg
yi�n

fθ xi(  .
(4)

We update and store the prototypes of each class in
memory. Te prototype of the class n ϵN is calculated and
updated as follows:

pn⟵
1

K + 1
pn + 

xj,yj( ∈Sn

fθ xi( 
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠, (5)

where Sn denotes a subset of the support set Sb containing
samples (xi, yi) that yi � n n ϵN.

And the train loss in this phase is calculated and opti-
mized as follows:

LN− way⟵ argmin
N

n�1

v

j�1
rn,j − (1 − α) yj �� n  − α yj �� n  

2
,

(6)

where α is the balance ratio of the original label and the
corrected label.

4. Experiments

4.1. Datasets. We evaluate our method proposed in this
paper using two well-known “in the wild” FER datasets:
FER-2013 and RAF-DB. Tables 1 and 2 give the number of
images per class used in our experiments. Figures 3 and 4
show some of the example images in these datasets.

4.1.1. FER-2013. TeFER-2013 was originally collected from
the Internet and brought out as a benchmark in the ICML

2013. Te training set of this dataset contains 28,709 images,
which are labeled with seven emotion categories (the six
basic emotions and neutral).

4.1.2. RAF-DB. Te real-world afective face database (RAF-
DB) consists of two parts. Te frst part contains 15339
images with the same seven labels as FER-2013, which was
referred as RAF-basic in the follow-up experiments. Te
second part of this dataset contains 3954 images annotated
with eleven compound emotion labels, which is referred as
RAF-comp.

4.2. ImplementationDetails. For feature extraction, we choose
ResNet18 as the backbone. As for the relation module, we use a
structure that has two convolution blocks followed by two full
connection layers. Te relation scores’ output by the relation
module indicates the similarities between the query image and
all the categories of support samples.

In themeta-training process, all the facial images are resized
to 224× 224 pixels, and data augmentations including fipping
and color jitter are applied. Te training episodes are set as
30000 (3000 episodes for warm up phase, and 27000 episodes
for the self-cure phase), and each episode represents a 5-way 5-
shot classifcation task. Te balance ratio α is set as 0.4. Adam
optimizer with an initial learning rate of 10− 3 is used. All ex-
periments are conducted under the environment of Ubuntu
18.04, PyTorch 1.7.1 on NVIDIA 3080 GPU.

4.3. Results and Discussion

4.3.1. Performance Evaluation. In our experiments, we want
to evaluate that with only few samples, how well can our

Input:
Sb � (xi, yi) 

m�K×N

i�1 support set with N samples from each of the N classes,
Sn denotes the subset of S containing samples (xi, yi) that the yi � n(n ∈ N).

Qb � (xi, yj) 
v

j�1: query set of samples from the same N classes as the support set.
P � pn, (n ∈ N) : prototypes of the N classes read from memory
Output:
LN− way: the loss for a training episode
Functions:
fθ: feature enbedding module
gφ(C(·, ·)): relation module
Start episode training:

(1) for(x, y) in Sb, Qb: /∗generate the corrected label∗/
(2) yi⟵ argmaxn cos (fθ(xi), pn), n � 1, 2, . . . , N

(3) yi⟵ argmaxn cos (fθ(xi), pn), n � 1, 2, . . . , N4
(4) end for
(5) for n ∈ N

(6) fn
θ(x)⟵ (1 − α) × avg

yi�n

fθ(xi)  + α × avgyi�n
fθ(xi) /∗avaraged class feature ∗/

(7) rn,j⟵gφ(C(fn
θ(x), fθ(xj)))/∗calculate relation score∗/

(8) pn⟵ 1/K + 1(pn + 
(xj,yj)∈Sn

fθ(xi))/∗update the prototypes in memory∗/
(9) end for
(10) LN− way⟵ argmin

N
n�1 

v
j�1 (rn,j − (1 − α)(yj �� n) − α(yj �� n))2

End episode training

ALGORITHM 1: Loss computation for a training episode.
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model recognize complex emotions that are never seen in
the training phase.Terefore, we use RAF-basic or FER-2013
as the base classes for training and RAF-comp as the new
classes for testing and refer to them as RAF-basic⟶RAF-
comp and FER-2013⟶RAF-comp, respectively.

In this experiment, we record the train loss every 10
episodes and test the recognition accuracy with 100 testing
episodes after every 100 training episodes and record the
averaged test results. From Figure 5, we can see that, in both
experiment settings, the train loss decreases faster with
obvious vibration after 3000 episodes when the proposed
self-cure module is introduced in the training phase. Te
rather obvious loss vibration is because we constantly update
class prototypes during the training process, resulting in the
changes of the corrected labels. We can also see that the
recognition accuracy of the model trained on RAF-basic is
higher than that trained on FER-2013. Tis is because RAF-
basic and the test dataset RAF-comp are collected and
annotated by the same research group, whereas FER-2013
and RAF-comp have a larger domain shift.

4.3.2. Robustness on Label Noises. In this part of the ex-
periment, we randomly choose 2%, 5%, 10%, 20%, and 30%
of the samples in the training set and change their labels
randomly. Ten, we train the model with and without the
proposed self-cure module to test the robustness of our
method with training uncertainties.

As shown in Figure 6, under both RAF-basic⟶RAF-
comp and FER-2013⟶RAF-comp experiments settings,
when there is no synthetic label noise, the test results with
the self-cure module are slightly higher than those that
without the self-cure module. Tis is because the original
facial expression training data cannot be ideal and inevitably
contains some label noises. When the percentage of syn-
thetic noise gets higher, the efectiveness of the proposed
self-cure module becomes more evident. Although sufering
from the synthetic noise, the recognition accuracy of our
method drops slower with the self-cure module applied.

As shown in Figure 7, the images on the frst row are with
the original labels. And the images on the second row are
with the synthetic labels we changed randomly. Tese
synthetic labels take part in the training in the warm up
phase and are corrected during the training with the label
self-cure model. Te third row shows the corrected labels

after 20000 episodes. Some of the corrected labels are not the
same as the original labels but are more reasonable, such as
the left three columns in Figure 7. On the other hand, for
hard examples with occlusions or difcult to distinguish
even for human (see the right three columns in Figure 7), the
self-cure module fails to give suitable corrections. Te ex-
istence of these corrected labels that are inconsistent with the
original labels may afect the convergence speed and ac-
curacy of the model.

4.3.3. Studies with the Hyper-Parameter α. Te balance ratio
α decides how much will the network rely on the corrected
labels. If α � 0, the model will take no consideration of the
corrected label during the training phases whereas when α �

0, the training will fully depend on the corrected labels. We
test the recognition accuracy under 20% synthetic noise with
diferent α to discover its infuence. As shown in Figure 8, we
can see that although we assume that the corrected labels are
benefcial for the emotion recognition training, the model
trained solely on the corrected label does not perform the
best.Temodel achieves the best performance when α � 0.4,
trained by the original and the corrected label jointly. Te
result proves our previous discovery that the self-cure
module has difculties with hard example corrections and
may misidentify some samples as noise. Terefore, directly
replacing all labels with corrected labels will reduce the
generalization ability of the model.

4.3.4. Comparison with Other Methods. To further evaluate
our method, we compare it with both predesigned feature-
based methods and few-shot meta-learning methods. For a
fair comparison, the other meta-learning methods also use
ResNet18 for feature embedding, and the architecture of the
relation model for relation net and our method are the same.
Te comparison experiments are also conducted under the
two scenarios discussed previously, and for all the few-shot
learning methods, we calculate the average accuracy of 600
testing episodes.Te results in Table 3 show that, without the
proposed self-cure module, our method can achieve similar
accuracy compared with the state-of-the-art meta-learning
method and outperform other handmade feature methods.
When trained with the self-cure module, our method out-
performs all the other methods.

Anger FearDisgust Happiness Sadness Surprise Neutral

FER–2013

RAF–DB

Figure 3: Examples of facial expression images from the six basic emotions.
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5. Conclusions

In this paper, we focused on the task of complex emotion
recognition via facial expressions. We propose to use a few-
shot meta-learning framework to treat complex facial
emotion recognition, which can solve the problem of lack of

annotations. We introduce a metric-based few-shot network
called self-cure relation net (SCRNet), which can suppress
the label uncertainties in the meta-learning process. Ex-
periments on public datasets show that our SCRNet is robust
to label noise and obtain state-of-the-art performance
compared with other few-shot learning methods.
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Happiness
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Figure 7: Label comparison of the original labels, synthetic labels, and correction failures.
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Table 3: Recognition accuracy compared with other methods.

Method Self-cure module RAF-basic⟶RAF-comp (%) FER-2013⟶RAF-comp (%)
LBP∗ 45.51 —
HOG∗ 51.89 —
Gabor∗ 53.54 —
Relation net 54.48 43.10
Prototypical net 55.08 43.22
SCRNet × 55.09 43.10
SCRNet ✓ 56.34 45.18
∗Experiment results produced by [7].
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Data Availability

Te datasets used during the current study are available in
the following repository: https://www.kaggle.com/c/
challenges-in-representation-learning-facial-expression-
recognition-challenge. http://www.whdeng.cn/raf/model1.
html.
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