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In actual trafc scenarios, the environment is complex and constantly changing, with many vehicles that have substantial
similarities, posing signifcant challenges to vehicle tracking research based on deep learning. To address these challenges, this
article investigates the application of the DeepSORT (simple online and realtime tracking with a deep association metric)
multitarget tracking algorithm in vehicle tracking. Due to the strong dependence of the DeepSORTalgorithm on target detection,
a YOLOv5s_DSC vehicle detection algorithm based on the YOLOv5s algorithm is proposed, which provides accurate and fast
vehicle detection data to the DeepSORTalgorithm. Compared to YOLOv5s, YOLOv5s_DSC has no more than a 1% diference in
optimal mAP0.5 (mean average precision), precision rate, and recall rate, while reducing the number of parameters by 23.5%, the
amount of computation by 32.3%, the size of the weight fle by 20%, and increasing the average processing speed of each image by
18.8%. After integrating the DeepSORTalgorithm, the processing speed of YOLOv5s_DSC+DeepSORTreaches up to 25 FPS, and
the system exhibits better robustness to occlusion.

1. Introduction

Te increasing number of vehicles has caused great dif-
culties in trafc management. Vehicle tracking is an ap-
plication of a target tracking in the feld of transportation,
which can serve to alleviate the pressure of trafc man-
agement [1–3]. At present, the mainstream target tracking
method is the discriminative tracking method, which adds
the step of target detection and makes the tracking more
accurate. Discriminant tracking methods mainly include
tracking methods based on sparse representation [4–6],
tracking methods based on correlation fltering [7–9], and
tracking methods based on deep learning. Li and Huang [10]
proposed the TOD (tracking object based on detector) al-
gorithm, which used YOLOv3 for target detection, and
tracked the target according to LBP (local binary pattern)
features and color histogram. Bertinetto et al. [11] proposed
the SiamFC (Siamese fully convolutional) algorithm, which
took the target object in the frst frame as one input of the
SiameseNet and the search area in the subsequent frames as
another input and then found out the area closest to the

target object to realize the target tracking. However, the
target loss can easily happen, while the target size changes.
Zhu et al. [12] adopted a distractor recognition model to
update the tracking template online, which could well deal
with the problems of serious occlusion and appearance
change of the target. Li et al. [13] introduced the deep
network into the Siamese Net framework and played the role
of the deep network through multilayer aggregation.

Multitarget tracking is harder than the single-target
tracking. Problems such as appearance similarity among
targets, occlusion, and the start and end of single-target
tracking tasks pose signifcant challenges in the feld of
multitarget tracking. Bewley et al. [14] proposed the SORT
(simple online and realtime tracking) algorithm, which used
the Kalman flter to predict the tracking frame information
of the tracked object in the next frame and performed data
associated with the detection frame information in the next
frame to achieve multitarget tracking. Te algorithm had
small memory footprint and high speed, but the accuracy
was very low when the target was occluded. Wojke et al. [15]
proposed the DeepSORT algorithm based on the idea of
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SORT. Te algorithm considered the motion information
and appearance information in the tracking process and
resolved the problem of target occlusion. At present,
detection-based tracking algorithms still have many prob-
lems, such as a lack of datasets, inaccurate target detection,
and insufcient realtime performance,.

Traditional target detection algorithms rely on image
features and classifers such as SVM (support vector ma-
chine) [16], Adaboost [17], Random Forest [18], artifcially
designed color features [19], gradient features [20], and
pattern features [21]. Target detection algorithms based on
deep learning have stronger adaptability to complex scenes,
including target detection methods based on candidate re-
gions and target detection methods based on regression. Te
representative algorithm based on candidate region is
R-CNN (Region-CNN) series [22–24]. Owing to the need to
process large number of candidate frames, such methods
face the problem of low efciency and do not have the ability
for realtime detection. Te regression-based target detection
method reduces the steps of generating candidate regions
and improves the speed signifcantly. It has been widely used
for developing realtime target detection systems. Te YOLO
(you only live once) algorithm [25] proposed in 2016 used
a grid to divide an image and generated a series of initial
anchor boxes in each grid of the image. By learning to fne
tune the initial box, the predicted box was generated to be
closer to the actual box. Te YOLOv2 algorithm introduced
batch normalization and used DarkNet-19 as the backbone
network, which could dynamically adjust the input and
achieve better precision for small targets [26]. On this basis,
the YOLOv3 algorithm used DarkNet-53 as the backbone
network, introduced FPN (feature pyramid network)
structure to obtain feature maps at diferent scales, and used
a logistic classifer to predict the category of targets [27]. Te
YOLOv4 algorithm added data enhancement and self-
antagonistic training methods at the input end [28]. Te
backbone network used CSPDarkNet53 and improved the
loss function of the output layer, which greatly improved the
speed and accuracy.Te YOLOv5 has the same performance
as YOLOv4. However, YOLOv5 is faster and has a detection
speed of 140 FPS on Tesla P100. Sasagawa and Nagahara [29]
used YOLO to locate and identify objects and proposed
a method for detecting objects under low illumination by
utilizing the power of transfer learning. Krišto et al. [30] used
thermal images on YOLO to improve target detection
performance in challenging conditions such as adverse
weather, night time, and dense areas. Xiao et al. [31] fused
the context information in the YOLO backbone network to
avoid the loss of low-level context features, retain lower
spatial features, and solve the problem of difcult detection
of targets under dim light. Guo et al. [32] designed an
improved SSD (single shot multibox detector) detector,
which used the method of single data deformation data
amplifcation to transform the color gamut and afne of the
original data and could detect targets that were close to each
other. To improve feature fusion for small tassel detection,
Liu et al. [33] proposed a novel algorithm referred to as
YOLOv5-tassel to detect tassels. To enrich feature in-
formation and improve the feature extraction ability, Bie

et al. [34] proposed an improved YOLOv5 algorithm based
on bidirectional feature pyramid network for multiscale
feature fusion. Wang et al. [35] proposed a novel vehicle
detection and tracking method for small target vehicles to
achieve high detection and tracking accuracy based on the
attention mechanism. In summary, research based on the
improved YOLOv5 algorithm mainly focuses on the accu-
racy of small object detection, while research on detection
speed and occlusion robustness in vehicle tracking still has
great research value. Te main contributions of this article
are as follows:

(1) To solve the problems of large number of vehicles,
fast-moving speed of vehicles, substantial similarity
of vehicle appearance, and vehicle occlusion in the
actual urban trafc scene, the DeepSORT algorithm
is used for vehicle tracking, which has better realtime
performance and tracking robustness than tradi-
tional vision-based vehicle tracking methods.

(2) To reduce the calculation amount of YOLOv5s, re-
duce its inference time, and improve the operation
speed, a YOLOv5s_DSC algorithm with faster in-
ference speed is proposed.

(3) Combining YOLOv5s_DSC with the DeepSORT
algorithm, the robustness of occlusion of the pro-
posed algorithm is verifed and the realtime per-
formance of the algorithm is tested in the cases of
vehicles being occluded by foreign objects or vehicles
being occluded by each other.

2. Algorithmic Framework

2.1. Overall Framework. Te DeepSORT algorithm adopts
a two-stage idea of detection and tracking, using the Kalman
flter and Hungary algorithm to track the target and in-
troducing a deep convolutional neural network to extract the
appearance information of the tracked target for data as-
sociation, which solves the problem that the target occlusion
is difcult to track accurately. Stable and accurate vehicle
detection result is an important guarantee for the Deep-
SORTalgorithm in the vehicle tracking task. Considering the
realtime requirements of the realistic application scenarios,
the YOLOv5 target detection algorithm is studied in this
article. To further reduce the memory and computing re-
sources occupied by the algorithm, a DSC structure with
residual is introduced into YOLOv5s, and the
YOLOv5s_DSC algorithm with a smaller model and faster
speed is proposed. YOLOv5s_DSC is used as the detector of
the DeepSORT algorithm, and its excellent detection ac-
curacy can make tracking more accurate and provide better
realtime performance.

2.2. Te DeepSORT Algorithm. Figure 1 is a framework
diagram of the DeepSORTalgorithm. First, the Kalman flter
is used to predict the tracking frame information of the
tracked target in the next frame, and all the detection frame
information is obtained by the target detection algorithm in
the subsequent frame. Ten, the Hungarian algorithm is
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used to fnd an optimal allocation for the minimum cost
between all the detection frames and the tracking prediction
frames. Te cost matrix used in this step contains not only
the Mahalanobis distance but also the cosine distance of the
appearance features constructed from the appearance fea-
tures extracted by the deep convolutional neural network.
After solving by the Hungarian algorithm, the optimal
combination of the prediction frame and the detection frame
can be obtained. Te DeepSORT algorithm uses cascade
matching, and the shorter the number of frames from the
last successful matching is, the higher the priority is in this
matching. Te tracking frame information is updated
according to the detected frame information after the
matching is successful, and the tracking frame information
of the tracked target in the next frame is continued to predict
according to the tracking information. For the samples that
fail to match, the cost matrix will be constructed again with
the IOU calculation results of the remaining tracking frame
and the prediction frame and then transferred to the
Hungarian algorithm for the solution. After the matching is
successful, the tracking frame is updated according to the
detection frame information, and the tracking frame in-
formation of the tracked target in the next frame is con-
tinuously predicted according to the tracking frame
information. Whether the match is successful or not is
determined by marking “true” and “false.” For the detection
frame that fails to match, a fag will be added–“false,” and
three subsequent rounds (age is the round and max age� 3)

of investigation will be conducted. If all three rounds of
matching are successful, the fag will be changed to “true.”
For tracking frame that fail to match, if they are marked as
“false,” the tracking task will be stopped, and if they are
marked as “true,” the lifespan will be set. Within the lifespan,
the following three rounds of investigation will also be
conducted. If all three rounds of matching are successful, the
mark will be changed to “true.”

State estimation methods mainly include state observers
and various linear and nonlinear discrete estimators based
on the Kalman flter. Liu et al. [36] proposed a novel vehicle
sideslip angle estimation algorithm with the fusion of dy-
namic model and vision for vehicle dynamic control. A
vehicle attitude angle observer based on the square-root
cubature Kalman flter (SCKF) is designed in [37] to estimate
the roll and pitch to reject the gravity components induced
by the vehicle roll and pitch. For simplicity, this article uses
the Kalman flter as state estimation. Te prediction equa-
tion of the Kalman flter is as follows:
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measurement update equation of the Kalman flter is as
follows:
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Figure 1: Block diagram of the DeepSORT algorithm.
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where yk is the measurement vector at a time k, Hk is the
measurement matrix, Rk is the covariance matrix of mea-
surement noise, Kk is the Kalman gain used to correct the
state estimation, and I is the identity matrix. Te state vector
of the DeepSORT algorithm can be described as follows:

x � [u, v, r, h, _u, _v, _r, _h]
T
, (3)

where u, v, r, and h represent the target box center co-
ordinates of x, y aspect ratio, and height, respectively. _u, _v, _r,
and _h represent the corresponding value in the next frame
predicted with Kalman fltering. Te DeepSORT algorithm
uses the cost matrix constructed by Mahalanobis distance
and cosine distance of appearance features in the frst data
association. Te Mahalanobis distance correlation metric is
calculated as follows:

d
(1)

(i, j) � dj − yi􏼐 􏼑
T
S

−1
i dj − yi􏼐 􏼑, (4)

where dj � [uj, vj, rj, hj]
T represents the jth detection state,

di � [ _ui, _vi, _ri,
_hi]

T represents the ith tracking target which
predicts the state of the current frame according to the state
of the previous frame. Si is the covariance of the detected
state with the predicted state. Te cosine distance mea-
surement formula of appearance features is as follows:

d
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T
j r

(i)
k , r

(i)
k ∈ Ri􏽮 􏽯, (5)

where rj corresponds to the feature vector of the jth de-
tection frame, r

(i)
k correspond to the feature vector of the

tracking frame, and Ri is for the last set of features k times
successfully tracked. Te DeepSORT algorithm constructs
a deep convolutional neural network to extract the ap-
pearance features of the tracking target and uses L2 stan-
dardization to project the features. Te network structure is
shown in Table 1.

Due to the nonconstant update frequency of image
frames, we use the time diference between the two frames as
the time step of the Kalman flter during the discretization
process. Tis approach allows us to dynamically adjust the
state update rate of the Kalman flter based on the actual
situation, which helps to better track the target.

3. Improved Yolov5 Vehicle Detection Method

To achieve high precision vehicle tracking tasks, the vehicle
detection algorithm is studied in this subsection. To further
improve the realtime performance of vehicle detection, the
DSC structure with residual is introduced, and the
YOLOv5s_DSC vehicle detection algorithm is proposed, which
has a lower number of parameters and calculation and faster
detection speed.

3.1.Depth SeparableConvolution. With the help of grouping
convolution, DSC uses point-by-point convolution to fuse
the feature information of diferent channels, which can

achieve the purpose of a lightweight deep learning network,
while ensuring feature extraction. It divides into the fol-
lowing two steps:

(1) Channel-by-channel convolution: the input image is
Hin ∗Win ∗Cin. Each channel consists of
a K∗K∗ 1. Te convolution kernel performs an
independent convolution operation to obtain Cin
characteristic map, whose size is Hout ∗Wout. Te
parameter number of the convolution kernel is
K∗K∗Cin. As shown in Figure 2, if 3 channels of
images are as inputs in the point-by-point convo-
lution, 3 single-channel will be obtained.

(2) Pointwise convolution: using 1∗ 1∗Cin ∗Cout,
convolution kernel performs convolution operation
output of (1) to obtain the characteristic map with
Hout ∗Wout ∗Cout. As shown in Figure 3, the
number of parameters of the characteristic map is
1∗ 1∗Cin ∗Cout.

Te number of parameters of the whole DSC is as
follows:

P � K∗K∗Cin + 1∗ 1∗Cin ∗Cout. (6)

Tis is similar to the packet convolution with a number
of packets Cin. Te diference is that the results of group
convolution are the splicing of each group result, while the
results of DSC are the weighted combination of each group
of result by point-by-point convolution, which can make full
use of the characteristic information of each channel at the
same position.

3.2. Yolov5s Improvement Strategy. TeYOLOv5s model has
283 layers in total, the number of parameters is 7,071,633,
and the amount of calculation is 16.4GFLOPS. To further
simplify the network structure, reduce the amount of cal-
culation, and reduce the reasoning time of the model, the
DSC structure is introduced to replace the C3 structure of
the backbone part in YOLOv5s. As shown in Figure 4, the
frst C3 structure in the YOLOv5s network contains fve
convolutions, and the parameters are shown in Table 2.

From Table 2, it can be calculated that the number of
parameters for Conv1 and Conv2 is 2048, the number of
parameters for Conv3 is 4,096, the number of parameters for

Table 1: DeepSORT deep convolutional neural network.

C in C out Kernel_size Stride
Conv 3 32 3 1
Conv 32 32 3 1
MaxPool 32 32 3 2
Residual 32 32 3 1
Residual 32 32 3 1
Residual 32 64 3 2
Residual 64 64 3 1
Residual 64 128 3 2
Residual 128 128 3 1

Dense 128
Batch and L2
normalization 128
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Conv4 is 1,024, and the number of parameters for Conv5 is
9,216. Terefore, the number of parameters of the frst C3
structure in the YOLOv5s network amounts to 18,432.

DSC performs two convolutions. Te frst convolution
obtains the features of each channel.Te second convolution
fuses the position information of each channel. In contrast to
the frst C3 structure in the YOLOv5s network, the input and
output channels of the DSC are also set to 64, and the size of
the channel-by-channel convolution is 3 × 3. Ten, the
number of parameters of the channel-by-channel convo-
lution is 576, and the size of the point-by-point convolution

is 1 × 1. Ten, the number of parameters of the pointwise
convolution is 4,096. Tus, the number of parameters of the
DSC structure amounts to 4,672, which is 13,760 lower than
that of the frst C3 structure in the YOLOv5s network. Te
backbone of the YOLOv5s network contains four C3
structures, which are replaced by DSC structures in turn. To
avoid network degradation caused by replacing with DSC,
a residual structure is introduced, as shown in Figure 5.

Te introduction of DSC can efectively reduce the
number of parameters and make the network model smaller.
Te comparison of the number of parameters after re-
placement is shown in Table 3. Te number of parameters of
each structure includes the parameters of convolution, de-
viation, and batch normalization in the structure. Te im-
proved network framework is presented in Table 4.

4. Experimental Results and Analysis

4.1. Dataset Preparation. Te VeRi dataset [38] is a large
vehicle rerecognition dataset, which contains vehicle images
from multiple angles and under diferent light intensities. It
is suitable for related research on vehicle rerecognition. As
shown in Figure 6, each folder contains pictures taken by the
same vehicle from diferent angles, with a total of 776 folders.
Te training set and the test set are distributed according to
the proportion of 8 :1.

UA-DETRAC [39] is a vehicle dataset, collected from the
real trafc environment of Beijing and Tianjin, labeled with
four vehicle categories of “Bus,” “Car,” “Van,” and “Others,”
including vehicle images of diferent angles and periods,
covering most of the trafc conditions. Te UA-DETRAC
dataset contains a total of 60 image folders collected from
diferent road sections and periods, and each folder corre-
sponds to an XML tag fle. We use the code to strip the tag
corresponding to each image in the XML fle and convert all
the XML tag fles obtained into TXTformat. Te training set
and the test set are distributed according to the proportion of
9 :1. Tere are 73,876 pieces of training sets and 8,209 pieces
of test sets in total. Te data structure of images and labels is
shown in Figure 7.

4.2. Training of DeepSORT Deep Convolutional Neural
Network. Te vehicle rerecognition dataset is used to train the
DeepSORT deep convolutional neural network, so that it can
correctly extract the appearance features of the vehicle for the
calculation of the cosine distance of the appearance features.
Since the task requirement is vehicle tracking, the input of the
network is set 128(h) × 64(w), according to the aspect ratio of
the vehicle image. Te network model is built under the
PyTorch framework.Te initial learning rate is set at 0.1, which
is reduced to 0.1 times every 40 epochs. Te training loss curve
is shown in Figure 8. After reaching 100 epochs, the loss tends
to be stable and the accuracy on the test set reaches 88%.

4.3. Yolov5s_DSC Network Training and Result Analysis.
TeYOLOv5s network model and YOLOv5s_DSC network
model are constructed under the PyTorch framework,
respectively. Te UA-DETRAC dataset is used for training.
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Figure 3: Pointwise convolution.
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Figure 4: Te frst C3 structure of YOLOv5s.

Table 2: Te convolution parameter of the frst C3.

C in C out Kernel_size
Conv1 64 32 1
Conv2 64 32 1
Conv3 64 64 1
Conv4 32 32 1
Conv5 32 32 3

Filters * 3 Maps * 33 channel input

Figure 2: Depthwise convolution.
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Te batch size is 128, and 50 epochs are trained. Te
training loss is shown in Figure 9. Te YOLOv5s_DSC
network decreases as fast as YOLOv5s in the regression
loss, the classifcation loss, and the target loss, where the
lowest values of the three losses of YOLOv5S are 0.01722,
0.0011741, and 0.02758, respectively. However, the lowest
values of the three losses of YOLOv5s_DSC are 0.01835,
0.0013954, and 0.02933, respectively, which indicates that
the introduction of DSC structure with residual error does
not bring too much impact on the training difculty of the
network.

Compare the performance of YOLOv5s and
YOLOv5s_DSC in mAP, precision, and recall. In Figure 10,
the curves of the two networks are almost coincident, which
indicates that the introduction of the DSC structure with
residuals brings about a decrease in the number of network
parameters but does not cause a decrease in the accuracy of
the network. Te YOLOv5s_DSC with KF (Kalman flter) is
smoother than the YOLOv5s_DSC.Te YOLOv5s with KF is
smoother than the YOLOv5s. Tis indicates that KF can
dynamically adjust its update rate, which helps to better
track the targets. In Table 5, mAP (mean average precision)
indicates better performance of the detector, except for the
optimal mAP0.5: 0.95; the diference between the optimal
mAP0.5, precision, and recall of YOLOv5s_DSC and
YOLOv5s is not more than 1%, while the number of pa-
rameters is reduced by 23.5%. Te amount of calculation is
reduced by 32.3%, and the size of the weight fle is decreased
by 20%. In the hardware environment, where the graphics
card is NVIDIA GeForce RTX 3080 and the CPU is Inter (R)
Xeon (R) CPU E5-2670 v3, the average processing speed of
each image is improved by 18.8%, which proves that the
proposed algorithm is faster while ensuring the accuracy.

Input AddConv, g=input channel Conv 1×1 BatchNormalization

Figure 5: DSC structure with residual.

Table 3: Number of parameters before and after replacement.

Network structure Parameter quantity
C3_1 18816
C3_2 156928
C3_3 625152
C3_4 1182720
DSC_1 4928
DSC_2 54144
DSC_3 206592
DSC_4 268800

Table 4: Te network structure of YOLOv5s_DSC.

C in C out Kernel_size Stride Padding
Focus 3 32
Conv 32 64 3 2 1
DSC_1 64 8
Conv 8 128 3 2 1
DSC_2 128 128
Conv 128 256 3 2 1
DSC_3 256 256
Conv 256 512 3 2 1
SPP 512 512
DSC_4 512 512
Conv 512 256 1 1 0
Upsample concat
C3 512 256
Conv 256 128 1 1 0
Upsample concat
C3 256 128
Conv 128 128 3 2 1
Upsample concat
C3 256 256
Conv 256 256 3 2 1
Concat
C3 512 512

Figure 6: VeRi data set.

Figure 7: UA-DETRAC dataset.
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4.4. Verifcation Experiment. Select a video of trafc fow
captured from the front of the intersection as the input. As
shown in Figure 11, the YOLOv5s_DSC vehicle detection
algorithm can efectively detect vehicles and correctly
classify vehicles under the window. Each detection frame
contains two information: vehicle category name and cat-
egory confdence. In the hardware environment shown in
Table 6, the detection speed of the algorithm reaches 77 FPS.
Select a video of trafc fow captured from the oblique side of
the intersection as the input, and YOLOv5s_DSC vehicle
detection algorithm can also efectively detect the vehicles
and correctly classify the vehicles under this window, as
shown in Figure 12. YOLOv5s_ DSC can accurately detect
vehicles from diferent angles. As shown in Figure 12(b),
local mutual occlusion between vehicles does not afect the
detection efect of the algorithm. Terefore, the advantages
of the YOLOv5s_ DSC algorithm for vehicle detection can
provide realtime and accurate vehicle detection information
for vehicle tracking.

To test the efect and the robustness of occlusion of the
algorithm on vehicle tracking, the YOLOv5s_DSC is as
a detector connected to YOLOv5s_DSC and DeepSORT.
As shown in Figure 13, the tracking boxes of diferent
types of vehicles have diferent colors, and each tracking
box includes a tracking ID in addition to the category and
category confdential information of the vehicle. In the
hardware environment shown in Table 6, the

YOLOv5s_DSC +DeepSORT algorithm achieves a pro-
cessing speed of 25 FPS.

Next, the robustness of the proposed algorithm is ver-
ifed in the occlusion scene. Consider the tracking perfor-
mance of two occlusion situations: (1) the target is occluded
by foreign objects and (2) the targets are occluded by each
other. First, the robustness of the proposed algorithm is
verifed when the target is occluded by external objects. Te
efect of rerecognition and retracking after the target dis-
appears is tested. A trafc video blocked by a pillar is
supported to verify the algorithm. Figure 14 shows four
consecutive images. Te dark car with tracking ID 3 reap-
pears after being blocked by a pillar and can still be tracked
by the algorithm. Tis result shows that the algorithm ex-
hibits strong robustness and accuracy in occluded scenes,
providing strong support for target tracking in practical
applications.

We also evaluate the algorithm’s performance in sce-
narios where targets are occluded by other targets. Specif-
ically, we test the algorithm’s ability to track targets that are
partially occluded by other targets. A video sequence in
which a bus partially occludes a car that is being tracked is
selected. As shown in Figure 15, the vehicle with tracking ID
4 is partially blocked by the bus with tracking ID 1. Despite
the occlusion, the tracking ID for the car remains un-
changed. It is shown that the proposed algorithm is capable
of handling partial occlusions between targets. Tese results
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Figure 8: Training loss graph of DeepSORT deep convolutional neural network.
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Figure 10: mAP, accuracy, and recall of YOLOv5s and YOLOv5s_DSC.

Table 5: Data comparison of YOLOv5s_DSC and YOLOv5s.

mAP0.5 mAP0.5 :
0.95 Accuracy Recall Parameters Calculation

(GFLOPS)

Model
size
(M)

Image
processing
speed
(s)

YOLOv5s 0.993 0.865 0.981 0.983 7071633 16.4 14.4 0.016
YOLOv5s_DSC 0.993 0.851 0.980 0.976 5622481 12.3 11.5 0.013

Table 6: Hardware environment confguration.

Confguration Model
CPU Inter (R) xeon (R) CPU E5-2670 v3
GPU NVIDIA GeForce RTX 3080
CUDA 11.0
PyTorch 1.7.1
Python 3.8
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(a) (b)

Figure 11: YOLOv5s_DSC vehicle detection at the frontal windows.

(a) (b)

Figure 12: YOLOv5s_DSC vehicle detection at the oblique side of the intersection.

Figure 13: YOLOv5s_DSC vehicle detection efect in front of an intersection.

(a) (b) (c) (d)

Figure 14: YOLOv5s_DSC+DeepSORT recognition and tracking efect.
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further demonstrate the robustness and efectiveness of the
algorithm in occluded scenes, which is crucial for the
practical application of the target tracking.

5. Conclusions

Tis article investigates the application of the DeepSORT
algorithm in vehicle tracking, using vehicle fow videos from
diferent scenarios to verify the efectiveness and robustness
of the YOLOv5s_DSC vehicle detection algorithm. Te
YOLOv5s +DeepSORT algorithm is validated by repro-
ducing trafc fow videos that block each other after the
vehicle disappears. It is showed that the algorithm has good
rerecognition and retracking ability and robustness against
partial occlusion of targets. However, the algorithm in this
article does not take into account the detection efect in
diferent weather environments such as rainy days, foggy
weather, and vehicle video blurring. In future work, the
application of model compressionmethods will be studied to
further compress network models, while maintaining
a certain accuracy and improving the speed of network
reasoning and combining algorithms such as environment
optimization to achieve more scene applications.
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