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An online policy learning algorithm is used to solve the optimal control problem of the power battery state of charge (SOC)
observer for the frst time. Te design of adaptive neural network (NN) optimal control is studied for the nonlinear power battery
system based on a second-order (RC) equivalent circuit model. First, the unknown uncertainties of the system are approximated
by NN, and a time-varying gain nonlinear state observer is designed to address the problem that the resistance capacitance voltage
and SOC of the battery cannot be measured. Ten, to realize the optimal control, a policy learning-based online algorithm is
designed, where only the critic NN is required and the actor NN widely used in most design of the optimal control methods is
removed. Finally, the efectiveness of the optimal control theory is verifed by simulation.

1. Introduction

Nowadays, electric vehicles are developing at a high speed
[1]. Te power battery provides the required high power for
vehicle start stop, acceleration and deceleration, and other
instabilities and greatly improves the service life of fuel cells
by controlling the charging and discharging power of the
power battery [1, 2]. As an important energy storage part of
fuel-cell hybrid vehicles, it has far-reaching signifcance for
the research of power cells. Te state of charge (SOC) in the
battery is one of the important parameters of the battery
management system (BMS), but SOC cannot be directly
measured by the on-board sensors. Terefore, SOC esti-
mation is a very important problem in the theory and ap-
plication. Moreover, the power battery is a highly complex
nonlinear system in its working state, which greatly increases
the difculty of estimation [3].

In order to meet the requirements of accurate, fast, and
real-time estimation of power battery SOC under diferent
conditions, scholars have carried out a lot of advanced
achievements. In [4], the authors proposed an observer-based
unilateral Lipschitz conditional nonlinear system control

method for a class of nonlinear systems with time-varying
parameter uncertainties and norm bounded disturbances. For
the state-space equation of the equivalent circuit model,
a power battery SOC estimation method based on nonlinear
observer is proposed in [5]. Te authors in [6] introduced the
second-order resistance capacitance (RC)model of the battery
pack. Under the unilateral Lipschitz condition, a nonlinear
observer based on the H∞ method is designed, but whether
the optimal performance of the observer can be guaranteed
remains to be verifed. For the problem of optimal control
design of the observers, the authors proposed an adaptive
neural network backstepping recursive optimal control
method for nonlinear strict feedback systems with state
constraints [7]. Te neural network (NN) state identifcation
is used to approximate the unknown nonlinear dynamics, and
under the actor-critic structure, the virtual and actual optimal
controllers are constructed through the backstepping re-
cursive control algorithm. Because actor-critic structure-
based adaptive laws are generated on the basis of the
square of Behrman residual error obtained by the gradient
descent method, these methods are too complex and difcult
to implement. In this regard, the authors in [8] proposed an
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optimal control method based on reinforcement learning (RL)
for a class of nonlinear strict feedback systems with unknown
dynamic functions. Tis method eliminates the persistent
excitation assumption necessary for most RL-based adaptive
optimal control. On this basis, the adaptive NN output-
feedback optimal control problem for a class of strict feed-
back nonlinear systems with unknown internal dynamics,
input saturation, and state constraints is studied in [9]. In
[10, 11], the authors proposed the novel optimal control al-
gorithm based on advanced AI techniques, which further
promotes the development of the optimal control theory.

Inspired by the abovementioned research results,
a nonlinear observer with time-varying gain is designed in
this paper. Based on the unilateral Lipschitz condition, the
nonlinear dynamic problem contained in the system output
is solved. Te internal unknown dynamic function is ap-
proximated by NN to estimate the SOC and the resistance
capacitance voltage of the dynamic battery in the power
system. Ten, based on estimated system states, we develop
a policy learning-based optimal control and the estimated
weight error is convergence to zero. Finally, the simulation
results show the efectiveness of the proposed method.

Te innovations of this paper are summarized as follows:

(1) Te optimal control method based on critic NN is
used to solve the optimal control problem of the
power battery SOC observer for the frst time.

(2) Only one critic NN is used to ensure the convergence
of the NN weights; thus, the actor NN widely used in
most design of optimal control methods [12–14] is
removed.

(3) Unlike the existing optimal control with known
state, the battery state in this paper is unknown. Tis
leads to a complex optimal control problem.

2. System Modeling

In this paper, we consider the second-order RC equivalent
circuit model as shown in Figure 1 [15], where Uoc is the
open-circuit voltage (OCV) respected to SOC, IT represents
the current, UT denotes the terminal voltage, R0 is the ohmic
resistance, R1 and R2 are the electrochemical polarization
resistance and the concentration polarization resistance,
respectively, and C1 and C2 are the capacitances. U1 and U2
show the voltage of the electrochemical capacitor C1 and
concentration polarization capacitor C2, respectively.

Ten, based on the Kirchhof voltage laws, the state
equation of Figure 1 can be given as

_U1 � −
1

R1C1
U1 +

1
C1

IT,

_U2 � −
1

R2C2
U2 +

1
C2

IT,

S _OC � −
1

Qn

IT,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Qn is the nominal capacity of the battery.
Ten, its output equation can be defned as

UT � Uoc(SOC) − R0IT − U1 − U2, (2)

where 0≤ SOC≤ 1, and Uoc(SOC) is the nonlinear mono-
tone increasing function.

Based on (1) and (2), we can obtain state space equation
as follows:

_x � Ax + Bu, x(0) � x0,

y � g(x) + Cx − R0u,
􏼨 (3)

where x � U1 U2 SOC􏼂 􏼃
T ∈ R3, y � UT ∈ R, u � IT ∈ R,

g(x) � Uoc(SOC) ∈ R, and x0 is the initial state.

A �

−
1

R1C1
0 0

0 −
1

R2C2
0

0 0 0
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∈ R3×3
, B �

1
C1

1
C2

−
1

Qn

􏼢 􏼣

T

∈ R3
,

C � − 1 − 1 0􏼂 􏼃 ∈ R1×3
.

(4)

As the power battery is a highly complex nonlinear
system in its working state, there are many unknown un-
certainties such as ambient temperature, battery self-
discharge, battery life, and cycle interval. Terefore, the
state space expression (3) can be expressed as follows:

_x � Ax + Bu + d(x), x(0) � x0,

y � g(x) + Cx − R0u,
􏼨 (5)

where d(x) represents nonlinear characteristics.

Assumption 1. In this paper, we assume that (A, B) is
stabilizable and (A, C) is detectable. Te nonlinear term
d(x) is continuous and bounded.

Control objective: for the second-order RC equivalent
model of power battery, based on an adaptive observer
a policy learning algorithm-based optimal controller is
designed to guarantee all signals of the closed-loop system
uniformly ultimately bounded (UUB).
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Figure 1: Te schematic diagram of the second-order RC model.
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According to the second-order RC model of the power
battery, we can derive its state space (3) or (5); then, we
should design the control law u for the derived state space
equation. Tus, we will use the NN observer and the policy
learning algorithm to design the control law u.

3. Optimal Control of Power Battery

3.1. Observer Design via NN. Tis section will design an
observer to estimate the battery voltage and SOC. Tus, we
assume

d(x) � W
T
1 σ(x) + ε(x), (6)

where W1 ∈ RN is the ideal NN weights, σ(x) ∈ Rn⟶ RN

is the activation function, and ε(x) ∈ R denotes the
NN error.

In this paper, the function d(x) is unknown continuous;
hence, the estimated function is

􏽢d(x) � 􏽢W
T

1 σ(x), (7)

where 􏽢W1 is the estimation of W1.
Ten, based on (5) and (7), the observer can be designed

as

_􏽢x � A􏽢x + Bu + 􏽢W
T

1 σ(􏽢x) + L
zg

zx
􏼢 􏼣

T

x�􏽢x
(y − 􏽢y),

􏽢y � C􏽢x + g(􏽢x) − R0u,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where 􏽢x is the estimation of x, L � P− 1 ∈ R3×3 is the ob-
servation matrix, P is the positive matrix, and 􏽢y is the es-
timation of y.

We defne the observation error

􏽥x � x − 􏽢x. (9)

Ten, from (5) and (8), we can obtain the observation
error dynamic equation as

_􏽥x � A − L
zg

zx
􏼠 􏼡

T

C⎡⎣ ⎤⎦􏽥x − L
zg

zx
􏼠 􏼡

T

x�􏽢x
􏽥g + W

T
1 (σ(x) − σ(􏽢x)) + 􏽥W1σ(􏽢x) + ε, (10)

where 􏽥g � g(x) − g(􏽢x) � zg/zx|x � ξ(x − 􏽢x), 􏽥W1 � 􏽢W1−

W1 is the NN weight error.

Lemma 2. For system (5), if it adopts designed observer (8),
the NN weights 􏽢W1 satisfy the adaptive law

_􏽢W1 � − σ(􏽢x)􏽥x
T
P. (11)

Tis can guarantee that errors 􏽥x and 􏽥W1 are UUB.

Proof. Consider a Lyapunov function

V1 �
1
2

􏽥x
T
P􏽥x +

1
2

tr 􏽥W
T

1
􏽥W1􏼒 􏼓. (12)

From [15], we have [zg/zx]T

x�􏽢x � [0, 0, _Uoc(S􏽢OC)] with
αmin ≤ _Uoc(S􏽢OC)≤ αmax, where αmin and αmax are the min-
imum and maximum values of the change rate of the _Uoc
function, respectively. Ten, the derivation of (12) gives

_V1 ≤
1
2

_􏽥x
T

PA + A
T
P − RMC − C

T
(RM)

T
􏽨 􏽩 − 2Q􏼕􏽥x

+ 􏽥x
T
PW

T
1 (σ(x) − σ(􏽢x)) + 􏽥x

T
P · 􏽥W1σ(􏽢x) + 􏽥x

T
Pε +

1
2

tr _􏽥W
T

1
􏽥W1 + 􏽥W

T

1
_􏽥W1􏼒 􏼓,

(13)

where M � m1, m2, m3􏼂 􏼃
T ∈ R3.

According to the unilateral Lipschitz condition [9], the
following inequalities can be obtained:

􏽥x
T
Pε≤

1
2
‖􏽥x‖

2
+
1
2
‖P‖

2
􏽘

3

i�1
ε∗2i , (14)

􏽥x
T
PW
∗T
1 (σ(x) − σ(􏽢x))≤ ‖􏽥x‖

2
+‖P‖

2
W1

����
����
2
. (15)
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Taking (14) and (15) into (13), and considering
tr(abT) � tr(bTa) � bTa, we have

_V1 ≤
1
2

􏽥x
T

PA + A
T
P − RMC − C

T
(RM)

T
− 2Q􏽨 􏽩􏽥x +‖􏽥x‖

2
+‖P‖

2
W1

����
����
2

+
1
2
‖􏽥x‖

2

+
1
2
‖P‖

2
􏽘

3

i�1
ε∗2i + tr 􏽥W

T

1 σ(􏽢x)􏽥x
T
P + 􏽥W

T

1
_􏽥W1􏼒 􏼓.

(16)

Based on [8], let PA + ATP − RMC − CT(RM)T − 2Q

� − Ψ, where Q �

0 0 0
0 0 0
0 0 α2min

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦; thus, (16) can be further

written as

_V1 ≤ − a0‖􏽥x‖
2

+
1
2
‖P‖

2 􏽥W1
����

����
2

+ D0, (17)

where a0 � λmin(ψ) − 3/2 and D0 � ‖P‖2‖W1‖
2+ 1/2‖P‖2

􏽐
3
i�1ε

2
i .

If 􏽢d(x)⟶ d(x), then the term 1/2‖P‖2‖ 􏽥W1‖
2 + D0 in

(17) can converge to zero. Moreover, by selecting the ap-
propriate matrix ψ, λmin(ψ) can be relatively large.
According to (17), the observation error can converge to
a small neighborhood containing the origin. □

3.2. Optimal Control Design Based on the Observer

3.2.1. Online Policy Learning Algorithm. In this section,
based on critic NN, we construct the policy learning law.
Tus, system (8) can be rewritten as

_􏽢x � F(􏽢x) + Bu, (18)

where F(x) � Ax + 􏽢W
T

1 σ(x) + L[zg/zx]T

x�􏽢x(y − 􏽢y), and L is
the Lyapunov function.

To realize the optimal control, we frst defne the cost
function as\

V(􏽢x, u) � 􏽚
∞

0
r(􏽢x, u)ds. (19)

With r(􏽢x, u) � 􏽢xTQs􏽢x + uTRsu being the utility func-
tion, Qs ∈ R3×3 and Rs ∈ R are the weight matrices of proper
dimension.

We defne the Hamiltonian function of the optimal
control problem and the optimal cost function as

H(􏽢x, u,∇V(􏽢x)) � r(􏽢x, u) +(∇V(􏽢x))
T
(F(􏽢x) + Bu). (20)

V
∗
(􏽢x) � min

u
􏽚
∞

0
r(􏽢x, u)ds. (21)

Te optimal cost function V∗(􏽢x) is the solution of the
following HJB equation:

0 � min
u

H 􏽢x, u,∇V∗(􏽢x)( 􏼁. (22)

With ∇V∗(x) � zV∗(x)/zx, we can obtain this optimal
control action as

u
∗

� −
1
2
R

− 1
s B

T∇V∗(􏽢x), (23)

and the HIB equation in terms of ∇V∗(x) as

0 � 􏽢x
T

Qs􏽢x + ∇V∗(􏽢x)( 􏼁
T

F(􏽢x)

−
1
4
∇V∗(􏽢x)( 􏼁

T
BR

− 1
s B

T∇V∗(􏽢x),

(24)

with V∗(0) � 0.
To realize the policy learning, some iteration procedure

can be given as follows:

(1) Select the small positive number τ. Set i � 0 and
V(0) � 0, and then give an initial admissible
control u(0).

(2) Using the control u(i), resolve

0 � r(􏽢x, u) + ∇i+1
V(􏽢x)􏼐 􏼑

T
F(􏽢x) + Bu

i
􏼐 􏼑, (25)

with V(i+1)(0) � 0.
(3) Update the control action using

u
(i+1)

�
1
2
R

− 1
s B

T∇V(i+1)
(􏽢x). (26)

(4) If ‖V(i+1)(􏽢x) − V(i)(􏽢x)‖≤ τ, stop, then apply the
optimal control; else, let i � i + 1 and go back to (2).

Tis algorithm will be convergence to the optimal
control and optimal cost function when i⟶∞. Te
convergence of this algorithm can be referred to [16, 17].

3.2.2. NN Implementation. We assume the cost function
V(􏽢x) is continuously diferentiable.Ten, we can use the NN
reconstruct the V(􏽢x) as

V(􏽢x) � W
T
2 σc(􏽢x) + εc(􏽢x), (27)

where W2 ∈ RN is the ideal NN weights, σc(x) ∈ Rn is the
activation function, and εc(􏽢x) ∈ R denotes the NN error.
Ten,

∇V(􏽢x) � ∇σc(􏽢x)( 􏼁
T
W2 + ∇εc(􏽢x), (28)

where ∇σ(􏽢x) � zσc(􏽢x)/z􏽢x and ∇εc(􏽢x) � zεc(􏽢x)/z􏽢x are the
gradient of the activation function and NN error,
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respectively. According to (28), we can obtain the Lyapunov
function as

0 � r(􏽢x, u) + W
T
2∇σc(􏽢x) + ∇εc(􏽢x)( 􏼁

T
􏼐 􏼑 _􏽢x. (29)

Assumption 3. (see [12–14, 18]). If the NN weight W2, the
NN error εc, the gradient ∇σc, and derivative ∇εc are
bounded, then we can have εc⟶ 0 and ∇εc⟶ 0.

We defne the estimation of (27) as

􏽢V(􏽢x) � 􏽢W
T

2 σc(􏽢x). (30)

Ten, we have

∇􏽢V(􏽢x) � ∇σc(􏽢x)( 􏼁
T 􏽢Wc. (31)

with ∇􏽢V(􏽢x) � z􏽢V(􏽢x)/z􏽢x. Tus, the estimated Hamil-
tonian function can be given as

H 􏽢x, u, 􏽢W2􏼐 􏼑 � r(􏽢x, u) + 􏽢W
T

2∇σc( _x) _􏽢x � ec. (32)

To minimize error (32), we construct the objective
function J � (1/2)eT

c ec, and then the descent algorithm can
be designed as

_􏽢W2 � − α1
zJ

zW
􏼢 􏼣 � − α1

zec

zW
􏼢 􏼣, (33)

with α1 > 0 being the learning gain of the NN.
Based on (29), the Hamiltonian function can be re-

written as

H 􏽢x, u, W2( 􏼁 � r(􏽢x, u) + W
T
2∇σc(􏽢x) _􏽢x � eh, (34)

where eh � − (∇εc(􏽢x))T _􏽢x is the residual error.
Defne ϕ � ∇σc(􏽢x) _􏽢x, if there is a positive constant ϕM

such that ‖ϕ‖≤ϕM, and denote the weight estimation error
􏽥W2 � W2 − 􏽢W2, and then based on (32) and (34), we have

eh − ec � 􏽥W
T

2ϕ; thus, we have the dynamic of the weight
estimation error as

_􏽥W2 � −
_􏽢W2 � α1 eh − 􏽥W

T

2ϕ􏼒 􏼓ϕ. (35)

Te persistent excitation (PE) condition is required to
tune the NN, guaranteeing ‖ϕ‖≥ ϕm with ϕm being the
positive constant. To this end, a probing noise is inserted
into the system to meet the PE.

In this case, the optimal control action can be given as

u
∗

� −
1
2
R

− 1
s B

T
(∇σ(􏽢x))

T
W2 + ∇εc(􏽢x)􏼐 􏼑, (36)

and its estimation is

􏽢u � −
1
2
R

− 1
s B

T
(∇σ(􏽢x))

T 􏽢W2. (37)

Equation (37) shows that using the trained critic net-
work, the control policy can be derived directly; thus, the
actor NN is removed in this paper. Te structural diagram of
the algorithm is given in Figure 2.

Lemma  . For system (18), the adaptive law for the NN is
provided by (33), and then the weight estimation error of NN
is UUB.

Proof. Choose the Lyapunov function as
K(t) � (1/α1)tr( 􏽥W

T

2
􏽥W2). Te time derivative of the Lya-

punov function along the trajectory of error dynamics (35) is

_K(t) �
2
α1

tr 􏽥W
T

2
_􏽥W2) �

2
α1

tr 􏽥W
T

2α1 eh − 􏽥W
T

2ϕ􏼒 􏼓ϕ􏼒 􏼓.􏼠

(38)

After doing some basic manipulations, we have

_K(t)≤ − 2 − α1( 􏼁 􏽥W
T

2ϕ
�����

�����
2

+
1
α2

e
2
h. (39)

Considering the Cauchy–Schwarz inequality and no-
ticing the assumption ‖ϕ‖≤ ϕM, we can conclude that
_K(t)< 0 as long as 1< α1 < 2 and

􏽥W2
����

����>

������������

e
2
h

α1 2 − α1( 􏼁ϕ2M

􏽶
􏽴

. (40)

According to the Lyapunov theory, we obtain that the
dynamics of the weight estimation error is UUB. Te norm
of the weight estimation error is bounded as well.

It is noted that the estimated weight 􏽢W2 is optimal toW2,
and this indicates that the solution 􏽢V can be extracted from
the estimated vector 􏽢W2 given in (30). Tus, one can derive
the actual control 􏽢u � − 1/2R− 1

s BT(∇σ(􏽢x))T 􏽢W2 for system
(18) based on 􏽢W2. As a consequence of Lemma 4, we can
conclude that 􏽢u will converge to the optimal control u∗, i.e.,
‖􏽢u − u∗‖⟶ 0 such that the control system stability can be
retained based on Lemma 4. □

Remark 5. In this paper, an observer is designed using NN
to online estimate the unknown state (SOC); then, based on
the estimated state, we develop a policy learning algorithm to
online resolve the optimal control of the battery. Te pro-
posed methods are diferent from our previous work, such as
[18], where the system states are assumed to be known, and
this limits the application of the optimal control algorithm in
practice.

Control action Controlled
system

HJB equation

Critic NN

ec

ˆû (x)

ˆV̂ (x)

x̂

Figure 2: Te structural diagram of the algorithm.
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Remark 6. To realize the output-feedback control using the
policy learning, the PE condition is required in this paper. As
shown in [14, 17], to guarantee the PE condition, an al-
ternative way is to insert an exploration noise into the system
for the frst two seconds [17].

4. Simulation Results

For the second-order RC equivalent model of power battery,
the efectiveness of the optimal control theory in this paper is
verifed by simulation based on Matlab. Te values of re-
sistance, capacitance, and battery capacity in the second-
order RC equivalent model (5) are as follows:
R0 � 10.822mΩ, R1 � 3.103mΩ, R2 � 2.611mΩ,
C1 � 8.4379kF, C2 � 91.401kF, and Qn � 45A · h.

Let M � I, then we can obtain P and L as

P �

14.1250 0 19.6371

0 128.7451 178.9860

19.6371 178.9860 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

L �

0.0638 − 0.007 0.005

− 0.007 0.0008 0.005

0.005 0.005 − 0.0036

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(41)

Given the design parameters in learning law (33) as α1 �

0.1 and the initial values as
x1(0) � 0.1, x2(0) � 0.2, x3(0) � 1,
􏽢x1(0) � 0.01, 􏽢x2(0) � 0, 􏽢x3(0) � 0.99, and
􏽢W2 � [0.3909 0.5812 1.0576 0.1 0.2 1], we design the re-
gressor of the critic NN as
σ(x) � [x2

1, x1x2, x1x3, x2
2, x2x3, x2

3]
T.

We aim at obtaining an optimal control policy that can
stabilize system (18). For system (18), we need to fnd
a feedback control policy that minimizes the cost function.

V(􏽢x, u) � 􏽚
∞

0
􏽢x

T
Qs􏽢x + u

T
Rsu􏼐 􏼑ds, (42)

with Qs � I and Rs � 2I. We adopt the online policy iter-
ation algorithm to tackle the optimal control problem, where
a critic network is constructed to approximate the cost
function. During the implementation process of the policy
learning algorithm, we introduce the noise to meet the PE
condition. Te exponentially decreasing probing noise and
sinusoidal signals with diferent frequencies are used. Tey
are introduced into the control input and thus afect the
system states.

Te evolution of the state trajectory is depicted in Fig-
ure 3, and this can be used to further design the optimal
controller for the proposed system. Figure 4 gives the good
estimated weights, where we have that the convergence of
the weight has occurred after 1000 s. Ten, the probing
signal is turned of. Tis good convergence of the NN
weights can ensure the stability of the controlled system,
which can be found in Figure 5. Figure 5 is the controller
system trajectory with the designed optimal controller. We
see that the state converge to zero after the probing noise is
turned of. Figure 6 shows the cost of the system under which
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is smooth, and this indicates that the designed controller is
efective. Te control action is given in Figure 7, which is
bounded. Tis further shows Lemma 4 is true.

To show the improved performance of the proposed
single critic NN-based ADP for solving the derived optimal
control problem, a critic-actor NN-based online learning
method [19] is also used for comparison. Moreover, in this
comparison, we add the robustness verifcation of the
proposed method. To this end, we set the nonlinear term
d(x) � 0.5 sin(x1). Te profles of the critic NN and actor
NN weights can be found in Figure 8 and the corresponding
control performances are given in Figure 9. Compared with
Figures 9(a) and 9(b), it is clear that the proposed single
critic NN-based can achieve faster transient state conver-
gence even if there is a nonlinear term.

Generally, the modeling accuracy and control structure
will infuence the control performance of the closed-loop
control systems. In this paper, the main factors afecting the
control performance are the modeling uncertainties of the
system and the convergence performance of critic NN
weights. Moreover, better convergence of critic NN weights,
i.e., faster convergence speed can help to achieve better
control performance. In this respect, diferent choices of
critic NN parameters and structure will afect the conver-
gence of critic NN weights and the control performance.
Hence, proper selection of NN parameters and structure,
such as the initial value of weights, learning gain, and re-
gressor structure, is helpful to further improve the control
response.

5. Conclusion

For the second-order RC equivalent nonlinear system of
power battery, the unknown uncertainty of the system is
approximated by NN, and a time-varying gain nonlinear
state observer is designed to solve the problem that the
resistance capacitance voltage and charge (SOC) of the
battery cannot be measured. Ten, to realize the optimal
control, a policy learning-based online algorithm is
designed, where only the critic NN is required, and the actor
NN widely used in most design of the optimal control
methods is removed. Finally, the efectiveness of the optimal
control theory is verifed by simulation.
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