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Healthcare is predominantly regarded as a crucial consideration in promoting the general physical and mental health and well-
being of people around the world. Te amount of data generated by healthcare systems is enormous, making it challenging to
manage. Many machine learning (ML) approaches were implemented to develop dependable and robust solutions to handle the
data. ML cannot fully utilize data due to privacy concerns. Tis primarily happens in the case of medical data. Due to a lack of
precise clinical data, the application of ML for the same is challenging and may not yield desired results. Federated learning (FL),
which is a recent development in ML where the computation is ofoaded to the source of data, appears to be a promising solution
to this problem. In this study, we present a detailed survey of applications of FL for healthcare informatics. We initiate a discussion
on the need for FL in the healthcare domain, followed by a review of recent review papers.We focus on the fundamentals of FL and
the major motivations behind FL for healthcare applications. We then present the applications of FL along with recent state of the
art in several verticals of healthcare.Ten, lessons learned, open issues, and challenges that are yet to be solved are also highlighted.
Tis is followed by future directions that give directions to the prospective researchers willing to do their research in this domain.

1. Introduction

Healthcare and related services help prevent illness, treat it
when it occurs, and promote people’s physical well-being.
Healthcare providers are increasingly incorporating tech-
nology into patient registration, data monitoring, lab testing,
and self-care applications. Consequently, people are able to
plan ahead while still being in a position to make good
decisions about their physical or mental disabilities.

In every organization, data collection is critical. Data can
be utilized to forecast current trends and future events.
Particularly in healthcare, a large amount of sensitive data is
generated and it is very hard to manage and secure the
private data. Data security is becoming an increasingly
important concern for users. Tere is a need to develop
innovative ways for handling and securing sensitive data in
healthcare sectors [1–3]. In order to implement ML models
with multiple privacy-preserving methods, it is difcult to
construct frameworks and infrastructural facilities [4].

Clinics, moreover, work under stringent privacy standards
and can face regulatory, logistical, or ethical restrictions
requiring data to stay local. FL is a potential approach for
such implementations since it can lighten the stress on a
system and allow personal communication among diferent
technologies/institutions [5].

Health records in the public sector are often scattered
and confdential, making it difcult to attain reliable out-
comes. For example, diferent clinics have electronic health
records (EHRs) with various patient demographics, which
are complicated to exchange among hospitals due to their
delicate existence [6–10].

FL enables healthcare records that are located across
diferent institutions to be connected without revealing
personal information [11].

Figure 1 shows the result of a diferentially private
analysis, which ensures that anyone viewing it will conclude
the same thing (answers 1 and 2 are virtually the same). Te
FL concept was frst proposed by Google in 2016, for
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Gboard, a virtual keyboard app for touchscreen mobile
devices that supports more than 600 languages. FL efectively
overcomes the limitations of classic ML methods by em-
phasizing data. In contrast to traditional centralized ML
methods, which require datasets to reside on a single server,
FL minimizes security and privacy concerns by keeping local
data stores [12, 13]. FL has distinct privacy advantages over
ML models [14, 15]. Tese special features of FL make it
appealing for health research, where a large fraction of the
population may want to contribute to novel health fndings
but have restrictions about sharing their personal and pri-
vate data.

Figure 2 illustrates the applications of FL for personal
healthcare.

Recently, several researchers have presented survey
papers on FL. Dai et al. [16] presented a systematic strategy
for replicated statistical analysis in which the Newton-
Ralphson technique and an alternating direction method of
multiplier (ADMM) framework are employed to conduct
shared solutions. Yang et al. [17] describe foundations,
infrastructures, and methods for FL, as well as privacy-
preserving techniques used for FL. Kumar et al. [18] initiated
a unique learning technique that uses blockchain technology
to detect COVID-19 in respiratory computed tomography.
Xu et al. [19] employed machine learning to diagnose
COVID-19 from computed tomography gathered in several
clinics across China. Tese models perform better with FL
and also generalize well to models based on just one region.
Also, the authors in [20–23] have discussed FL and its
applications in various domains.

Similarly, some of the researchers have presented papers
on FL for healthcare. Lee et al. [24] gave an example of how
to develop patient similarity learning programs that are
federated across institutions without protecting the conf-
dentiality of their patients. Kim et al. [25]developed tensor
factorization models from massive electronic health records
for use in FL environments. Vepakomma et al. [26] designed
multiple setups for a global deep learning (DL) algorithm
named SplitNN [27] that allows medical groups to train DL
algorithms together. Silva et al. [28] studied neural.

Topological correlations across diagnoses, as well as
medical samples, illustrate their FL framework. Liu et al. [29]
used a distributed strategy to do user presentation modeling
as well as overweight-associated phenotyping and got im-
pressive outcomes.

Pftzner et al. [30] focus on how FL can be applied in
healthcare. It implies that real-time data usage is not feasible
while preserving patient data. Also, it deals with the pseu-
donymization of a few felds, which are again retraceable. It
discusses how to distribute the load of the training process
onto the FL. It identifes some open challenges, like privacy-
preserving hyperparameter optimization, entity resolution
for vertically split data, and efcient ways of using
encryption.

Rieke et al. [31] discuss the current FL eforts for digital
health and their impact on stakeholders, clinicians, patients,
hospitals and practices, researchers and Artifcial Intelli-
gence (AI) developers, healthcare providers, and manufac-
turers. It highlights FedAvg and FedProx algorithms. It also
specifes that though FL has been a challenging solution in
neatly addressing issues related to sensitive medical data,
which may open novel research and business avenues and
can improve patient care globally, there are also so many
open technical questions that have not been answered yet.

Xu et al. [11] focus on the current state of FL, including
but not limited to the healthcare sector. It discusses the use
of FL in healthcare as well as some of the challenges asso-
ciated with the combination of FL and healthcare, such as
incorporating expert knowledge, personalizing health, and
obtaining model precision.

Nguyen et al. [32] discuss advanced FL designs that
would be useful for federated smart healthcare, as well as the
important applications of FL in smart healthcare, such as
federated EHRs management, federated remote health
monitoring, federated medical imaging, and federated
COVID-19 detection.

Antunes et al. [33] examined the systematic literature
review of current research about FL in the context of EHR
data for healthcare applications. Te assessment of these
articles reveals a variety of eforts to attain and provide best
practices for protecting training data privacy.

A summary of the key fndings from the above dis-
cussion can be found in Table 1.

Te potential of FL in healthcare, such as efcient
handling of sensitive medical data, improving the data
quality and model precision, and proper electronic health
records handling has not been focused on in the open lit-
erature [11, 30–32]. Moreover, a comprehensive discussion
of the impact of FL on disease diagnosis and applications in
medical imaging, the Internet of things (IoT), and the
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Figure 1: Diferential privacy.
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Table 1: Summary of Important surveys on FL in healthcare applications.

Ref. Applications/
use cases

Requirements/
vision

Technical
challenges

Enabling
technologies

Research
directions Remarks

[30] Low Medium Medium Low Low Focused mainly on how FL can be applied in healthcare

[31] Low High Medium High Low (i) Focused mainly on FL initiatives related to digital health
(ii) It highlights FedAvg and FedProx algorithms

[11] Medium Medium High High High Focused mainly on the cur- rent state of FL, including but
not limited to the healthcare sector

[32] HIGH HIGH MEDIUM HIGH HIGH

Focused mainly on advanced FL designs that would be
useful for federated smart healthcare, such as
(i) Federated EHRs management
(ii) Federated remote health monitoring
(iii) Federated medical imaging, and
(iv) Federated COVID-19 detection

[33] HIGH MEDIUM MEDIUM HIGH HIGH
Focused mainly on the systematic literature review of
current research about FL in the context of EHR data for
healthcare applications

Tis
paper HIGH HIGH High High High

A comprehensive survey of FL applications for medical
image processing, FL toward privacy and security in
healthcare applications, FL in IoT-based smart healthcare
applications and FL for outbreak prediction, technical
challenges, enabling technologies and future research
directions

Cloud Server

Local Updates Local Updates

Local Data Local Data

New Global Model

Local Data Learnt Model:
Personal Healthcare

Local Data

Figure 2: Application of FL for personal healthcare.
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COVID outbreak is still missing. Particularly, we provide a
state-of-the-art survey of the applications of FL in various
key healthcare services such as medical imaging, IoT,
COVID outbreak, managing electronic health records
(EHRs), and health cooperation. In the last part of this
review, there are some potential directions for FL in
healthcare.

For the purpose of better comprehension, the defnitions
of the abbreviations used in the paper are summarized in
Table 2.

2. State of the Arts and Contributions

2.1. ML for Healthcare. AI methods are increasingly used to
support experts in the medical feld due to their efectiveness
in detecting and classifying diseases. A few ML approaches
like prediction, categorization, grouping, and learning
techniques are used in various felds, like image analysis,
speech recognition, and healthcare [34, 35]. Te state of the
art of ML techniques used for computer-aided diagnosis to
detect breast cancer from various imaging techniques has
been investigated [36].

Multiple sectors were being suggested to utilize COVID-
19 ML approaches, including clinical practice, healthcare
quality forecasting, and monitoring and identifying diseases
[37–41]. Te use of ML and DL has become a fundamental
method of knowledge discovery in several industries. Large,
diverse datasets are essential for the success of data-driven
applications. However, it is difcult to get medical datasets.
FL solves these problems by allowing group work by cen-
tralizing information, and it is already being utilized in
digital applications across the health feld [31].

2.2. FL for Healthcare. FL brings together all the healthcare
institutions, allowing them to share experiences and en-
suring their privacy. In this scenario, the enormous medical
dataset will help improve the quality of the ML model. In
healthcare, FL is often used to study a range of tasks, like
client identity, client knowledge, diagnostics, identifying
possible hospitalizations, detecting death rates, intensive
care unit admission periods, etc. ML algorithms require vast,
comprehensive datasets, and FL provides controlled, indi-
rect access while protecting patient privacy. FL’s promise is
simple: by permittingML from pseudo data, it will overcome
personal information quality issues. FL environments apply
their respective policy implementations with security
measures to each provider, and they also monitor Internet
connectivity.

Figure 3 shows how FL may afect the way AI models are
taught while also benefting the overall wider healthcare
ecosystem.

FL ofers great assurances on analytics of health data.
Tere are uses for both providers (such as developing a
prediction strategy for such risk of chronic illnesses using
electronic health records (EHR) [42]) and consumers (pa-
tients) (for example, cardiac medical exam by wearable
device with electrocardiograms [43]). Te federated model

learning process is designed to allow academic researchers to
easily maintain sensitive patient data.

Federated Transfer Learning (FTL) is another archi-
tecture for FL. FTL [44] is used to train models using data
from a diferent source. FTL recently attracted signifcant
attention in diferent industries, particularly healthcare [45].
FTL employs cryptography and estimation to verify that
confdentiality is successfully preserved to prevent poten-
tially exposed client data. FL is an efective solution for
healthcare, as it connects data from multiple silos without
requiring a transfer of all patient data. Te future of
healthcare is dependent on the development of innovative
technologies that respect data privacy.

2.3. Impact of FL on Disease Diagnosis. Te process of de-
veloping an understanding of a situation by using clinical
reasoning and utilizing information acquired based on
observations is called disease diagnosis.Tere are many steps
involved in diagnosing a disease because this is an essential
part of medical science. A source of uncertainty exists at
every step of the diagnostic process. A diagnosis begins with
acquiring knowledge frst from the client’s diagnostic test, as
well as knowledge provided from laboratory tests and other
medical diagnosis methods.

A diagnosis has an enormous impact on patients, in
terms of both care and research. Tere have been multiple
views on the nature of diagnoses, such as a process and
classifcation scheme, or a previously planned set of cate-
gories. Clinical decision-making takes place according to the
proper understanding of the health problem of the patient;
therefore, accurate and timely diagnosis is key to receiving
the best possible health outcome.

Te FL method for early diagnosis of Type-2 diabetes
uses feature selection algorithms and federated multilayer
perceptron models. Furthermore, a comparison between a
centralized ML model and a decentralized FL model is made

Table 2: List of abbreviations.

Abbreviation Description
ML Machine learning
FL Federated learning
EHR Electronic health records
ADMM Alternating direction method of multipliers
DL Deep learning
AI Artifcial intelligence
IoT Internet of things
FTL Federated transfer learning
DT Digital twins
MRI Magnetic resonance image
CFL Clustered federated learning
HCM Hypertrophic cardiomyopathy
HIPAA Health insurance portability and accountability act
NN Neural network
ADR Adverse drug reactions
FADL Federated autonomous deep learning
AKI Acute kidney injury
CT Computed tomography
IoMT Internet of medical things
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to demonstrate the importance of a decentralized model
when it comes to privacy considerations [46].

2.4. Paper Organization. Te majority of this article is based
on the following: Section 2 describes FL’s background and
motivations. Section 3 describes applications of FL in ver-
ticals of healthcare. Sections 4 and 5 include recommen-
dations regarding future directions of research based on
lessons learned from previous reviews. Section 6 discusses
the paper’s conclusion.

3. Background and Motivations

Tis section introduces an overview and status of disease
diagnosis using FL, fundamentals of FL, and motivations of
using FL for healthcare and discussed the main contribu-
tions of the survey.

3.1. Overview and Status of Disease Diagnosis Using FL.
FL is a paradigm that aims to collaborate on data man-
agement and privacy issues by using evaluation metrics
without transferring samples [47–49]. Initially, this meth-
odology was introduced in a separate discipline, and it has
lately been adopted in the medical industry since it over-
comes the challenges which are typically encountered while
intending to collect patient data. In the context of electronic
medicine, it suggests FL allows fndings to be obtained
collectively between entities without sharing patient data,
such as in the form of a universal model. Te strength of FL
substitutes to prevent sensitive training data movement
beyond its frewalls.

Healthcare has been transformed by wearable devices in
numerous ways, including improvements in patient care,
rehabilitation, and disease management. Tese devices
generate data that can be used to detect early signs of

cognitive illnesses like diabetes and dementia. However, the
personalization and privacy issues they generate have raised
concerns among users. An FL framework called FedHealth is
being developed by Chinese researchers in order to mini-
mize the risk of security breaches. FedHealth aims to address
the vulnerabilities of today’s healthcare industry. FedHealth
software creates capable ML models based on FL and ho-
momorphic encryption to protect users’ privacy.

It is based on four primary components, according to
Jindong. In the frst place, the server’s cloud model is trained
based on publicly available data. It is then disseminated to all
users, who may subsequently train the model using their
own data. Once you have achieved this, a new cloud model
can be created through model aggregation. FedHealth uses
transfer learning techniques to ensure that each organization
has a uniquely tailored model after improving its cloud
model. Figure 4 depicts the team’s framework.

FL allows data isolation to be solved by combining
user data to build ML models. FedHealth can update the
cloud model and user model simultaneously as soon as
new data is available. In this way, the more a wearable
device or application is used, the more customized it
becomes and how the model is viewed. FedHealth is not
currently being implemented, but it does ofer new ave-
nues for wearable medical applications. According to
Jindong, this framework can perform diagnoses of other
diseases and illnesses, including coronavirus disease,
using radiology test images.

3.2. Fundamentals of FL. Google frst suggested federated
machine learning [Kone Diecn’y et al., 2016], in which it
trained ML models on distributed mobile phones. Te main
idea during the process is to protect user information. FL is
capable of resolving data isolation issues through network
model training in the context of privacy preservation. FL

Data

Model

Cloud Model
Cloud User

User A User B User N New User Model

Data A Data B Data N

Model B

Model A Model N

Model 
Transfer

Figure 3: FL for the healthcare system.
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makes it possible for several workers to learn a strong and
generic ML model by providing information so that key
issues like user privacy, information security, authentication
rights, and exposure to large datasets are addressed. Tese
technologies cover a variety of sectors, like military, mobile
communications, IoT, and healthcare [50].

FL is designed to build a teaching practice with many
individual variables containing network elements by actively
transferring raw data, for future reference, into deeper
neural networks. Te main principle consists of training
individual designs on available information and generating
variables (for example, weights and distortions of a classifer)
for the generation of a modeling framework maintained
across all connections between neighboring controllers.

Figure 5 shows how local model parameters are trans-
ferred to a primary controller to generate a large reference
model. Once the federated model has been created, it is then
returned to the clients for initial training and iterative
improvement. Participants can also have their own com-
puting resources. FL will be used in practice by large or-
ganizations, and it will be important in promoting security
systems whose training data is being spread around the
world.

3.3. Motivations of Using FL for Healthcare. In healthcare
organizations, the primary motivation for using FL is as
follows:

(i) FL reduces data security and privacy concerns by
maintaining local data stores, as opposed to cen-
tralized ML techniques, which require datasets to
reside on one server [51].

(ii) Trough FL, large datasets from multiple hospitals
can be readily accessed by an individual hospital
without centralizing the data into one place. As a
result of this practice, critical issues such as data

access rights and access to heterogeneous data are
addressed.

(iii) Te construction of good models without biases
using small datasets is very difcult as it takes a lot
of time, efort, and cost to collect, curate, and
maintain high-quality data from a diverse pop-
ulation. Te experts in healthcare and life sciences
can use FL to solve the unique problem of data
governance by training algorithms behind the
hospital’s frewall and only sharing models so that
data remain secure [31].

(iv) FL captures a wide range of data variables and
analyzes patients based on any of their demo-
graphic characteristics. For example, with access to
electronic health records, FL can help to fnd
clinically similar patients and predict hospitaliza-
tions due to cardiac events, mortality and ICU stay
time [52].

(v) FL can have an enormous infuence on a variety of
stakeholders like clinicians, patients, hospitals,
medical researchers, and healthcare providers.

(vi) FL is a potential concept for safe, reliable, and
impartial models of data. FL makes it possible for
several parties to work together without exchanging
or centralizing datasets.

(vii) FL provides AI developers with access to bigger and
diversifed data packages, which better portray
current patients. As a result, AI-based healthcare
solutions will be able to scale globally at an un-
precedented level.

3.4. Main Contributions of the Survey. Tere are numerous
existing works that discuss the enabling technologies, pro-
tocols, applications, and challenges of FL. FL facilitates
communication between various parties without the need to

Model 1

Clinic

Model 2

Pharma

Model 3

University

Federated 
Learning Server

AI Model

Figure 4: Te FedHealth framework in which “user” represents an organization.
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communicate or centralize data, thereby resolving issues
with critical health information. In addition, this could lead
to new business opportunities and improved healthcare
worldwide. Te contributions of our work can be summa-
rized as follows:

(i) Several terms and defnitions for FL for healthcare
are gathered from the available literature, resulting
in a more comprehensive understanding of FL for
healthcare from various perspectives.

(ii) FL is next developing and enabling applications in
healthcare such as medical image processing, IoT-
based smart healthcare applications, and outbreak
prediction.

(iii) Despite several research and development activities,
many challenges and issues are imposed in FL for
healthcare. We present these difculties in terms of
confdentiality and safety, data heterogeneity,
traceability and accountability, and system archi-
tecture. We also highlight promising research di-
rections toward the realization of FL for healthcare.

(iv) Finally, we discuss future directions of FL for
healthcare applications like healthcare 5.0, includ-
ing digital twins (DT) in healthcare, FL and
blockchain for healthcare, collaborative robots in
healthcare, FL and Explainable AI for healthcare,
and FL for integration with 6G in healthcare.

4. Applications of FL in Verticals of Healthcare

Tis section discusses some of the potential applications of
FL for healthcare.

4.1. FL Applications for Medical Image Processing.
Medical imaging has transformed the healthcare sector,
enabling practitioners and scientists to discover more about
the human body than ever before. Medical image processing
provides techniques for enhancing and analyzing raw
medical image data for selective visualization and analysis
according to a given problem. Medical imaging can also help
with the treatment and long-term management of a prob-
lem. As medical technology advances, doctors can detect
problems that are more difcult to detect through simple
external examinations. Medical imaging is important for
determining the severity of an ongoing illness. Medical
imaging refers to a variety of technologies that are used to see
the human body in order to diagnose, monitor, or treat
medical disorders. Each technology provides unique in-
formation regarding the part of the body being examined or
treated, whether it is related to disease, injury, or the ef-
fectiveness of medical treatment.

Fast and accurate reconstruction of magnetic resonance
images (MRIs) from training data is essential in many
clinical applications. In recent years, DL-based techniques
have been discovered to perform better in MRI recon-
struction. However, these methods necessarily involve
massive amounts of data, which are difcult to generate and
distribute due to high acquisition costs and medical data
privacy regulations. To address this issue, we ofer an FL-
based system that makes use of MRI data from several in-
stitutions while protecting patients’ privacy [53].

Te FL algorithm is used to describe and identify
physician-related persons and to estimate their hospitali-
zation, deaths, and survival rates based on electronic health
records (EHR) [54]. A complete brain part of an MRI [55] is
helpful, and for brain tumor segmentation [56], the usage

Model
Aggregation

Models

User/Org User/Org User/Org

Figure 5: FL architecture.
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and advantages of FL were further demonstrated. Recently,
the fMRI [57] classifcation technique was used in fnding a
suitable risk factor for several diseases. FL will help in
detecting various diseases as shown in Figure 6.

FL is proposed as a promising approach to COVID-19
detection. Qayyum et al. [58] implement the surging concept
of clustered federated learning (CFL) for an automatic di-
agnosis of COVID-19 using X-ray and Ultrasound datasets.

FL allowed medical professionals to assess the intensity
of skin disease. Hashmani et al. [59] proposed an archi-
tecture that can diagnose the type of skin disease by con-
ducting experiments using dermoscopy images to test and
validate the model’s classifcation accuracy and adaptability.

FL is more potential in analyzing the medical images and
also in protecting the patient’s privacy. Lee et al. [60] used
ultrasound image analysis and FL to determine whether
thyroid nodules were normal or dangerous.

FL enables efcient and accurate heart disease diagnosis.
Linardos et al. [61] present the frst FL study for the diagnosis
of hypertrophic cardiomyopathy (HCM) using the subsets
derived from M and M and ACDC datasets.

FL is a privacy-preserving AI model to identify brain
tumors. Li et al. [56] focus on practical FL systems for brain
tumor segmentation by using the BraTS dataset.

A summary of the key fndings from the above dis-
cussion can be found in Table 3.

4.2. FL in IoT-Based Smart Healthcare Applications. FL is a
concept developed to construct smart and confdential IoT
devices. FL has developed a system that makes it possible for

doctors to use data from multiple medical institutions
without sharing patient data across them [62]. Hospitals can
train their own AI models by uploading the data to a global
aggregator. FL brings together multiple hospitals to develop
collaborative healthcare settings that speed up diagnostic
testing of victims while maintaining their personal rights.
Te healthcare sector is one of the most attractive appli-
cations of IoT, as depicted in Figure 7.

Te use of AI-based approaches to learn health data has
been adopted widely in smart healthcare, such as the use of
intelligent imaging to detect disease [63]. Medical infor-
mation requires a degree of insensitivity and is regulated by
medical rules like the Health Insurance Portability and
Accountability Act (HIPAA) [64]. Ensuring data protection
from public sources shared with its server or storage system
is an issue [65]. Traditional AI systems relying on some kind
of master database software are not really suitable for
contemporary health.

FL’s utility in the smart healthcare sector with sophis-
ticated features has been proved in recent research. Te role
of electronic health records in the healthcare industry is
growing rapidly. Here, we focus on two business scenarios,
namely, EHR maintenance and involvement in health
coverage.

4.2.1. Managing Electronic Health Records Using FL. Te
application of FL in healthcare operations has really been
studied in order to provide adaptable as well as confdential
EHR maintenance. An FL-based student-centered archi-
tecture is responsible for an EHR system with diferent
clinics as well as a database server [66]. Every company uses
its own electronic health records and a cloud server to
manage a neural network (NN). A new method of data
destruction has been developed by Google. Te concept is
intended to protect the learning experience in data storage
from cyberattacks. It uses a lightweight data destruction
technique to disrupt training data and to ensure conf-
dentiality of the FL model parameters that can protect them.
Although an attacker can get troubled EHR information, the
source data is difcult to gather or retrieve. Te AlexNet NN
simulation was performed with the CIFAR-10 standard
dataset to achieve accurate and safe results for the study of
EHR.

Liu et al. [67] built a distributed NN activity plan which
enables any clinic to know and understand a part of the
model from its EHR source. Te integration of autonomous
position monitoring and conventional nonconvex en-
hancement principles [68] builds a diferent innovative
method for FL. Te aim is to save network resources by
interacting with the remote EHR server. FL allows the
sharing of EHRs without their sharing due to its dynamic
approach to education. New features to the model sufer
anonymity, which leads to communication path inference
attacks. To tackle this problem, diferential privacy strategies
can help enhance the protection of personal data for the
learning of FL-based EHRs [69].

EHR information is used for detecting FL’s adverse drug
reactions (ADRs). It can be used to detect rare ADRs at a

Skin Disease 
Detection

Thyroid 
Diagnosis

Federated Learning 
Medical Image

Processing

Covid 
Diagnosis

Heart Disease 
Detection

Cancer 
Detection

Brain Tumour 

Figure 6: Applications of FL in medical image processing.
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single site for rare ADRs and to predict more severe ADRs in
the long term [70]. FL delivers similar accuracy in predicting
ADR without sacrifcing data confdentiality in comparison

with centralized AI approaches. Te authors of [71] propose
that unnecessary changes be deleted by examining the
importance of small variations in the FL structure for every

Elderly 
Care

Smart 
Home

Telemedicine

Doctor

IoT based
smart healthcare Emergency 

Response

Nurse
EHR

Smart 
Hospital

Smart 
Infrastructure

Figure 7: IoT-based smart healthcare.

Table 3: FL applications for medical image processing.

Ref.
No Technologies used Key contributions Limitations

[56] Diferential privacy
techniques

Using the BraTS dataset, assess the usefulness of
practical FL methods for segmenting brain tumors

It is impossible to collect and share patient data in a
centralized data lake

[58]
CFL-based

collaborative learning
framework

To highlight the potential of intelligent processing
of clinical data at the edge, open research issues
related to deploying ML at the edge for healthcare
applications that re- quire further investigation

(i) Image size and quality
(ii) Contrast and brightness level, and

(iii) Positioning of subjects

[59] Skin imaging
technology

Te proposed model contains two core
contributions: Health practitioners usually apply manual or

computer vision-based tools for skin tumor
diagnosis, which may cause misinterpretation of the
disease and lead to a longer analysis time

(i) Te model was deployed on the cloud server,
and
(ii) Its deployment on the edges majorly
contributes toward adaptability by continuously
updating

[60] FL techniques Te performance of FL may be enhanced with
more images or data augmentation

Comparisons of FL with unequal data distribution,
data augmentation, and one-shot learning are
required to explore the implications of data
imbalance

[62]
3D-convolutional
neural network

technique

FL study on cardiovascular magnetic resonance
diagnosis and demonstrate that FL performance is
comparable to central database server

Patient privacy
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EHR user, to increase the quality and precision of inte-
gration. FL-based healthcare imaging architectures protect
patient privacy as a key feature [72]. In this context, clinics
and healthcare physicians cooperate together over the de-
velopment of a safe and multiparty FL system for service
users with medical algorithms.

4.2.2. Health Cooperation FL. In order to contribute, FL can
ensure proper healthcare coordination for better provision
of medical facilities through its centralized and secure na-
ture. Yuan et al. [73] present a cooperative framework for
healthcare that leverages FL to enable medical IoT devices.

Te next generation of FL solution is presented in [74]
cloud edge-based healthcare. Tis solution could be used to
address issues that directly afect the FL process, such as
device, data, and model. Personalization training on edge
computers was decided to be carried out, in this case, to
reduce heterogeneity and achieve high-quality individual
models. For the purpose of stimulating the federation of
portable devices using FL technology, the FedHealth
framework [75] was developed. Information collected by a
number of healthcare institutions using diferent IoTdevices
may be collected using Fed- Health’s surgical instruments to
enable the development of a powerful AI method that can be
used to identify people’s behavior and to protect ciphertext
data [76]. An innovative method [77] is the use of chain-
directed synchronous stochastic gradient descent to mini-
mize human latency between FL clients and servers in
personal mobile sensing applications. Recent studies reveal
that FL is helpful in preventing infections like COVID-19
[78].

A summary of the key fndings from the above dis-
cussion can be found in Table 4.

4.2.3. FL for COVID Outbreak Prediction. FL utilizes
multiple devices or servers that store local samples of data,
without aggregating clinical data to create a statistical model,
which is undesirable for several reasons, including patient
privacy concerns. COVID-19 infection has been confrmed
in China since December 2019. After that, the outbreak
began spreading to China and several other countries across
the globe [79]. A pandemic with rapid growth (and thou-
sands of infections and hundreds of deaths) presents con-
siderable obstacles to control the virus.

Tere are currently a number of diferent ways to detect
COVID-19, whereas computed tomography and X-rays
remain the major surgical techniques [80–82]. A number of
clinical symptoms are observed in COVID- 19 patients
hospitalized with Acute Kidney Injury (AKI) [83–86].
According to studies, the incidence of AKI ranges between
46 percent and 71 percent; however, most deaths occur
within the AKI sample [87, 88]. Diagnostic methods that
judiciously help individuals at greater risk of contracting
COVID-19 can be benefcial during an outbreak where
facilities can be restricted [89].

Despite FL’s promise, it is still a relatively new idea for
physicians, patients, payers, researchers, and hospitals. FL is
strongly encouraged to examine whether and how it can

provide valuable support during and after the unprece-
dented COVID-19 pandemic to control it.

A summary of the key fndings from the above dis-
cussion can be found in Table 5.

In COVID-19, FL demonstrates its value in diagnosis,
treatment, and prognosis prediction. Xu et al. [19] dem-
onstrated that with the help of chest computed tomography
(CT) scan data from several institutions in Wuhan, China,
they were able to overcome data scarcity, isolation, and
heterogeneity and achieve improved detection sensitivity.
Based on their fndings, an FL-based architecture would
allow global participants to beneft from a globally dis-
tributed and real-time CT-COVID-19 diagnostic tool. A
study by Vaid et al. [92] published recently found that FL-
based models tended to perform better than locally trained
predictive models when using data from medical centers to
predict 7-daymortality in hospitalized patients.Te intent of
this study is to evaluate FL in predicting a meaningful
outcome for hospitalized COVID-19 patients.

A confrmatory fnding of FL’s superiority is likely to
spark signifcant interest, especially in its potential to im-
prove outcomes for COVID-19 patients. FL has been able to
harness all of the full learning power of existing data to ofer
data-driven insights and personalized recommendations due
to the uncertainty of long-term complications of COVID-19,
the efectiveness of medical treatments, the safety of vac-
cines, and immunity protection.

COVID-19 care is only a small part of FL’s value as a
health provider. Tis pandemic has severely disrupted non-
COVID-19 multicenter clinical trials. It has become in-
creasingly challenging to utilize data generated from each
participating institution. In recent years, it has been said that
decentralizing clinical research would beneft traditionally
underrepresented subgroups and underserved areas in
particular. Tis kind of decentralized research could beneft
greatly from integrating FL into the study design and data
analysis to evaluate the quality of care and outcomes, for
example, predicting mortality, complications, hospitaliza-
tions, and adverse drug reactions. Another area for FL to
explore is digital health. Healthcare, precision medicine,
wearable technology, and clinical decision support have all
seen a rise in popularity as a result of the epidemic. Te
suitable use of FL produces generalizable models that will
help the achievement of equitable, efective, and patient-
centered care.

FL can efectively address the issue of data unavailability
and get a shared model without obtaining local data. Boyi
Liu et al. [90] proposed an experiment in which four popular
federatedMLmodels (Mobile Net, ResNet18, MobileNet-v2,
and COVID-Net) were applied to CXR images of patient’s
chests to compare their performance.Te authors developed
these models to detect COVID-19 pneumonia, using the
same parameters for all models.

FL proved to be more efcient compared to traditional
ML models in COVID detection. Pang et al. [91] created a
federated model based on a digital city twin concept to
predict outcomes of diferent COVID-19 prevention plans
over time and assess the survival rates of multiple cities over
the study period. Furthermore, using the digital city twin
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platform, they were able to track the efectiveness of each
prevention plan and create local models which were sent to
the federated sites for safety.

5. Lessons Learned

In this section, we summarize the key lessons learned from
this survey, which thus provide an overall picture of the
current research of FL applications for medical image
processing, FL toward privacy and security in healthcare
applications, FL in IoT-based smart healthcare applications,
and FL for outbreak prediction.

5.1. FL Applications for Medical Image Processing. Based on
the observations from several states of the art, the FL al-
gorithm analyzes electronic health records to describe and
estimate hospitalization, survival, and death rates for people
associated with physicians. In addition to identifying disease
risk factors using the fMRI classifcation technique, a
promising COVID-19 approach was presented as well.

5.2. FL in IoT-Based Smart Healthcare Applications. FL
has developed as a distributed collaborative AI approach
that has the ability to enable a wide range of intelligent
IoT applications by allowing AI training at distributed
IoT devices without the need for data exchange [93].
Based on the observations from several states of the art,
FL developed a system that allows doctors to access
patient data across multiple hospitals without constantly
transferring patient information. FL provides smart
healthcare solutions and reshapes current healthcare
systems by improving privacy for users and reducing
latency among healthcare providers and users alike. A
lesson to be learned from this is that the FL can enable
healthcare operations to manage EHRs centrally and with
privacy preserved, by collaborating with multiple medical
institutions to build intelligent EHR systems. Further,
few fully decentralized FL approaches are able to provide
decentralized optimization and stochastic gradient
tracking by combining the cooperation of hospitals with a
decentralized stochastic gradient algorithm to improve
convergence rates.

Table 4: FL in IoT-based smart Healthcare applications.

Ref.
No Technologies used Key contributions Limitations

[61] Federated semantic segmentation models
In this study, federated semantic segmentation
models performed on multimodal brain scans are

similar to models trained for data sharing

Data acquisition is a major
challenge

[63] DL techniques

Te objective of this review is to present an
overview of current research on applying DL to
clinical tasks derived from EHR data, in which we

examine the variety of DL techniques and
frameworks applied to various types of clinical

tasks

(i) Model interpretability
(ii) Data heterogeneity, and

(iii) Lack of universal benchmarks

[64] A descriptive and inferential statistical
analysis

Te purpose of this survey was to assess electronic
communication and awareness of HIPAA privacy
and security rules, especially in the context of text

messaging

(i) First, there was a low response
rate, raising concern for
nonresponse bias
(ii) Second, survey results may be
skewed by cognitive biases

[67] Federated- autonomous deep learning
(FADL) method

Tis study fnds that FADL exceeds traditional
federal methods of learning and that balancing
global to local formation is an important feature of
distributed techniques, especially in the feld of

healthcare

Accessing data is complex and
slow due to:
(i) Security
(ii) Privacy
(iii) Regulatory and
(iv) Operational issues

[69] FL framework

Tis study reveals that while diferential privacy in
a federal system is commonly adopted, it can lead
to considerable losses in model performance in

healthcare applications

(i) Distributed data silos

(ii) Privacy issues

[70]
An FL framework can develop global ADR
prediction models, based on local health

data held at diferent locations

In this study, we focused on algorithms conducive
to distributed solutions, including gradient
descent, as a method supported by FL

Frameworks for predicting
adverse drug reactions (ADR)
using centralized learning

[78] Blockchain and AI
In this study, we have provided a comprehensive
coronavirus (COVID-19) investigation utilizing

blockchain and AI

Te challenges are analyzed in this
article from four diferent
perspectives:
(i) Regulatory considerations
(ii) Maintaining people’s privacy
(iii) Te security of blockchain
and AI ecosystems, and
(iv) A lack of unifed databases
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5.3. FL for COVID Outbreak Prediction. Based on the ob-
servations from several states of the art, in an outbreak when
facilities may be restricted, it is important to develop di-
agnostic methods that will help individuals at greater risk of
contracting COVID-19 judiciously. We also fnd that using
FL in decentralized research would beneft researchers by
improving study design and analyzing data on outcomes and
quality of care, including predicting mortality, complica-
tions, and adverse drug reactions.

Goldfarb et al. [89] consolidate existing case studies and
identify the future challenges in defning FL’s benefts and
impact on healthcare applications, as well as the obstructions
and concerns surrounding its adoption in healthcare.

6. Challenges and Future Directions

FL does have some advantages, but it also poses challenges that
must be considered when setting up federated training eforts.

6.1. Confdentiality and Safety. Tere is a lot of important
data in the healthcare industry which needs to be defended.
FL poses many privacy-preserving challenges in terms of
alternatives, techniques, and consequences.

6.1.1. Privacy versus Performance. FL is primarily designed
to safeguard confdentiality by discussing method updates
instead of information, although it does not solve many

security issues but, like any ML algorithm, always carries
some risk. FL ofers a level of privacy preservation that is
superior to the current commercially available MLmodels in
terms of protection [94]. However, these methods have a
tradeof when it comes to performance, which may cause the
fnal model to be inaccurate [48]. Furthermore, future
techniques and additional information may compromise a
previously low-risk model.

6.1.2. Level of Trust. FL collaboration can be classifed into
two broad types:

Trusted: FL consortia, whose partnership is binding
and regarded as trustworthy, typically prevent a few
serious reasons, like a plot to steal crucial data or
damage their system. To reduce the necessity of spe-
cialized countermeasures, researchers can reexamine
the fundamentals of regular cooperation studies [95].
Nontrusted: FL systems that are used in a wide range of
settings could prove difcult to develop a collaborative
partnership that guarantees timely, appropriate col-
laboration between all parties. In some cases, users may
attempt to misuse the system, undermine its perfor-
mance, or obtain information from others intention-
ally. In order to reduce these threats, security strategies
including cryptography of product proposals, efective
authorization for participants, tracking of operations,

Table 5: FL for COVID outbreak prediction.

Ref.No Technologies used Key contributions Limitations

[19] Blockchain-based FL
framework

Training a global, more accurate ML model on
hospital data can assist in detecting COVID-19

cases during lung screenings

It is challenging to share data securely (without
compromising the privacy of users) and to train

global models for -detecting positive cases

[20] UCADI framework

A decentralized model, the unifed CT-COVID AI
diagnostic initiative, distributes and performs the

AI model at each participating institution
independently without sharing personal data

(i) Data defciency
(ii) Data isolation

(iii) Data heterogeneity

[38] AI and big data Te coronavirus disease COVID-19 is being
controlled with the use of AI and big data

Privacy and security issues due to insufcient
standard datasets

[39] AI

In the fght against COVID-19, AI can contribute
in six ways:
(i) Early warnings and alerts (i) Too much, and

(ii) Too little
(iii) Data

(ii) Tracking and prediction
(iii) Data dashboards
(iv) Diagnosis and prognosis
(v) Treatments and cures, and
(v) Social control

[78] Blockchain and AI Te coronavirus (COVID-19) epidemic can be
combated using AI and blockchain technology

Te lack of unifed databases is a concern for
protecting the privacy and the security of blockchain

[90] AI-related
technologies

A comparison of FL to training without an FL
framework was conducted using four diferent
models:
(i) MobileNet

FL presents a number of statistical and system
challenges when distributed device networks are

used to train machine models(ii) ResNet18
(iii) MoblieNet, and
(iv) COVID-net

[91] A novel collaborative
city DT framework

FL combined with city DTs alleviates the data
sparsity challenge, facilitates collaboration, and

provides privacy protection by design

Collaborative training problems, such as:
(i) Disaster surveillance and
(ii) Prediction
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asymmetric security, conducting testing, performance
reliability, confdentiality of design, and protection
from opponents are necessary [96].

6.1.3. Data Breach. Patients’ medical information is usually
not shared across FL devices and hospitals. Nevertheless, the
observations can indeed efectively leak personal informa-
tion required for regional development, such as reversal [97]
model updates, gradients [98], and opponents.

Traditional training difers from FL in that multiple
parties are exposed to the training process. Terefore,
monitoring alterations in a model over time, monitoring
exact model upgrades, or manipulating a model can occur as
a consequence of a dynamic analysis breach.

6.2. Data Heterogeneity. In addition, caused by things like
data gathering methods, company biomedical applications,
and area demographics, medical data difers in types, sizes,
and attributes. In light of this, algorithms and strategies
apply to FL as an important factor: many traditional tech-
niques distribute relevant information independently and in
the same way to all users (IID). Given the fact that there can
be no comprehensive information distribution among in-
stitutions [56, 62], FL can be trained using non-IID data. In
such conditions, techniques such as FedAvg [47] frequently
fail, which violates the fundamental aim of active learning.
Researchers have been studying this issue by utilizing
FedProx [99] and part-sharing strategies [100]. Further-
more, heterogeneity of data may lead to a situation in which
local solutions are not optimal for global solutions. It is
therefore crucial that all participants agree on the defnition
of model training optimality before the training begins.

6.3. Traceability and Accountability. FL in healthcare is a
system that needs to have reproducibility as it is a safety-
critical application. Running multiparty computations in
complex hardware, software, and networking environments
is diferent from training with centralized data. In order to
fulfll the traceability requirement, it must be possible to
trace network connections, connectivity records, and con-
fguration modifcations, including hyperparameter tuning,
throughout the training process. Additionally, traceability
can be logged information about a model’s training history,
particularly to ensure training and test datasets are not
overlapping. Execution integrity is fundamental to trace-
ability and accountability in nontrusted federations [31].

Using FL, researchers cannot view pictures of designs
that are generated.Te individual sites still have their unique
original information available, but organizations can choose
to give any central viewing facility to meet necessity or
indeed make it possible to explain and interpret the opti-
mization method.

6.4. System Architecture. Computing resources and net-
works are typically better suited to large-scale FL in
healthcare institutions than in consumer devices [31]. Tese
methods make it possible to teach a greater number of

products, and also the data collected with these methods can
be shared more widely. As a result, FL brings both op-
portunities and challenges to healthcare, such as the
following:

(i) It is crucial to examine when discussing whether
safety prevention is achievable (e.g., by providing
unneeded packages).

(ii) How should encryption methods be designed to
utilize computational resources efectively?

(iii) Which methods can be used to reduce idle time and
to take advantage of independent systems in order
to develop suitable network confgurations?

6.5. Client Management. Client management is an essential
issue in FL, in contrast to the centralized ML architecture.
Some clients may be looking for benefts without contrib-
uting; it is the responsibility of the server to decide which
customers should participate in the learning process.

Client management involves helping a patient or client
develop a plan that coordinates and integrates essential
support services for the most optimal results and outcomes
[101]. Tere are many components of client management.
Hudon et al. summarize several descriptions of case (client)
management, including those of the Case Management
Society of America and the Canadian National Case Man-
agement Network, and describe six core elements that in-
clude patient identifcation and eligibility determination,
assessment, care planning along with goal setting, plan
implementation, plan monitoring, and transition and dis-
charge [102].

6.6. Health Dataset Issues. Te healthcare sector has the
capability to deal with a wide range of data types and
content, including text, images, audio, and time series, as
well as blood types, heart rates, facial images, and body
temperatures. Te majority of FL approaches are typically
examined on a single dataset with a limited number of
features. However, despite the fact that both are proposed for
privacy-preserving FL-based healthcare services, the work in
[103] is tested on a dataset related to diabetic retinopathy,
and the work in [69] is evaluated on an EHR dataset. Te
central server can navigate heterogeneity by using private
ensemble learning [104] to navigate heterogeneous FL ap-
proaches involving multiple parties having diferent models.
An inference strategy is presented to enable participants to
use an ensemble of heterogeneous models without needing
to explicitly join the data in a single place.

A summary of the key fndings from the above dis-
cussion can be found in Table 6.

6.6.1. Future Directions. In the future, healthcare tasks may
be performed better using collaborative strategies across
multiple institutions, as opposed to very large fles limited to
a specifc health center. FL can integrate information ac-
quired and maintained by diferent institutions in order to
capture broader data variability and analyze patients from
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diverse demographics. Furthermore, FL allows the addition
of multiexpert annotation and data from multiple sites
acquired with diferent instruments and techniques. In order
to achieve this collaborative goal, diferent agreements must
be put in place, including details about scope, purpose, and
technology, whichmay not be known at present as the feld is
a new one.

6.6.2. FL for Healthcare 5.0. In the traditional MLmodel, the
data used in training the models raised issues regarding
security and privacy. In this context, FL has been found to
enhance scalability, improve accuracy, reduce training time,
improve performance, increase privacy and enhance safety,
among others [105]. FL has some advantages over the tra-
ditional methods, which are as follows:

(i) An FL network makes the entire network scalable by
enabling diferent devices to learn from one
another.

(ii) Te creation of local models reduces latency and
lowers the power consumption when compared to
training a single central model.

(iii) As a result of their use of many local models and
simultaneous perspective approaches, FL models
are more innovative than centrally trained models.

(iv) FL provides predicted values in real time because
you can access the datasets without a centralized
server. It reduces the lag time in data access and
enables you to access data without connecting to the
central server. Data can be transmitted and received
directly through a local server.

(v) Compared with standard central ML algorithms
requiring datasets on a single server, FL reduces
security and confdentiality concerns by managing
local database objects.

6.6.3. FL for Digital Twin in Healthcare. In the future,
healthcare will become automated, citizens will adopt a more
proactive approach to their health (empowerment, pre-
vention), and clinical decision support will be integrated
throughout practice.Te combination of these measures will
allow the healthcare system to be sustainable in the future,
even when the population grows older.

Several applications of digital twin technology are found
in the healthcare sector. In healthcare, technology is en-
abling advances that, once thought impossible, are becoming
possible thanks to its growth and development. Te health
sector uses many applications that do not directly beneft the
patients but have a benefcial infuence on how they are
treated. Terefore, these systems play a vital role in im-
proving patient care.

Healthcare is even more dependent on simulation and
actuations in real time as it can mean the diference between
life and death. In addition to predictive maintenance and
ongoing equipment repair, the digital twin can also assist
with the diagnosis and prevention of problems. Medical
digital twins can make life-saving decisions on the basis of
real-time and historical data with the help of AI [106, 107].

Regulations are one step to ensuring personal data is
protected, but FL is another way to build decentralized
training models. Te privacy and security issues associated
with data analysis within a digital twin are addressed by

Table 6: Challenges and possible solutions.

Challenges Reason for challenges Possible solutions

Confdentiality and
safety

Te fundamental issue with standard ML/DL models is
that data from personal devices, sensors, and wearables
from patients must be uploaded to a cloud server in order

to train the data using the ML/DL models

In FL, instead of transferring data to the central servers,
the ML model itself is deployed to each device to be

trained on the data

Data heterogeneity

Healthcare data is heterogeneous for a number of
reasons:

FL addresses the problem of heterogeneity by utilizing
FedProx

(i) Diferences among patient populations
(ii) Environments
(iii) Practices, and
(iv)Treatment protocols

Traceability and
accountability

In FL, one of the biggest challenges is ensuring that the
global ML model can be traced throughout the

underlying ML process

(i) Traceability should be ensured during the training
process to permit tracking of system events
(ii) Data access history and training confguration
changes, such as hyperparameter tuning

System architecture
Using a client device that provides training and

communication to the model can be difcult, which can
lead to low-quality models

Healthcare institutions have usually better computing
resources and high-speed networks compared to

consumers, so they can run FLs at scale

Client management Client management is an essential issue in FL, in contrast
to the centralized ML architecture

Client management involves helping a patient or client
develop a plan that coordinates and integrates essential

support services for the most optimal results and
outcomes

Health dataset issues Te majority of FL approaches are typically examined on
a single dataset with a limited number of features

An inference strategy is presented to enable participants
to use an ensemble of heterogeneous models without
needing to explicitly join the data in a single place
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keeping users’ data localized within an FL model, which
provides the desired outcomes in terms of implementing
data analytics [108].

6.6.4. FL and Blockchain for Healthcare. Te FL-based
technique would be able to help the healthcare providers
because it can improve the accuracy and robustness of the AI
model and that helps to make the model more generalizable
so that it could be used in the real-time environment [109].
At the same time, this approach would be able to save time
and cost.Temost important part is that we would be able to
get all the benefts from FL without leakage of information.

Te software and hardware manufacturers would get a
lot of benefts from the FL because collaborative learning is
possible between hardware devices and software applica-
tions without information leakage and the other beneft will
come in terms of validation of the AI-based model since it is
combined with the hardware devices that helps in contin-
uous improvement of AI-based models [110].

Researchers and developers get a lot of benefts from the
FL-based services because a huge amount of real data would
be available to them [111]. Tis will help the AI researchers
and developers to think about diferent algorithm strategies
that would help them to make robust models.

6.6.5. FL for Collaborative Robotics in Healthcare.
Collaborative robotic (Cobot) technology has been widely
adopted both by healthcare professionals and by those in-
volved in the medical device industry as a tool to improve
workforce efciency, facilitate workfow improvements, and
streamline safety procedures [112].

Healthcare collaborative robots are automated systems
deployed in the medical industry to perform various tasks,
starting from administrative tasks, lab testing, patient care,
and surgical aids. Tese cobots require an hour to fll the gap
between the ongoing medical industry burden and staf
shortage. Te rising requirement to facilitate automation in
the healthcare industry to reduce infection exposure to
front-line workers along with increased technological ad-
vancement in inpatient care services has infuenced the
healthcare collaborative robots market growth.

Te cobots are proved to be extremely efcient while
performing the lab testing tasks. High precision, fast
turnaround time, and reduced dependency on manual tasks
will positively infuence the lab testing applications. Te
other key promising federated application is patient care
which includes medicine dispensing, taking swab samples,
checking temperature and blood pressure, and conducting
various sample tests which have made it easier for health
workers to reduce their burden and utilize more time on
urgent matters.

6.6.6. FL and Explainable AI for Healthcare. IoT has
transformed the healthcare domain by introducing the In-
ternet of Medical Tings (IoMT); however, choosing anal-
ysis for distributed IoMT environment, analysis of the
enormous amount of data generated by IoMT devices in a

distributed environment, and achieving security of IoMT
devices is a challenging task. However, recent researches on
AI-enabled remote health monitoring systems were able to
monitor and prevent cyberattacks. Explainable AI is a
promising modern technology for identifying the com-
promised data during cyberattacks in IoMT-based patient
monitoring systems by enabling caregivers to fx the
problems. Also, the FL-based Wearable, explainable AI
frameworks will enable the user to have better communi-
cation using knowledge-based methods and also improve
user acceptance and task performance [113].

6.6.7. FL for Integration with 6G in Healthcare. Te enor-
mous usage of IoMTdevices in our daily activities results in
an explosive growth of data trafc, ML, and data-driven
approaches. Moreover, the surge in the development of
communication technology led to the in-novation of 6G
networks, by transforming wireless communication from
“connected things” to “connected intelligence,” expecting to
embody advanced AI various applications promising grater-
level of security and stronger privacy protections in the
healthcare domain. A large number of IoMT devices with
massive data in the 6G era will force individuals to deploy
efcient ML and AI-based algorithms to provide high-
quality services. However, implementing FL-based Edge
intelligence in 6G will bring in improved performance,
ultralow latency service, and enhanced privacy of the system
[114].

7. Conclusion

FL approach is a promising method for achieving strong,
precise, safe, robust, and unbiased modeling results. FL
facilitates communication between various parties without
the need to communicate or centralize data, thereby solving
difculties associated with critical health information. In
addition, this could lead to new business opportunities and
improved healthcare worldwide. In this paper, the authors
addressed the health sector’s opportunities and drawbacks
for FL. Te FL investigation is expected to continue for a
further decade since not every fundamental barrier has been
removed recently. Despite this, we think precision medicine
will have a great deal of impact on medical care in the future.

Data Availability

No data were used to support the fndings of the study.

Conflicts of Interest

Te authors declare that they have no conficts of interest to
disclose.

Acknowledgments

Te abstract object work is accepted to be presented as a
keynote speech at the following conference “2022 2nd In-
ternational Conference on Computer, Remote Sensing and
Aerospace,” Nagoya, Japan.

Computational Intelligence and Neuroscience 15



References

[1] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big
data in healthcare: manage- ment, analysis and future
prospects,” Journal of Big Data, vol. 6, no. 1, pp. 1–25, 2019.

[2] B. Liu, M. Ding, T. Zhu, Y. Xiang, andW. Zhou, “Adversaries
or allies? privacy and deep learn- ing in big data era,”
Concurrency and Computation: Practice and Experience,
vol. 31, no. 19, p. e5102, 2019.

[3] S. Agrawal, A. Chowdhuri, S. Sarkar, R. Sel- vanambi, and
T. R. Gadekallu, “Temporal weighted averaging for asyn-
chronous federated intrusion detection systems,” Compu-
tational Intelligence and Neuroscience, vol. 2021, 2021.

[4] Q. Li, Z. Wen, Z. Wu et al., “A survey on federated learn- ing
systems: vision, hype and reality for data privacy and pro-
tection,” IEEE Transactions on Knowledge and Data Engi-
neering, 2021.

[5] D. B. Larson, D. C. Magnus, M. P. Lungren, N. H. Shah, and
C. P. Langlotz, “Ethics of using and sharing clinical imaging
data for artifcial intel- ligence: a proposed framework,”
Radiology, vol. 295, no. 3, pp. 675–682, 2020.

[6] M. Chen, R. Mathews, T. Ouyang, and F. Bea- ufays,
“Federated learning of out-of-vocabulary words,” arXiv
preprint arXiv:1903.10635, 2019.

[7] A. Hard, K. Rao, R. Mathews et al., “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:
1811.03604, 2018.

[8] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang,
“Learning diferentially pri- vate recurrent language models,”
arXiv preprint arXiv:1710.06963, 2017.

[9] S. Ramaswamy, R. Mathews, K. Rao, and F. Beaufays,
“Federated learning for emoji Pre- diction in a mobile
keyboard,” arXiv preprint arXiv:1906.04329, 2019.

[10] T. Yang, G. Andrew, H. Eichner et al., “Applied federated
learning: improv- ing google keyboard query suggestions,”
arXiv preprint arXiv:1812.02903, 2018.

[11] J. Xu, B. S. Glicksberg, C. Su, P.Walker, J. Bian, and F.Wang,
“Federated learning for healthcare informatics,” Journal of
Healthcare Informatics Research, vol. 5, no. 1, pp. 1–19, 2021.

[12] R. U. Khan, X. Zhang, M. Alazab, and R. Ku- mar, “An
improved convolutional neural network model for intrusion
detection in networks,” in Proceedings of the 2019 Cyberse-
curity and cyberforensics confer- ence (CCC), pp. 74–77, IEEE,
Melbourne, VIC, Australia, May 2019.

[13] M. Alazab and R. Broadhurst, “Spam and crimi- nal activity,”
Trends and issues in crime and crim- inal justice, vol. 526,
pp. 1–20, 2016.

[14] P. Hill, Te Rationale for Learning Communities and
Learning Community Models, 1985.

[15] K. Kellogg, “Learning communities,” Eric Digest, vol. 45,
1999.

[16] W. Dai, S. Wang, H. Xiong, and X. Jiang, “Pri- vacy pre-
serving federated big data analysis,” Guide to Big Data
Applications, vol. 26, pp. 49–82, 2018.

[17] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Fed- erated machine
learning: concept and applica- tions,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 2,
pp. 1–19, 2019.

[18] R. Kumar, A. A. Khan, J. Kumar et al., “Blockchain-feder-
ated-learning and deep learning models for COVID-19
detection us- ing ct imaging,” IEEE Sensors Journal, vol. 87,
2021.

[19] Y. Xu, L. Ma, F. Yang et al., “A col- laborative online ai
engine for Ct-based COVID-19 diagnosis,” medRxiv, 2020.

[20] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and
J. Dureau, “Federated learning for keyword spotting,” in
Proceedings of the ICASSP 2019-2019 IEEE Interna- Tional
Conference on Acoustics, Speech and Sig- Nal Processing
(ICASSP), pp. 6341–6345, IEEE, Brighton, UK, 2019.

[21] F. Hartmann, S. Suh, A. Komarzewski, T. D. Smith, and
I. Segall, “Federated learning for rank- ing browser history
suggestions,” arXiv preprint arXiv:1911.11807, 2019.

[22] Y. Liu, A. Huang, Y. Luo et al., “Fedvision: an online visual
object detection platform powered by federated learning,”
Proceedings of the AAAI Conference on Artifcial Intelligence,
vol. 34, no. 08, pp. 13 172–13 179, 2020.

[23] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human ac-
tivity recognition using feder- ated learning,” in Proceedings
of the 2018 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Ubiquitous Computing & Com-
munications, Big Data & Cloud Com- puting, Social
Computing & Networking, Sustainable Computing & Com-
munications (ISPA/IUCC/BDCloud/SocialCom/Sustain-
Com), pp. 1103–1111, IEEE, Melbourne, VIC, Australia,
December 2018.

[24] J. Lee, J. Sun, F. Wang, S. Wang, C.-H. Jun, and X. Jiang,
“Privacy-preserving patient similarity learning in a federated
environment: development and analysis,” JMIR medical
informatics, vol. 6, no. 2, p. e7744, 2018.

[25] Y. Kim, J. Sun, H. Yu, and X. Jiang, “Federated tensor
factorization for computational phenotyp- ing,” in Pro-
ceedings of the 23rd ACM SIGKDDInternational Conference
on Knowledge Discov- ery and Data Mining, pp. 887–895,
Canada, 2017.

[26] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: distributed deep learning without
sharing raw patient data,” arXiv preprint arXiv:1812.00564,
2018.

[27] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and
Computer Applications, vol. 116, pp. 1–8, 2018.

[28] S. Silva, B. A. Gutman, E. Romero, P. M. Tomp- son,
A. Altmann, and M. Lorenzi, “Federated learning in dis-
tributed medical databases: meta- analysis of large-scale
subcortical brain data,” in Proceedings of the 2019 IEEE 16th
international symposium on biomedical imaging (ISBI 2019),
pp. 270–274, IEEE, Venice, Italy, April 2019.

[29] D. Liu, D. Dligach, and T. Miller, “Two-stage federated
phenotyping and patient representation learning,” in Pro-
ceedings of the conference. Asso- ciation for Computational
Linguistics. Meetingvol. 2019, 2019.

[30] B. Pftzner, N. Steckhan, and B. Arnrich, “Feder- ated
learning in a medical context: a systematic literature review,”
ACM Transactions on Internet Technology, vol. 21, no. 2,
pp. 1–31, 2021.

[31] N. Rieke, J. Hancox, W. Li et al., “Te future of digital health
with federated learning,” NPJ digital medicine, vol. 3, no. 1,
pp. 1–7, 2020.

[32] D. C. Nguyen, Q.-V. Pham, P. N. Pathirana et al., “Federated
learning for smart healthcare: a survey,” arXiv preprint
arXiv:2111.08834, 2021.

[33] R. S. Antunes, C. A. da Costa, A. Küderle, I. A. Yari, and
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