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Image captioning is a challenging modality transformation task in computer vision and natural language processing, aiming to
understand the image content and describe it with a natural language. Recently, the relationship information between objects in
the image has been investigated to be of importance in generating amore vivid and readable sentence. Many types of research have
been done in relationship mining and learning for leveraging into the caption models.Tis paper mainly summarizes the methods
of relational representation and relational encoding in image captioning. Besides, we discuss the advantages and disadvantages of
these methods and provide commonly used datasets for the relational captioning task. Finally, the current problems and
challenges in this task are highlighted.

1. Introduction

Image captioning[1–30] is to understand the content of an
image and further inference a natural sentence to describe it.
Te generated description needs to achieve satisfactory
accuracy, adequacy, and readability [9, 31–33]. Readability
requires the sentences to satisfy grammatical rules, the ac-
curacy makes the content of generated sentences conform to
the content of images, and the adequacy measures the ad-
equacy of the generated sentences to express the image
information. Te adequacy and accuracy of the sentence
include whether the visual vocabulary (describing the cat-
egory and attributes of the object) and the relational vo-
cabulary (describing the relationship between the objects)
are fully refected and whether they conform to the image’s
content.

Te early captioning methods theoretically use image-
to-text retrieval [1, 34] or flling sentence templates [35–37]
to improve the adequacy and accuracy of the generated
sentences. In technical, they mainly use the static object
categories and the statistical language model. In technical,
they mainly use the static object categories and the statistical

language model. About retrieval methods, Aker and Gai-
zauskas [34] used a dependency model to summarize the
information contained in multiple web documents and
localize this information to images. Kulkarni et al. [1] used
conditional random felds based on the objects detected in
the image to predict the image’s label for retrieval. About
templates’ methods, Li et al. [35] proposed a network-scale-
basedn-gram method to collect candidate phrases and other
form sentences. Yang et al. [36] proposed a language model
trained on the English Gigaword corpus to obtain the action
in the image and incorporated them into a hidden Markov
model. Lin et al. [37] used a 3D visual analysis system to
represent objects, attributes, and relationships in images.
Tey transformed them into a series of semantic trees, from
which they learned grammar and generated sentences.

However, the early captioning methods [1, 34–37] are
sufered from few shortcomings. Te template-based
methods would make the generated sentences rigid and
lack readability. At the same time, the retrieval would lead to
mismatches between images and texts, afecting accuracy or
adequacy. With the development of the deep learning
technology [38–49], Vinyals et al. [2] proposed an encoder-
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decoder model, which uses convolutional neural networks
[40] to understand objects and scenes in images, and uses
LSTM [44, 50] to model the long-term dependency between
words. Specifcally, the generation of individual words in
a sentence depends on the memory state and the image’s
global information. Xu et al. [3] incorporated an attention
mechanism with the encoder-decoder framework to align
text to specifc regions in an image. Lu et al. [4] proposed an
adaptive attention method that utilizes visual sentinels to
align nonvisual vocabulary during sentence generation. In
the related multimodal feld [51–57], Ding et al. [58] in-
troduced the attention mechanism to the video captioning,
so that themodel can adaptively focus on the elements, parts,
or details in the image when dealing with each frame. Qin
et al. [59] considered the visual coherence of the attention
region and introduced the memory ability in the attention
mechanism. For alleviating the accumulated error on sen-
tence generation, they proposed a new language model
which generates sentence chunks by chunks instead of
words-by-words.

Furthermore, to more accurately align objects with
words, Anderson et al. [5] adopted an object detection
network to detect objects and constructed a two-LSTMs’
decoder to learn the dependencies between words in sen-
tences and the alignment between words and image regions.
For enhancing the vocabulary coherence between words and
syntactic paradigm of sentences, Ke et al. [60] proposed
a new LSTM variant which considered the previous gen-
erated words and their relative positional information
during decoding. Tis perception can also bring great im-
provement when integrating it with the image captioning
models. Ding et al. [61] were inspired by the perception of
the human brain and adjust the attention weight of each
object according to its own color, area of bound box, and
visual permutations.

In recent years, with the development of full-attentive
models [9, 14, 18, 62, 63], Vaswani et al. [64] proposed the
Transformer to use attention to learn interactions of
intermodality and intramodality. Tey obtained excellent
achievements in natural language processing, such as ma-
chine translation. Zhu et al. [6] applied transformer to image
captioning and confrmed the efectiveness of the trans-
former in the captioning task. Te transformer learns the
interrelationships between object attribute features in visual
sequences through the encoder and utilizes attention in the
decoder to align text features with visual features. Under the
object features [38, 65] provided by the pretrained object
detection network [38, 43, 65], the accuracy and adequacy of
the visual vocabulary generation are signifcantly improved
with the reinforcement learning strategy [12, 66]. On the
other hand, BERT-based vision-language pretraining
methods [67, 68] concentrate on designing a unifed
framework for multiple vision-language tasks, which frst
optimize the object’s features by specifc pretraining ob-
jectives and then generating sentence after fnetuning the
features with the caption objective. Tose methods have
achieved a new higher-level performance in image cap-
tioning. Furthermore, Li et al. [69] have designed a decou-
pled encoder-decoder framework with a scheduled sampling

strategy for countering the incompatibility between VL
understanding and caption generation. Recently, Li et al.
[70] have used the cross-modal retrieval technique to
generate a primary sentence and refne its content with the
transformer blocks, which extremely improved the model
performance in the end-to-end training mode. In order to
have a better caption development, a unifed codebase [71]
has been proposed which covered many high performance
modules in each stage of the cross-modal analytics between
vision and language in the multimedia feld.

Since 2019, some studies [62, 63, 72–74] have begun to
focus on characterizing the relationship between objects
based on the abovementioned works to improve the gen-
eration of relational vocabulary. For modeling the objects’
relationships, researchers frst start from the basic spatial
relationship to explicitly perceive relational information and
establish alignment with relational words. Ten, they take
a far more step to mine the higher-level semantic re-
lationships hiding in the image. In this process, low-level
geometric spatial features are less difcult to be constructed,
but the constructed features are also less capable of repre-
senting complex relationship categories in textual modality.
Te relationship between objects can be refected by multiple
relationship categories with similar meanings, which belong
to multirelational data. In the case of multirelational data in
images, fnding higher-level relational features is a difcult
challenge. After feature construction, how to efectively
combine relational features in the feature optimization stage
so that the optimized features can have good separability for
diferent relational categories is a problem worth studying.
In order to follow up the development of relational image
captioning, it is necessary to overview the previous works
about relationships and assist the following researchers in
improving the intelligence of captioning models. Tis paper
mainly classifes and summarizes the extraction methods of
this relational information and their corresponding
encoding methods in the current image captioning.
According to the frame shown in Figure 1, we overview the
main line of relational captioning and summarize a taxon-
omy of relational methods. Meanwhile, the commonly used
datasets and evaluation measures are available in this paper.
Te advantages and disadvantages of methods and future
development prospects are analyzed.

1.1. Contributions. Our contributions in this paper are
shown as follows:

(1) Combining all previous studies in relational image
captioning, we summarize a taxonomy of relational
information processing in the image, which includes
feature construction and encoding. Meanwhile, we
introduce the corresponding methods and analyze
their strength and weakness.

(2) We review the relevant datasets involved in the re-
lational image captioning, covering relational un-
derstanding and image captioning datasets. Te
metrics used in evaluation are also recorded in
this paper.
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(3) We observe and analyze the development of the
relational image caption and enumerate the main
challenges in this area and future development
directions.

Tis paper is organized as follows: the second section
briefy introduces the content of the visual branch in re-
lational captioning, mainly about the basic knowledge and
overall framework commonly used in the relational image
description. Te third section explicitly describes the con-
struction of relational features in images. Te fourth section
mainly describes the encoding of relational information.Te
ffth section mainly describes the datasets and related
evaluation indicators used to extract and learn relational
data in image captioning. Te sixth section concludes and
presents the prospect of future development in this feld.

2. Backbone

Te backbone of relational captioning is the standard
encoder-decoder framework [2–4] as the common cap-
tioning task. It is irrelevant to the relationship but is nec-
essary to discuss for constructing the whole procedure. As
shown in Figure 1, the backbone consists of two parts:
encoder and decoder. Given an image I, relational cap-
tioning begins with objects detected from the object detector
[38].Te encoder refnes each element in the visual sequence
and further feed it into the decoder for generating a natural
sentence.

2.1. Encoder

2.1.1. Full-Attentive Encoder. Initializing from the visual
sequence V � v1, v2, . . . , vn􏼈 􏼉, the purpose of the encoder is
to enrich each object’s feature. Recently, transformer-
dominated full-attentive models [2] play an important
role in relational captioning. Te most important compo-
nent in transformer is the scaled dot-product attention
operator, whose structure is shown in Figure 2(a). Its cal-
culation formula is shown as follows:

Att(Q,K,V) � softmax
QKT

��
d

√􏼠 􏼡V. (1)

It calculates the similarity of each query vector q ∈ Rd in
the query matrix Q ∈ RN×d and each key vector in the key
matrix k ∈ Rd.Te generated attention weight E � QKT. E is

multiplied with V so that each output vector comes from
a weighted sum of each element in V and its corresponding
weight in the weight matrix. Meanwhile, to further enhance
the model representation ability of the attention operator
[64] and speed up the convergence of the model during the
training process, the multihead attention mechanism [64] is
combined with the conventional attention operator, as
shown in (b) in Figure 2. Its formula is calculated as follows:

MAtt(Q,K,V) � Concat
i�1:h

Att Qi,Ki,Vi( 􏼁( 􏼁. (2)

i is the index of each head. Each head is a segmentation of
the original feature space. Te dimension of each subspace is
d/h, where h is the number of total heads. Te multihead
attention mechanism performs self-attention calculations in
each subspace and further fuse all outputs from each sub-
space with Concat. After passing through the encoder, the
optimized sequence of object features is fed into a sub-
sequent decoder to generate sentences.

2.2. Decoder

2.2.1. LSTM-Based Decoder. Decoders for relational cap-
tioning are various language models, commonly using
LSTM [44], transformer, and their variants. We denote the
output of the encoder as X � x1, x2, . . . , xn􏼈 􏼉. Given X,
Anderson et al. [5] build a decoder with two LSTMs, which
contain an attention LSTM and a language LSTM, re-
spectively. Te attention LSTM takes the word embedding
vector wt−1 and the hidden layer state of the language LSTM
hl

t−1 at the last moment and the global visual feature (average
of all object features) g as the input to calculate the current
moment’s hidden layer state ha

t .

h
a
t � LSTM g; wt−1; h

l
t−1􏽨 􏽩, h

a
t−1; θ

a
􏼐 􏼑,

􏽥αc
t,i � w

T
c tanh Wxcxt,i + Whch

a
t􏼐 􏼑,

αct � softmax 􏽥αct( 􏼁.

(3)

As an attention query, ha
t computes the attention score

􏽥αc
t,i with each element of X. Te αct is the context attention

weight for fusing X into a context vector. Te language
LSTM takes the current hidden state ha

t of attention LSTM
and the context vector to generate the current word
representation wt.
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Visual Objects

Two zebros
standing on
the ground

BackBoneRelational Branch

Tensor-based method
Geometric multiplier
Geometric bias

(i)
(ii)

Positional Relation
Relative Geometric tensor
Absolute Geometric tensor
Geometric Graph

Motion Relation
Semantic tensor
Semantic graph

(i)
(ii)

(i)
(ii)

(iii)
Graph-based method

Label-aware GCN
Scene Graph Auto-Encoder
Multi-relational GCN

(i)
(ii)

(iii)

Encoder
Full-attentive encoder(i)

Decoder
LSTM-based decoder
Refective decoder
LSTM-based decoder for graph
Transformer decoder

(i)
(ii)

(iii)
(iv)

Figure 1: Te taxonomy of the visual relationship.
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2.2.2. Refective Decoder. In the word-by-word decoding
process, modeling the previous content and the positional
information of each word is benefcial for generating words
in the current time step. Ke et al. [60] enhance the LSTM-
based decoder with refective attention and refective posi-
tion modules. In the LSTM-based decoder, the output of
language LSTM hl

t is followed by a linear function for
generating the current word. In the refective attention
module, it replaces hl

t with an attended result 􏽢h
l

t reasoned by
the previous generated content.

αrefi,t � Wl
htanh Wl

h2
h

l
i + Wl

h1
h

a
t􏼐 􏼑,

αreft � softmax a
ref
t􏼐 􏼑, a

ref
t � αrefi,t

t

i�1,
(4)

where αrefi,t is the attention weight corresponding to each hl
i in

i-th time step. Besides, 􏽢h
l

t is constrained by the relative
position of each word in the sentence with a loss function
which minimizes the distance between 􏽢h

l

t and t/n, where t is
the time step of each word and n is the length of the sentence.

2.2.3. LSTM-Based Decoder for Graph. For introducing the
graph structure into the language decoder, Chen et al. [74]
proposed a variant of a conventional two-LSTMs decoder
which consists of two modules: graph-based attention
mechanism and graph update mechanism. Te graph-based
attention mechanism computes two attention weights: αct
and αft . α

c
t is the context attention weight which follows the

two-LSTMs decoder. αft is the fow attention weight which
constrains the model to attend the semantically relevant
node within the neighbors of the previous attended one.
Specifcally, it is a soft interpolation of the three fow scores
with a dynamic gate. According to the diferent moving
steps, the three fow scores are computed with the adjacency
matrixMf : (1) stay at the same node αft,0 � αt−1, (2) move one
step αft,0 � Mfαt−1, and (3) move two steps αft,2 � (Mf )

2αt−1.
Te fow attention is computed as follows:

st � softmax Wsσ Wshh
a
t + Wszzt−1( 􏼁( 􏼁,

αft � 􏽘
2

k�0
αf

t,k,

βt � sigmoid wgσ Wghh
a
t + Wgzzt−1􏼐 􏼑􏼐 􏼑,

αt � βtα
c
t + 1 − βt( 􏼁αft .

(5)

Te fnal attention weight αt takes a balance between αct
and αft with a gate function. To avoid repetition and omission
in the attention process, Chen el al. [74] use a graph update
mechanism to dynamically remove or preserve some nodes
with a visual sentinel ut.

ut � sigmoid fvs h
l
t; θvs􏼐 􏼑􏼐 􏼑αt. (6)

Te scalar ut,i indicates whether the generated word
expresses the attended node. For avoiding repetition, an
erase gate for the i-th node et,i is computed according to its
visual sentinel ut,i. Meanwhile, if a node needs multiple
access, an add gate for the i-th node at,i is also computed to
preserve its status.

et,i � sigmoid fers h
l
t; xt,i􏽨 􏽩; θers􏼐 􏼑􏼐 􏼑,

􏽢xt+1,i � xt,i 1 − ut,iet,i􏼐 􏼑,

at,i � σ fadd h
l
t; xt,i; θadd􏼐 􏼑􏼐 􏼑,

xt+1,i � 􏽢xt+1,i + ut,iat,i,

(7)

where f∗ are fully connected networks and θ∗, W∗, and w∗
are the learnable parameters.

2.2.4. Transformer Decoder. Te transformer decoder pro-
posed by Vaswani et al. [64] is also widely used in image
captioning, which consists of multiple sublayers. Te textual
features in each sublayer frst learn the interaction within its
modality through self-attention, then align specifc object
features through the cross attention between the textual
features andX. Tey fnally pass the fully connected layer to
generate the representation wt of the word at the current
moment. wt fnally generates the corresponding word
through the mapping matrix and the softmax function.

In summary, relational image description’s overall
process is generating sentences through the visual branch. At
the same time, the relational branch processes the object-
level relational features to be integrated into the visual
branch. In the vision branch, given an image I, the object
feature sequence V obtained by target detection is used as
input, and then X is obtained by encoder learning. Te
commonly used models in encoders are mainly transformer
encoders or graph convolutional networks [72–76].Ten, Ve

is input to the transformer decoder or double LSTM to
generate natural sentences word-by-word.

3. Relational Branch

Te relational branch is the core of relational captioning. It
concentrates on the encoder part and incorporates the re-
lationship between objects into the encoder. It includes two
steps:(1) feature construction and (2) relational encoding.
Te relationships in image can be divided into two cate-
gories: (1) position relationships and (2) action relationships,
corresponding to the positional words and predicate words.
As shown in Figure 3, the position relationship refers to the
geometric relationship between the objects, which can be
expressed as positional words in sentences, such as “in” and“
on.” On the other side, the action relationship represents
more complicated and higher-level semantic relationship
between the subject and the object. In textual modality,
a predicate generally represents one kind of action re-
lationship, As shown in Figure 3. Tis section mainly in-
troduces diferent relational feature construction methods
and feature encoding methods according to the diferent
types of relations.

3.1. Feature Construction. Te frst step in relational cap-
tioning is extracting and constructing relational features.
Many studies have explored the relationship between objects
in images in visual relationship detection and scene un-
derstanding. Te position relationship represents the up-
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down, left-right relationship between two objects in the 2-
dimensional space. It corresponds to the words describing
the position in the sentence, such as “on” and “near”. Te
action relationship between objects represents a specifc
action, which is corresponding to a particular predicate verb
in the generated sentence. Figure 3 defnes the above-
mentioned two kinds of relationships. In this section, we
mainly summarize the current extraction methods of these
two kinds of relational information and list the advantages
and disadvantages of each technique.

3.1.1. Positional Relationship. Te positional relationship
between objects is usually represented by the geometric
relationship between two objects’ bounding boxes in
two-dimensional space. Given an image I and N object
boxes in it, the position vector of each object box is
represented as (xi, yi, wi, hi), and the geometric re-
lationship between the object boxes includes the relative
distance, relative angle, and relative area between the
object boxes. According to the diferent data structures,
the representation methods can be divided into two
types: (1) tensor and (2) graph.

3.1.2. Relative Geometric Tensor. Te main idea is to con-
struct aN × N × d tensor to represent allN × N object pairs.
Each of these relations is a d-dimensional vector. Herdade
et al. [62] and Guo et al. [63] used the relative distances of the
box’s center and relative size ratios between objects’ boxes to
construct geometric vectors:

log
xj − xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

wi

⎛⎝ ⎞⎠, log
yj − yi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

hi

⎛⎝ ⎞⎠, log
wj

wi

􏼠 􏼡, log
hj

hi

􏼠 􏼡⎛⎝ ⎞⎠.

(8)
Te subscripts i and j represent the image’s i-th and j-th

objects. Te external logarithmic function plays a numeri-
cally stable role in ensuring that when the width and height
of the object box i are very small.Te output value will not be
too far away from the mean value, resulting in excessive
variance and making the model difcult to converge. All the
N × N object pairs’ geometric vectors form the N × N × 4
geometric tensor. Meanwhile, the activation ReLU flters the
negative elements when two objects’ boxes are very close.

In summary, the geometric feature mainly describes the
relative distance between the center points of the two object
boxes and the relative size ratio between the object boxes. It
can provide basic prior information about the object’s size
and location, which is very helpful for image understanding.
However, the geometric features extracted by this method
are not enough to represent high-level semantic relationship
categories, and they are also interfered by the scale in-
formation of the bounding box when representing diferent
spatial orientations, that is, the amount of relationship that
needs to be calculated is large, and all object pairs in the
image need to be considered in the calculation process. In
practical use, if a complex network model is constructed to
learn geometric feature tensors, it often brings a lot of
computational costs. To a certain extent, the learning ability
of the model for the position relationship information be-
tween objects is limited.
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Q K V
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Figure 2: Te scaled dot-product attention and multihead attention.

Man on ship Man sitting on ship

Figure 3: Te example for illustrating the positional relation and motion relation.
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3.1.3. Absolute Geometric Tensor. Te absolute geometric
tensor directly maps the coordinates of the object frame in
the image to the feature space. Luo et al. [77] designed
a transformer variant for processing grid features and object
features and used an absolute geometric tensor to encode the
positional information of each grid in the feature map. It is
represented by the concatenation of two 1-d sine and cosine
embeddings:

GPE(i, j) � PEi;PEj􏽨 􏽩,

PE(pos, 2k) � sin
pos

100002k/(d/2)
􏼠 􏼡,

PE(pos, 2k + 1) � cos
pos

100002k/ dmodel/2( )
􏼠 􏼡,

(9)

where i and j are the row and column indices of the grid,
respectively, and PE∗ is the position encoding vector of the
d/2 dimension. pos is the corresponding position, and k is
each dimension. For object features, it directly maps the
coordinates to the feature space. Its formula is as follows:

RPE(i) � BiWemb, (10)

where Bi � (xmin, ymin, xmax, ymax) are the coordinates of the
upper left corner and lower right corner of the object
bounding box. Wemb is the embedding matrix. Absolute
geometric features are geometric features aimed at fxed
image regions, which can efectively improve the spatial
separability of features, but they lack fexibility.

3.1.4. Geometric Graph. Te data structure of a graph can
naturally use edges to represent the relationship between
nodes. Terefore, using the graph to represent the re-
lationship in relational captioning is natural. Specifcally, for
the graph structure data G � (V, E), its composition in-
cludes the node set V and the edge set E. Each node cor-
responds to an object in the image. In related tasks in the
multimodal feld, nodes generally contain corresponding
node features, and the representation matrix of all nodes in
the node set is X ∈ Rn×d. In addition to the nodes, each edge
in the edge set is represented as eij � (vi, vj) ∈ E. At the same
time, if edge features are required, all edge feature matrices
are Xe ∈ Rm×c, where the feature of each edge between i-th
and j-th objects is a c-dimensional vector Xe

i,j ∈ Rc.
Since the edge represents the relationship between two

objects, it can be expressed formally as follows: <subject-
relation-object>, where subject indicates that the subject-
object corresponds to vi, an object indicates that the object
corresponds to vj. Te neighbors of a node v can be
expressed as N(v) � u ∈ V|(v, u) ∈ E{ }. Its adjacency matrix
A is a matrix of n × n, where Aij � 1 if eij ∈ E, Aij � 0 if
eij ∉ E.

One approach to embedding relational information into
the edges is to classify the positional relation and assign it as
a label to each edge. Yao et al. [72] discretized the positional
relationship based on the geometric features between two

objects’ boxes and assigned categories to each edge to build
a directed graph. Specifcally, according to the diference in
the positional relationship between the two object boxes,
they can be divided into 11 categories, as shown in Figure 4.
Specifcally, categories 1 and 2 are the inclusion and included
relationships between the subject and the object, re-
spectively. Category 3 is the overlapping relationship be-
tween the two objects with their IoU greater than or equal to
0.5. Te remaining categories are divided into 8 categories
according to the relative angle between the center points,
representing 8 diferent positions, respectively. After clas-
sifying the positional relationship into a number of specifc
categories, the corresponding label is further assigned to
each edge to construct the graph. An example of its graph
structure is shown in Figure 5(a), which belongs to a directed
fully connected graph. Te feature corresponding to each
edge is a specifc category of positional relationship.

In summary, the graph-based approach can naturally
utilize the adjacency matrix to characterize the relationship
between objects. Te graph is more interpretable and
controllable than the tensor method. Te tensor method is
equivalent to processing an undirected fully connected
graph when it uses full attention for subsequent learning.
However, the relational content represented by each edge in
the graph still depends on a small number of spatial cate-
gories, which result in poor performance in representing
complex relational words in sentences.

3.2. Motion Relationship. Te action relationship between
objects is more specifc than the positional relationship,
which refects the relationship at a higher semantic level.
With the diferent data structures, the motion relation can
also be divided into the following two forms: (1) tensor and
(2) graph.Te frst method is more intuitive.Te complexity
of the motion relation makes it difcult to represent by the
geometric feature. Terefore, many studies [73, 74, 78–81]
begin to directly mine the information from the image
content, extract the features of relevant image regions, and
represent them in the form of tensor. Te second method
uses the graph pretrained by the upstream tasks to generate
a suitable graph.

3.2.1. Semantic Tensor. Given an image and its N objects,
the motion relation is represented in the form of
a N × N × d tensor. Specifcally, for the action relationship
between object i and object j, the tensor-based method
attempts to extract the union content of the two objects in
the image to represent the corresponding relationship. Te
extracted image area must contain two objects’ bounding
boxes simultaneously to ensure that the extracted content
contains an accurate action relationship and avoid other
noises as much as possible. Te image region from which
Zhang et al. [82] extracted features is the minimum cir-
cumscribing moment of the two object boxes, as shown in
Figure 5. Specifcally, for the coordinate (xi, yi, wi, hi) of the
object i and the space coordinate vector (xj, yj, wj, hj) of the
object j, the coordinate of the union box is follows:
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max xi +
wi

2
, xj +

wj

2
􏼒 􏼓, max yi +
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2
, yj +

hj

2
􏼠 􏼡.

(11)

Te union image area passes through the pretrained
convolutional network to obtain the corresponding features.
Each image can obtain a relation matrix of N × N × d for
diferent downstream tasks.

In summary, the tensor-based method stores the image
features that characterize each relational region into re-
lational tensors for the subsequent learning of relational
information.Tis method is relatively straightforward, but it
inevitably introduces noise. Te noise here refers to re-
lational information that is irrelevant to the relation con-
tained in the generated sentence. At the same time, in
general, there are many objects obtained by object detection.
In the image description task, the model directly calculates
allN × N relational features will bring a lot of computational
costs. In terms of model performance, the quality of gen-
erated sentences is determined by the extracted features,
which further depend on the structure of the pretrained

convolutional network and its training objectives in up-
stream tasks. Tis leads to researchers needing to spend
more energy on additional tasks. At the same time, after
considering the additional pretrained network, the caption
model is more computationally intensive overall.

3.2.2. Semantic Graph. Te graph method use pretrained
relationship detection networks in visual relation detection
to extract action relations between objects and construct
corresponding scene graphs. Specifcally, Yao et al. [72] used
the abovementioned method to build the graph, as shown in
Figure 5. Te pretrained model predicts the action re-
lationship and uses the relationship category as the edge
label. In each relational tuple <subject-predicate-object>, the
subject and object are the 2048-dimensional attribute feature
from the object detection network’s RoI pooling. Te image
region feature corresponding initializes the feature of the
predicate to the minimum circumscribing moment of two
bounding boxes belonging to the subject and object. Te
above features are concatenated together and then input to
the subsequent classifcation layer for obtaining the re-
lationship category of the predicate. Te N × (N − 1) re-
lational tuples are input into (excluding self-relations) the

sitting

Res4b22 feature
map

2048-d 512-d

Rol pooling Pool5 Concat Classifcation

(a)

Ship

Man Sitting

(b)

Figure 5: (a) Te left part infers the corresponding relationship labels from the pretrained relationship detection network and (b) the right
part represents the specifc relationship through the feature of the union box between the two objects.

C1: Inside C2: Cover 

C3: Overlap 
IoU≥ 0.5 IoU< 0.5

C4-11: Index=
45°
θij

θij

+ 3

Figure 4: Te discretization of positional relation of each object’s pair. Te bounding boxes of subject and object are marked with red and
blue, respectively.
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relational classifcation network. Edges with a probability
larger than 0.5 are kept to form an action graph, as shown in
Figure 6(b).

Yang et al. [73] constructed scene graphs based on
reference sentences in the training phase to reconstruct the
sentence to accomplish the auto-encode training. Te scene
graph divides its nodes into three categories: object nodes,
relational nodes, and attribute nodes. For each <subject-
predicate-object> tuple, the subject and object correspond to
the object node oi and oj. Te l attribute of the object
corresponds to the attribute node ai,l, and the relationship
between the two objects i, j corresponds to the relationship
node rij. Each node in the scene graph is represented by
a feature vector of eo, ea, er ∈ Rd, respectively. Te object
node oi and all of its attribute nodes ai,l have connections by
an edge from the object node to the attribute node. If there is
a relationship node, the subject-object node oi will frst
connect to the relationship node rij, and then the re-
lationship node rij will connect to the object object node oj.
Te constructed graph is shown in Figure 6(c). In terms of
implementation, they adopt the scene graph constructor
used in [83] frst to convert sentences into syntactically
independent trees and then convert the trees into scene
graphs according to the rules mentioned in [75].

Chen et al. [74] designed a customized captioning model
to generate sentences according to an abstract graph. Te
abstract graph is a scene graph customized according to the
user’s wish. Te diferent forms of description graphs de-
termine the level of detail in the generated caption. Spe-
cifcally, the abstract graph is constructed by the
combination of three types of nodes: (1) object nodes, (2)
attribute nodes (representing a specifc attribute of an object
node), and (3) relationship nodes. Te construction of the
abstract graph is to add the nodes and edges into the graph
according to the user’s interests. Specifcally, given all N

object boxes of an image, if the user wants to know the
content of the i object box, the object node oi is added to the
abstract graph. At the same time, if the user wants to know
about the attribute characteristics contained in the object
node oi, l attribute nodes are added, and each attribute node
corresponds to a path from oi to ai,l directed edges. If the
user wants to describe the relationship between two objects,
add the corresponding relationship node ri,j in the abstract
graph, and build the edge connection between the subject
and the object. Te subject-object node oi points to the
relationship node ri,j, and then the relationship node ri,j

points to the object object node oj. Te features corre-
sponding to the object nodes and attribute nodes in the
abstract graph adopt the visual features of the corresponding
object bounding box. Te extraction method for the re-
lational node is mainly used to extract the union frame
features of two objects. Te result of its construction is
shown in Figure 6(d).

In summary, the graph method represents more com-
plex action relationships between objects than the tensor
method. At the same time, some unnecessary relationship
information is also eliminated, which can better retain
important relationship content. Tere has also been a more
signifcant improvement in computational cost and model

performance. But the disadvantage is that it depends on the
efectiveness of the relationship detection network and relies
on training additional relationship information, which in-
creases the complexity of the entire process. In the geometric
graph, each edge represents a certain orientation. But in the
semantic graph, each edge directly corresponds to a re-
lational category. Tis more detailed representation of the
relationship makes the semantic graph more efective to
model the alignment of relational words. However, the
limited number of relational categories also limits the variety
of generated relational words. At the same time, the semantic
similarity between diferent categories is also eliminated due
to the classifcation operation.

3.3. Relational Encoding. For a diferent type of relational
data structure, the encoding methods can be divided into
two methods: (1) tensor-based method and (2) graph-based
method. Tis section mainly focuses on diferent relational
encoding methods used in relational captioning.

3.3.1. Tensor-Based Method. Te tensor-based method is
adopted when the positional relation information or the
action relation information is extracted as a relation feature
tensor. In this case, each image will correspond to a re-
lational feature tensor N × N × d. If it is a geometric feature
tensor between objects, then d is of size 4. And if it is the
relational feature tensor extracted from the relational action
information between objects, then the data of d depend on
the dimension of the model.

3.3.2. Geometric Multiplier. For the geometric tensor,
Herdade et al. [62] used the tensor as a multiplier to adjust
the attention weight in the self-attention of the encoder side.
In Section 2, the weight calculation in the self-attention
operator relies on the similarity between the query vector
and the critical vector. Te geometric tensor, the prior in-
formation of the positional relationship between objects, is
used to adjust each weight element in the self-attention
operator. Herdade et al. [62] use the following formula:

ωi,j

G � ReLU Emb(λ(i, j))WG( 􏼁, (12)

where λ(i, j) represents the (i, j)th vector in the geometric
tensor. Emb is an embedding layer, which frst maps the
geometric vector of 4 dimension to high-dimensional feature
space and then calculates each element’s positional in-
formation through sinusoidal position encoding. Finally, the
d-dimensional vector is transposed to a scalar factor through
WG, and negative values are fltered through the ReLU
activation function. Noted that the attention weight E in the
self-attention operator describes the similarity of i-th and j

-th objects in each element, which is the same as the geo-
metric tensor (describing the positional information of i-th
and j-th objects). As a result, taking ωi,j

G as the scaling factor,
adjust the element with the same i and j indexes in the
attention weight E. Te formula is shown as follows and
Figure 7(a) shows the framework:

8 Computational Intelligence and Neuroscience



ωi,j
�

ωij

G exp ωij

A􏼐 􏼑

􏽐
N
l�1ω

il
G exp ωil

A􏼐 􏼑
. (13)

Te geometric multiplier is designed to modulate the
attention weight between each pair of objects for introducing
the prior positional knowledge. Each value of the conven-
tional attention weight E is like the similarity between i-th
and j-th objects. With the shape identity, each value of the
geometric tensor is assigned to the corresponding value with
the same index in the attention weight. It is an ingenious and
convenient way to introduce positional information in in-
teractive learning. However, the efectiveness of generating
better sentences is agnostic and uncontrollable.

3.3.3. Geometric Bias. In addition to scaling the similarity
between the i-th and the j-th object in the weight matrix,
Guo et al. [39] adopted a biased method to adjust attention
weight. Specifcally, the geometric tensor passes through
a series of functions and is added to the original weight
matrix as a deviation. Guo et al. [39] designed 3 functions for
three types of geometric bias: (1) content-independent
geometric bias, (2) query-dependent geometric bias, and
(3) key-dependent geometric bias. Te content-independent
geometric bias is reasoned from the geometric tensor and is
independent of the visual content. Te geometric tensor is
transformed into a scalar through a learnable parameter wT

g .
Ten, it is directly added to the weight in the self-attention
operator after being fltered by the ReLU nonlinear function.
As shown in Figure 7(b), its calculation formula is as follows:

Gij � ReLU FC f
g
ij􏼐 􏼑􏼐 􏼑,

E � QKT
+ ReLU ωT

gG􏼐 􏼑.
(14)

Unlike the independent bias, the query-dependent and
key-dependent geometric biases take a further step to com-
pute the similarity with the visual query or key. As shown in
Figure 7(c), the specifc calculation method is as follows:

E � QKT
+ Q′TG,

E � QKT
+ K′TG.

(15)

Compared with the previous method, Luo et al. [83] used
the geometric tensor, including the absolute position geo-
metric tensor and the relative position geometric tensor.Te
absolute position geometric tensor is directly added to the

query vector and key vector as the position feature vector,
and the relative position geometric tensor is added as the
deviation of the attention weight E. As shown in Figure 7(d),
the calculation formula is as follows:

E �
Q + posq􏼐 􏼑 K + posk( 􏼁

T

��
dk

􏽰 + log(Ω), (16)

where pos∗ is the absolute position geometry tensor cor-
responding to each element in the query vector or key vector.
Ω is the relative position geometry tensor. Like themultiplier
method, the tensor-based process uses each element of the
geometric tensor to function on the element of the attention
weight with the same position. Tis method is straightfor-
ward and efective but less interpretable.

3.4. Graph-Based Methods. Te graph-based method is
specifc to processing the graph data. Te graph-structured
data flter some unreasonable relationships through the
prior knowledge learned in the pretrained model.

3.4.1. Label-Aware GCN. Yao et al. [72] designed a graph
convolutional network to take the knowledge from the la-
beled edge and its direction (Figure 8). Each node considers
all the connected labeled edges to fuse the relational label
and its connected nodes.

Specifcally, each image can be transformed into a se-
mantic and positional graph to represent the motion and
position relation. Te semantic graph is directed, and its
edges are labeled with the action relationship. Te positional
graph is an undirected graph with labeled edges. Tomake the
graph convolutional network aware of the edge’s label and its
direction, each layer is designed as follows:

v
t
i � ρ 􏽘

vj∈N vi( )

gvi,vj
Wdi r vi,vj( 􏼁

vj + blab vi,vj( 􏼁􏼒 􏼓
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

gvi,vj
� σ 􏽥Wdir vi,vj( 􏼁

vj + 􏽥blab vi,vj( 􏼁􏼒 􏼓,

(17)

where Wdi r(vi,vj) selects diferent transformation matrices
according to the type of each edge. Specifcally, if the i object
vi is the subject in a relation tuple <subject-relation-object>,
then the transformation matrix is W1; if the i object vi is the
object, then the transformation matrix becomes W2.

(a) (b) (c) (d)

man
woman

river

ship

C7
C4

C4C7

C7 C1

C4
C7

C4
C7

sailing

sitting

sitting sailing sitting

sitting

sailing sitting

sitting

... ...

Figure 6: Diferent types of graph structures are used when modeling the relationship between objects in an image. From the left to right,
respectively, (a), (b), (c), and (d).
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Similarly, when dealing with the self-connected edge, the
transformation matrix is set to be W3. lab(vi, vj) represents
the category of the edge. gvi,vj

is a weight function to de-
termine the importance of the edge in the calculation.
Compared with the conventional GCN, the label-aware
GCN introduces the relationship information in each
edge with the corresponding relational label. Te label

triggers the embedding function to form the edge features to
fuse the connected nodes’ relational information further. By
introducing the graph, the connection between nodes de-
termines the interactive learning and guides the model to
generate the content between corresponding objects. It is
more explainable than the geometric methods, which use the
full-connected graph.
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Figure 8: Graph-based methods: (a) label-aware GCN; (b) SGAE; (c) multirelational GCN with customized abstract graph.
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Figure 7: Geometric tensor methods.
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3.4.2. Scene Graph Auto-Encoder. Yang et al. [73] proposed
the Scene Graph Auto-Encoder (SGAE) model to learn
a recoder to optimize the original visual features through
reconstruction of the sentence in training.Te scene graph is
constructed from the ground-true sentence, and each visual
feature further fuses features according to the connection in
the graph. It is shown in Figure 6(c), which includes object
nodes, relational nodes, and attribute nodes.

xrij
� gr eoi

, erij
, eoj

􏼒 􏼓,

xai
�

1
Nai

􏽘

Nai

l�1
ga eoi

, eail
􏼐 􏼑,

xoi
�

1
Nri

􏽘
oj∈<oi−ri∗−o∗>

gs eoi
, erij

, eoj
􏼒 􏼓

+ 􏽘
ok∈<o∗−r∗i−oi>

go eok
, erki

, eoi
􏼐 􏼑,

(18)

where xrij
is the node feature of the relation node rij, and its

neighbor node features eoi
, erij

, and eoj
belong to the cor-

responding node in the relation tuple <oi-rij-oj>. xai
rep-

resents the attribute information of the i object node, and its
neighbor eoi

and eail
belong to the object node i and l-th

attribute feature. An object may have multiple attributes,
each attribute corresponds to an attribute node. N is the
total number of all attributes. xoi

represents the feature of the
i-th object node, <oi-ri∗-o∗> represents all the tuples whose i

-th object as the subject. <o∗-r∗i-oi> represents all the tuples
whose i-th node is the object. After passing the above-
mentioned embedding, they use the form of a memory
network to set up a dictionary matrix D ∈ Rd×V to optimize
the input node feature x. Te calculation formula is as
follows:

􏽢x � Dsoftmax DT
x􏼐 􏼑. (19)

Te optimized feature 􏽢x is input to the subsequent
decoder to regenerate the sentence and compare with the
real input sentence. Te error is fed back to the network for
self-encoding training. Te auto-encoder method uses the
reconstruction to learn the semantic knowledge which be-
gins from the sentence and regenerates it. Te semantic
knowledge refects in the scene graph and assists the in-
ference process. Te whole framework is shown in Figure 8

3.4.3. Multirelational GCN. Chen et al. [74] proposed
a customized abstract graph to generate specifc captions.
For representing each node, the features of the object nodes
and attribute nodes adopt the visual features of the corre-
sponding object bounding box, which are reasoned from the
object detection network. Te union bounding box’s feature
of two objects is used for the relational node. At the same
time, Chen et al. made various types of nodes corresponding
to diferent transformation matrices in feature embedding to
further distinguish diferent kinds of nodes. Te formula is
shown as follows:

x
(0)
i �

vi ⊙Wr[0], if i ∈ 0;

vi ⊙ Wr[1] + pos[i]( 􏼁, if i ∈ a;

vi ⊙Wr[2], if i ∈ r;

⎧⎪⎪⎨

⎪⎪⎩
(20)

where Wr[k] is the transformation matrix and its three
matrices corresponding to three types of nodes. pos[i] adds
the order information for diferent attribute nodes ai,l.
According to the abovementioned embedding methods, the
features of each node in the abstract graph are fused with
their adjacency nodes. Meanwhile, the directed abstract
graph is converted into an undirected graph which fts with
the GCN. Chen et al. [74] designed a multirelational GCN
(Figure 8) so that graph convolution learns diferent sets of
parameters according to the edge types. Tere are six dif-
ferent types of edges: (1) object node to attribute node, (2)
subject node to relational node, and (3) object node to
relational node point and their inverse edges. Te trans-
formation transforms the direct graph into a unidirected
graph and feeds into the multi-relational GCN to refne each
node’s feature. Diferent transformation matrices in each
layer of the graph convolutional network are used to map the
edges of diferent categories. Specifcally, each layer is cal-
culated as follows:

x
l+1
i � σ W

l
ox

l
i + 􏽘

r∈R
􏽘
j∈N

1
N

W
l
rx

l
j

⎛⎝ ⎞⎠, (21)

where l represents the diferent layers in the graph con-
volutional network, the parameters for diferent classes of
edges in each layer are shared. Trough stacking encoders,
each node feature is learned according to the connection
between the nodes in the graph. Te multirelational GCN is
based on the abstract graph, which the user designs for
generating the customized caption. Te controllable ability
has been improved, and the abstract graph determines the
attribute, object, and relationship feature fed into the model.

In summary, Table 1 summarizes the methods used in
relational feature construction and relational encoding by
current methods in relational captioning.

4. Dataset and Evaluation

4.1.Dataset. Temain datasets used in relational captioning
are the following 4 datasets: (1) VisualGenome [84]; (2)
MSCOCO [85]; (3) Flickr8K [86]/Flickr30k [87]; (4) PAS-
CAL 1K [7].

4.1.1. VisualGenome. Tere are 108K images in total and
many object annotations, attribute information annotations,
and relationship annotations between objects for tasks such
as object detection and visual relationship detection. In
relational captioning, it is mainly used as a pretraining
dataset to pretrain the object detection or the visual re-
lationship detection network. In the pretraining stage, the
training, validation, and test dataset split is followed by
Anderson et al. [5]. Specifcally, 98K images are used for
training, and the remaining 10K images are divided into
validation and test sets, respectively. When Yao et al. [72]
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pretrained the target detection network, the dataset was
fltered to retain 1600 object categories and 400 attribute
categories. When dealing with pretrained object detection
networks, it mainly selects the top 50 standard action re-
lationships and artifcially classifes them into 20 categories.

4.1.2. MSCOCO. Te Microsoft COCO Captions dataset
[85] is developed by Microsoft Team with the goal of scene
understanding, capturing images from complex scenes, and
can perform multiple tasks such as image recognition,
segmentation, and captioning. Te dataset uses Amazon’s
“Mechanical Turk” service to manually generate at least fve
sentences for each image. It contains more than 1.5 million
sentences. Te training set contains 82,783 images, the
validation set contains 40,504 images, and the test set
contains 40,775 images. In captioning tasks, the “Karpathy”
split [5] is the standard data split method, which takes 5000
images in the validation set for evaluation and 5000 images
for testing. Te rest of the training and validation datasets
are used for training.

4.1.3. Flickr8K/Flickr30k. Flickr8k [86] images are from
Yahoo’s photo album website Flickr, including 8,000 images,
6,000 images for training, 1,000 for evaluation, and 1,000 for
testing. Flickr30k [87] contains 31,783 images collected from
the Flickr website, mainly depicting human engagement.
Te manual label corresponding to each image is still fve
sentences.

4.1.4. PASCAL 1K. It is a subset of the well-known PASCAL
VOC challenge image dataset [7], which provides a standard
image annotation dataset and a standard evaluation system.
Te PASCAL VOC dataset consists of 20 categories. Am-
azon’s Turk Robot service was then used to label each image
with fve descriptions manually.Te dataset has the excellent
image quality and complete annotation, which is suitable for
testing algorithm performance.

4.2. Evaluation. Te evaluation standard of relational cap-
tioning is consistent with the standard evaluation used in
natural language processing to evaluate the similarity be-
tween the generated sentence and the ground-truth sen-
tence. Te evaluation metrics: BLEU [88], METEOR [89],
ROUGE [90], CIDEr [91], and SPICE [92]. For the fve
metrics, BLEU and METEOR are used for machine trans-
lation, ROUGE for automatic translation summaries, and
CIDEr and SPICE for image captioning. In principle, the

abovementioned evaluation metrics measure the n-gram
consistency between generated sentences and reference
sentences and are also afected by the importance and rarity
of n-grams in the corpus.

4.2.1. BLEU. As a widely used and essential evaluation
metric in machine translation, BLEU [88] mainly measures
the degree of the repetition between the generated sentence
and the reference sentence.Te number of identical n-grams
in both generated and reference sentences determines the
BLEU score. With the more signifcant number, the BLEU
score is higher, meaning the generated sentences are closer
to the reference sentences. With the increase of the n in n-
gram, BLEU considers the correlation no longer limited to
several words but prefers the correlation between contents.
Te higher the BLEU score, the better the generated
sentences.

4.2.2. METEOR. METEOR [89] mainly considers the in-
fuence of synonyms and word forms in comparing gen-
erated sentences with all reference sentences. When
evaluating the fuency of the sentence, METEOR is com-
puted based on the chunks, which are constructed by
considering the combination of semantically consecutive
words. Te word’s consistency between the candidate and
reference sentences is measured by the chunk. At the same
time, METEOR is calculated by combining the precision,
recall, and F-values of matching various cases.Te higher the
METEOR score, the better the sentence performance.

4.2.3. ROUGE. ROUGE [90] is a set of evaluation metrics
designed to evaluate text summarization. ROUGE-L is used
in relational captioning. It is calculated using the longest
common subsequence between the generated and reference
sentences. Te score is calculated by summing the recall and
precision of the longest common subsequence. Te higher
the ROUGE score, the better the sentence performance.

4.2.4. CIDEr. CIDEr [91] is an evaluation metric specially
designed for captioning. It measures the consistency of
image annotations by performing a term frequency-inverse
document frequency (TF-IDF) weight calculation for each
n-gram. Tis metric treats each sentence as a “document,”
represented as a TF-IDF vector, and then computes the
cosine similarity between the generated sentence and the
reference sentence. Tis indicator makes up for a short-
coming of BLEU, in which all words on thematch are treated

Table 1: Summary of the various methods in the relational captioning.

Methods Feature construction Relational encoding Decoder

GCN-LSTM [72] Positional relation: directed graph with label Convolutional graph network Two-LSTMs decoderMotional relation: directed scene graph
SGAE [73] Motional relation: directed scene graph Auto-encoder Two-LSTMs decoder
ORT [62] Positional relation: directed graph with label Attention multiplier Transformer
NG-SAN [39] Positional relation: directed graph with label Attention bias Transformer
DLCT [83] Positional relation: directed graph with label Attention bias Transformer
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equally. Meanwhile, it considers the importance of the in-
formation of each word itself. Likewise, the higher the CIDEr
score, the better the performance.

4.2.5. SPICE. SPICE [92] is a semantic evaluation metric for
image captions, which measures how efectively image
captions recover objects, attributes, and relationships be-
tween them. On the image captioning dataset, SPICE can
better capture human judgments of model captions than
existing n-gram metrics.

Table 2 shows the scoring index ranking of the models
used in the current relational image description on the
MSCOCO dataset.

5. Conclusion

Tis paper mainly summarizes the procedure of relational
captioning and the development of each part in recent years.
Te relational captioning further focuses on the relationship
between objects in the image. By introducing and in-
corporating the relationship information, the sentences
generated by the model have better sufciency and accuracy.
We summarize the framework used in relational captioning
and divide the relational procedure into two parts: feature
construction and feature encoding. Combined with the
characteristics of the relationship between objects, the re-
lationship is further divided into the positional relationship
and action relationship. Te methods used for learning each
relationship are discussed in the feature construction and
encoding stages. In addition, we also summarize the datasets
commonly used in relational captioning and the related
evaluation metrics of the model.

We conclude by summarizing the current challenges in
relational caption and clarifying our vision for this aspect.
Tere are two main challenges in relational captioning, which
is existed in feature construction and feature encoding. In
terms of feature construction, it is challenging to fnd an
appropriate method which considers as many relationship
categories as possible while satisfying the content correlation
between each relationship category on the textual modality.
Second, in terms of feature encoding, it is challenging to make
the feature perceive the semantic diference of various re-
lational information and maintain its original visual knowl-
edge. According to the abovementioned two challenges, we
believe that future work has the following space for im-
provement in relational captioning:

(1) Te feature construction of positional relationships
is mainly limited to the handmade geometric feature
extracted from objects’ bounding box in 2-

dimensional space. Te geometric feature is sus-
ceptible to the scale of the object box.

(2) Te feature of motional relationship depends on the
performance of the pretrained feature extracted
network. Better features can be obtained by adjusting
the training objectives of the pretrained network in
upstream tasks.

(3) About feature encoding, the current cross entropy or
reinforcement learning training objectives make it
difcult for the features output by the encoder to
fully refect the diferences between diferent re-
lationship categories while retaining visual knowl-
edge. Compared with the end-to-end training
method, the current pretraining-fnetuning method
[67–69] could use specialized objective function to
obtain more powerful features.

(4) Te alignment between relational features and re-
lational vocabulary is ambiguous. Te generation of
relational vocabulary mainly depends on the global
image information instead of relational features.
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