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Serial scanning electron microscopy (sSEM) has recently been developed to reconstruct complex largescale neural connectomes,
through learning-based instance segmentation. However, blurry images are inevitable amid prolonged automated data acquisition
due to imprecision in autofocusing and autostigmation, which impose a great challenge to accurate segmentation of the massive
sSEM image data. Recently, learning-based methods, such as adversarial learning and supervised learning, have been proven to be
efective for blind EM image deblurring. However, in practice, these methods sufer from the limited training dataset and the
underrepresentation of high-resolution decoded features. Here, we propose a semisupervised learning guided progressive
decoding network (SGPN) to exploit unlabeled blurry images for training and progressively enrich high-resolution feature
representation. Te proposed method outperforms the latest deblurring models on real SEM images with much less ground truth
input. Te improvement of the PSNR and SSIM is 1.04 dB and 0.086, respectively. We then trained segmentation models with
deblurred datasets and demonstrated signifcant improvement in segmentation accuracy. Te A-rand decreased by 0.119 and
0.026, respectively, for 2D and 3D segmentation.

1. Introduction

Te SERIAL scanning electron microscope (SEM) is to date
the solely available technique to resolve the details of the
large-scale neural circuits of animal’s nervous system at
nanometer resolution, in which the brain’s behavioral
repertoire and cognitive abilities are embedded[1]. Tis
approach is largely built on high-throughput automatic
acquisition and deep learning-based segmentation of un-
precedented amounts of serial SEM image data [2]. How-
ever, during the often months-long acquisition, image
blurring occurs at a signifcant frequency, mostly due to
improper autofocusing and autostigmation and tremen-
dously undermines the subsequent segmentation accuracy.
For a routine serial SEM imaging of thousands of sections

with 10–1000-foldmore tiles, it is simply unrealistic to revisit
and reimage every blurry tile. In addition, blurry SEM
images also hamper comprehensive preprocessing such as
stitching, alignment, and manual annotation. Terefore, a
postimaging method to restore the blurry images to high
sharpness without disturbing the acquisition is highly
desirable.

Conventional methods such as linear [3] or nonlinear
flters [4] had been explored to restore the latent high quality
images by deconvolutional approaches. However, it cannot
be generalized for practical applications, as they require
prior knowledge of the blur kernel. Simplifed assumptions
of the kernel model usually limit their performance on real
examples, where real blur models are much more compli-
cated than assumptions.
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Recently, deep-learning-based methods have been
proven capable of restoring blurry natural images to high
quality ones [5–7]. A few algorithms [5, 8] based on the
coarse-to-fne strategy were able to reconstruct fne level
details against irregular shapes. Adversarial learning was
further adopted [9] to learn the pixel spatial distribution
for better noise reconstruction. Teoretically, these su-
pervised learning algorithms developed for natural im-
age restoration can be implanted to deblur the SEM
image datasets of brain connectome, which own highly
irregular morphological features at vastly diverse scales,
and complex noise distribution at high frequency.
However, in practice, a real SEM dataset usually does not
contain paired clear and blurry images of the same feld
of view, which are required as training datasets. More-
over, SEM images of the brain are highly heterogeneous
from one tissue sample to another. Terefore, the
shortage of such training dataset greatly limits the
performance of supervised learning methods on brain
SEM image deblurring and further reduces the accuracy
of segmentation of neural structures.

In this work, we propose a semisupervised learning
guided progressive decoding network (SGPN) to address this
issue. In the network, the generator implements rich, high-
resolution features through several hybrid feature extractors
(HFEs) in order to progressively discern the features from less
informative interval regions such as the cytoplasm or the
vascular lumen. Additionally, the proposed semisupervised
learning enhances the deblurring performance with limited
supervised training data, promoting the generalizability on
blurry EM images across diferent brain samples. We then
demonstrate that the accuracy of subsequent instance seg-
mentation is greatly improved with deblurred real SEM image
datasets. Te proposed method is evaluated on three corpus
callosum SEM image datasets, M1, M2, and M3, from dif-
ferent mice and compared with a number of recently reported
deblurring methods. As shown in Figure 1, we compare the
state-of-the-art deblurring methods on the proposed pipeline
to demonstrate the improvement on the segmentation task.

To summarize, this paper makes the following
contributions:

(1) A novel architecture, semisupervised learning guided
progressive decoding network (SGPN), is proposed
to restore clear SEM images from blurry ones and
therefore to increase subsequent segmentation
accuracy.

(2) In the SGPN, we designed a hybrid feature extractor
(HFE) to optimize the representation of fne features
at high resolution and minimize information loss
during cross-scale decoding. By doing so, irrelevant
features in less informative regions become less
signifcant in learning.

(3) Te semisupervised learning is joined by adversarial
learning with diferentiable augmentation to ofer
the deblurring method higher robustness across
image datasets from diferent brain samples.

Te rest of the paper is organized as follows. A few
related works are reviewed in Section 2, followed by the
details of the proposed method in Section 3, experimental
results are presented in Section 4, and eventually, Section 5
concludes the paper with a brief summary.

2. Background and Related Work

A blurry EM image z can be modeled as the convolution of a
clean image x with a blur kernel k, as

z � k∗x + η, (1)

where ∗ denotes the convolution operation and noise η is
added. Given z, there are several methods that can obtain the
underlying clear image x. Early work used image priors such
as total variation [10, 11] and L0 gradients [12]. Tese
methods, however, cannot be generalized for practical ap-
plications as they require prior knowledge of the blur kernel.

Deep-learning-based methods have recently been de-
veloped to restore blurry images to clear ones [5, 8, 9, 13–15].
Sun et al. [13] and Chakrabarti [14] reported CNN-based
methods to remove motion blur with an unknown kernel. A
multiscale CNN with a coarse-to-fne strategy was then
developed by Nah et al. [5]. Tis approach preserves fne-
grained detailed information as well as long-range depen-
dency from coarser scales. Tao et al. [8] added encoding,
decoding, and ConvLSTM components into a scale-recur-
rent network to improve computational and statistical ef-
fciency. Furthermore, for blurry images acquired by SEM, a
coarse-to-fne strategy was adopted for deblurring [6] and
achieved better performance than conventional methods
such as the Wiener flter [16] and Richardson–Lucy algo-
rithm [17]. Tsai et al. [18] utilizes nonlocal self-attention
design to disentangle blur patterns of diferent magnitudes
and orientations with diferent receptive felds. However, the
limited constraints of CNN-based model will cause the
oversmoothing on the restoration results since the output of
each pixel is the average value of possible predictions. Kupyn
et al. proposed DeblurGAN [15] and DeblurGAN-V2 [9] to
obtain clear images through adversarial training for more
realistic pixel spatial distribution. Dong et al. [19] utilized a
generative adversarial network to deblur microscopic im-
ages.Tese approaches can reconstruct most high-frequency
information since generative adversarial network (GAN)
architectures focus on the source domain and target domain.
However, SEM images of biological specimens, especially the
nervous tissues, mostly have highly irregular structural
patterns spanning several orders of magnitude in dimension
and are extraordinarily heterogeneous across diferent
samples. Te aforementioned supervised methods that are
highly dependent on the available training dataset would
only achieve poor results in deblurring such biological SEM
images when the training dataset is insufcient or from
dissimilar specimens. Tus, it is essential to resort to sem-
isupervised learning.

Recently, semisupervised learning with GAN has dem-
onstrated outstanding performance on several tasks [20–23].
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In practice, these methods resorted to a limited number of
image pairs for supervised learning and utilized unlabeled
images to provide additional unsupervised constraints. In
the segmentation task, Huang et al. [22] used a discriminator
to measure the confdence score with unlabeled images and
its inferences. In order to provide additional constraints,
dual stream semisupervised learning for semantic seg-
mentation model through a GAN branch and a multilabel
mean teacher (MLMT) branch, respectively, was proposed
by Mittal et al. [23]. Unlike segmentation task, image res-
toration task optimized the whole image domain mapping
instead of the inference domain. Li et al. [24] proposed to
exploit the properties of real-world clean images via pixel
spatial distribution, sparsity of dark channel, and gradient
priors. However, this approach of unsupervised branches
only used global prior, which neglect the domain-specifc
knowledge. In [20], You et al. proposed a semisupervised
GAN-Cycle method to obtain higher-resolution images.
Moreover, based on GAN architecture, they developed a
nonlinear end-to-end mapping from noisy input images to
denoised and deblurred outputs. Yang [25] introduced a
semisupervised method to learn the marginal distribution of
each modality based on unpaired images by minimizing the
Wasserstein distance between the distributions of real and
fake images.

Tese methods present a GAN-based architecture and have
better performance when implementing semisupervised learn-
ing. In practice, we found that constraining domain mapping of
unsupervised images to real data distribution [20, 25] may yield
features to false positive distribution. More specifcally, the
generator output discriminative spatial distributions between

supervised datasets and unsupervised datasets because it utilizes
the discriminator to identify the dataset instead of data distri-
bution. Tis degeneracy of mapping exhibited on the rapid
convergence on unsupervised data distribution, while supervised
data are adversarial converging. In contrast to thesemethods, we
make a GAN architecture with semisupervised learning that the
unsupervised branch is constraining the domain map into
deblurred results from supervised images instead of clear images.

3. Proposed Method

Our model is a GAN-based, semisupervised learning ar-
chitecture. We implement multiscale CNN with a pro-
gressive decoding strategy as the generative network (G-Net)
and use semisupervised learning through the discriminator
network (D-Net) to increase the generalizability of the
deblur method. Furthermore, for smoother convergence of
pixel spatial distribution, diferentiable augmentation [26] is
added for the images that are fed into the D-Net.

3.1. Generative Network (G-Net). As shown in Figure 2, we
build our backbone network using feature pyramid archi-
tecture [27] with convolution block and light-weight re-
sidual block [28] on each scale of the encoder and decoder.
Additionally, on the right part of Figure 2, the progressive
decoding strategy is elucidated, which contains repeated
hybrid feature extractors (HFEs) to exploit coarse and
medium resolution information while preserving high-res-
olution information.
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Figure 1: Illustration of the segmentation pipeline. Te conventional pipeline uses blur augmentation to improve the model performance
against blurry efects. Te proposed pipeline feeds deblur images into the segmentation model.
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3.1.1. Hybrid Feature Extractors. As shown in Figure 3,
comparing with the residual block method (Figure 3(a))
[29], Lim et al. [28] removed two normalization layers and
one activation function (Figure 3(b)). For the image re-
construction tasks, the light-weight residual block has
similar performance but a lower computation cost. We
found multiscale CNN-based information loss amid
decoding. Terefore, we keep the light design of residual
block but add extra lower-scale features. For coarse-to-fne
resolution feature reconstruction, we assemble residual
blocks at Xi,j scale with features from upsampled Xi−1,j and
Xi−2,j, i∈ (0, 1, 2, 3, 4), j≤ (5−i) to enrich high-resolution
representation. We add skip connections between Xi,j−1 and
convolution results after the concatenation step. Further-
more, a convolution block is inserted after the element-wise

sum step. Te goal is to progressively decode the features
from low to high resolution, maximizing the efciency and
representation of the lower-scale features in the multiscale
CNN architecture.

3.2. Discriminative Network (D-Net). Conventional deep
learning-based image enhancement methods may cause
oversmoothing and extra blurring artifacts because they
output the average prediction for each pixel. Here, we in-
troduce a discriminator D and a generator G in our deblur
framework for better spatial pixel distribution. We aim to
solve an adversarial min-max problem V (D, G), which can
be described mathematically as follows:

min
G

max
D

V(D, G) � Ex∼pdata(x)[log (D(x))] + Ez∼pz(z)[log (1 − D(G(z)))]. (2)

Te generative network G aims to fool the discriminator
D by misleadingD to output higher score for the fake inputs,
while the discriminatorD tries to give a higher score for clear
images and a lower score for denoised images. With this
alternative approach, our generator G learns to restore
images similar result to the clear ones so that it becomes
difcult for the discriminator D to distinguish.

We adopt the idea of least squares GAN’s [30] dis-
criminator, which provides a smoother and nonsaturating
gradient to fx the vanishing gradients and stabilize the
training. We suppose LSGAN uses the a− b coding scheme
for the discriminator, where a and b are the labels for fake
data and real data, respectively. In addition, c denotes the
value that G wantsD to believe for fake data.Ten, we obtain
the following objective functions:

min
D

V(D) �
1
2
Ex∼pdata(x) (D(x) − b)

2
 

+ Ez∼pz(z) (D(G(z)) − a)
2

 ,

(3)

min
G

V(G) �
1
2
Ez∼pz(z) (D(G(z)) − c)

2
 . (4)

In order to make G generate similar spatial distribution
with D, we set c� b� 1 and a� 0 by using the 0−1 binary
coding scheme in equations (3) and (4).

3.3. SGPN. During the training of SGPN, we input paired
supervised images [zs, x] and unsupervised images zu, re-
spectively. As shown in Figure 4, both blurry images are fed
into G-Net to obtain the deblurred results zs and zu. Ten,
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Figure 2: Illustration of our G-Net. i and j on Xi,j represents the scale index and processing index. On the left-hand side is the feature
pyramid structure with residual blocks Xi,j on each scale. For the skip connection, we propose 1× 1 convolution layers to reduce the feature
channels and sum with decoded features for coarse decoding. On the right-hand side is our proposed progressive fne decoding structure
through HFE. Note that Xi,1 do not implement any processing, they are coarse decoded features from left. Moreover, we apply the Tanh
activation function to the output from X0,5 and the element-wise sum between output and input as global residual connection to obtain the
fnal result.
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the discriminator measures the distribution score for T(zs)
and T(zs) where T(·) represents diferentiable augmentation
[26]. Moreover, we calculate the textual and perceptual
diference between paired images zs and x from VGG-Net
[31]. Te deblur network G-Net is trained with four losses in
total: content loss, perceptual loss, adversarial loss, and
unsupervised loss.

3.3.1. Content Loss. We use a robust pixel-wise L1 function
as the content loss Lc for our deblurring network.

Lc � x − zs

����
����1. (5)

3.3.2. Perceptual Loss. Inspired by the benefts of the per-
ceptual loss in style transfer [32] and image super-resolution
[33] tasks, we use it to provide additional heterogeneous
structural features from the pretrained VGG-19 network
[31]. We compute the Euclidean loss between model output
G(zs) and the clear image x on the feature maps from conv3
3, whereC,H, andW represent channel, height, and width in
the following equation:

Lp �
1

C∗H∗W
VGG19(x) − VGG19 zs( 

����
����
2
2. (6)

3.3.3. Adversarial Loss and Unsupervised Loss. Te adver-
sarial loss and unsupervised loss aim to minimize the

diference of spatial pixel distribution between the genera-
tor’s output and the real clear images. Te loss terms Ladv
and Lus are defned as

Ladv � Ezs ∼pz(z) D T zs( (  − 1( 
2

 ,

Lus � Ezs,zu ∼pz(z) D T zs( (  − D T zu( ( ( 
2

 .
(7)

We use the discriminator D as a measurement of the
reconstruction score. T(·) represents diferentiable aug-
mentation [26] step of all the images before feeding to
D-Net. We conducted color, translation, and cutout aug-
mentation on each image. We also empirically conclude that
semisupervised learning through LSGAN can generate
higher perceptual quality and overall sharper outputs on
human visual perception. Furthermore, we aim to minimize
the spatial diference between zs and zu instead of real data
and zu. Tis step provides the constraint of learning invalid
distributions and features. Because we found that design to
converge zu into real data distribution leads to fast Lus loss
convergence and generate invalid distribution since the real
and fake data are unpaired.

3.3.4. Overall G-Net Loss Function. Te fnal loss function is
composed of three items with diferent weight values:

LG G, D, VGG19(  � Lc(G) + λadvLadv(G, D) + λusLus(G, D)

+ λpLp G,VGG19( ,
(8)

where λadv, λus, and λp are constant.
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Figure 3: Illustration of our hybrid feature extractor. (a) Common residual block; (b) light-weight residual block corresponding to the study
by Lim et al. [28] and Nah et al. [5]; (c) the proposed extractor with external features from other scales Xi−1, j, Xi−1,j. Tey are concatenated
(cat) inside the light-weight residual block.
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3.3.5. D-Net Loss Function. Instead of putting in unpaired
images as real and fake images into the discriminator
[21, 23], we prefer to use supervised images to maximize the
ability to distinguish between the spatial pixel distribution of
blurry and clear images. Te convolution layer in D is set up
with 4× 4 convolution kernel size layer with stride 2. An
instance normalization layer and a LeakyReLu activation
function are also implemented at each scale. Te loss term is
defned as

LD(G, D) �
1
2
Ex∼pdata(x) (D(T(x)) − 1)

2
 

+
1
2
Ezs∼pz(z) D T zs( ( ( 

2
 ,

(9)

where LD updated with supervised and unsupervised
dataset.

4. Experiment Results

4.1. Experiment Settings. Sample preparation and EM im-
aging parameters can be found in Table 1, “Sec” and “Img”
means section and image, respectively. M1, M2, and M3
represent diferent mice. Te blurry efects are shown in
Figure 5.When acquiring clear images of each section inM1,
we purposely generated three types of blurry images of the
same area. With 9 sections in M1, we can acquire 9 defo-
cusing images, 9 astigmatic images, and 9 images of both
efects. In order to justify the efects of section thickness and
sample diference across mice, in M2, we collected 15 sec-
tions with 40 nm and 60 nm thickness, respectively. On each
section in M2, we only generate one blurry efect while
acquiring a clear image. Eventually, we obtained 5 defocused
images, 5 astigmatic images, and 5 images of both efects
with 40 nm and 60 nm thickness, respectively. Both blurry
images in M1 and M2 are acquired by purposely adjusting
the objective lens, the stigmators. M3 contains clear and
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Figure 4: Illustration of model training structure. Firstly, the supervised image zs and unsupervised image zu are fed into the generator. For
the supervised learning, perceptual loss, adversarial loss, and content loss are calculated through VGG19, discriminator, and the supervised
image pair, respectively. For the unsupervised learning, we use the measurement score from the discriminator to minimize the diferences
between G(zs) and G(zu). Note that all the images that are fed into D-Net are processed with diferentiable augmentation.
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blurry images. However, blurry images in M3 are acquired
unintentionally, which means the blurry efects are
unknown.

4.1.1. Implementation Details. We split 27 high-resolution
EM images from dataset M1 into 1,728 subimages (1 K
resolution) and attribute them to training and testing sets at
diferent ratios. Similarly, we prepared 1920 subimages (1 K
resolution) from the dataset M2 for quantitative evaluation.
Ultimately, we manually annotated three diferent volume
datasets from M3 as M3-1, M3-2, and M3-3 for further
segmentation experiments.

We set 3× 3 as the kernel size of Conv layers with a zero-
padding strategy in residual blocks. For training, we set λadv,
λus, and λp equals to 0.1, 0.01, and 0.02, respectively. Our
model was trained by an SGD optimizer with a warm-up
learning rate strategy until it reaches 0.0001. We used
PyTorch [34] to implement models on 6 NVIDIA RTX3090
GPUs for training with mini-batch size 2 and 256× 256
resolution of image as inputs. During the training, we found
that implementing an instance normalization layer on each
scale of the pyramid structure (Figure 2) led to stable
training convergence.

4.2. Evaluation. We compare the performance of deblurring
methods of the following algorithms: DeepDeblur [5] and
SRN [8] with coarse-to-fne optimization, BANet [18] with
self-attention design, and the GAN-based architecture
DeblurGANV2 [9]. We selected peak signal-to-noise ratio
(PSNR) and structural similarity index metric (SSIM) [35] as
the criteria for quantitative evaluation.

4.2.1. Deblurring Comparison. Te evaluation of diferent
deblurring methods with a diferent rate between training
and testing is shown in Figure 6 and Table 2. For this ex-
periment, our semisupervised learning is implemented with
the rest of the images from M1. We can clearly observe that
the proposed method produces sharper and more accurate
reconstructions compared with other methods. When the
training dataset is limited, BANet [18] has the best PSNR
compared with other methods. Semisupervised learning
with a 50% training dataset works well, and our method
improves the performance by 2.49 dB and 0.186 on PSNR
and SSIM, respectively, while the other best-performing
method [18] achieves 2.28 dB and 0.179 on PSNR and SSIM.

In addition, we tested the images from dataset M2 to see
the generalization of deep-learning-based methods. Noted

Table 1: Mouse brain sample preparation and the parameters for EM image acquisition.

Dataset M1 M2 M3
Sec thickness 40 nm 40 nm and 60 nm 60 nm
Resolution 4 nm 4nm 4nm
EM (zeiss) GeminiSEM 300 GeminiSEM 300 Supra55
Cropped size 1 K∗ 1K 1K∗ 1K 3K∗ 3K
Num of secs 9 15 and 15 59
Total imgs 1728 960 and 960 59∗ 3

Acquisition Direction

El
ec

tro
n 

G
un

Clear Image Overfocus Astigmatism Unfocus+Astigmatism

Blurry Effects

Underfocus

z
x

y

Sa
mple

Figure 5: Illustration of our data acquisition. It includes the blurry efects such as underfocus, overfocus, astigmatism, and
underfocus + astigmatism.
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(Blur ratio) 5% 10% 20% 50%

Figure 6: Evaluation results from the M1 dataset. Te frst to the fourth column represents the 5% training dataset, 10% training dataset,
20% training dataset, and 50% training dataset, respectively.Te frst and last rows are blurry images and clear images. From the second row
to the ffth row represents the deblurring method corresponding to the study by Nah et al. [5], Kupyn et al. [9], Tao et al. [8], Tsai et al. [18],
and our proposed method. As shown in this fgure, our proposed method can reconstruct myelin sheaths and intracellular features with
accuracy.
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that M2 was collected on diferent mice, and it contains
40 nm and 60 nm thickness of sections. In this experiment,
the results of the proposed method were acquired by adding
the rest of the M2 dataset to the semisupervised learning
bank. Te quantitative and visual results are shown in Ta-
ble 3 and Figure 7. As it can be seen from Table 3, although
BANet [18] had a similar performance to our method in the
previous experiment, our proposed method outperformed
other methods with all the diferent ratios of the training
dataset. Because of the proposed semisupervised learning,
we can increase the capability of the model’s generalization
to overcome the challenge of feature gaps between datasets.
As shown in Figure 7, our proposed semisupervised learning
presents a real-world solution for deblurring cross samples
and section thickness.

4.2.2. Deblur Quality. To show the signifcance of diferent
deblurring methods, we demonstrated 2D segmentation
accuracy enhancement through A-rand [36, 37]. We trained
a 2D segmentation model to generate binary foreground
probability maps and instance contours [38]. For this
comparison, we collected 160 clear images fromM3 with the
resolution 1.5 K× 1.5 K as the training dataset. Since the
segmentation model is only trained on clear images, the
better the fnal segmentation, the better the deblurring
images are close to the training images. Moreover, for a fair
comparison, we implemented the same training augmen-
tation and test-time augmentation for training and infer-
encing for all the models. We note that the segmentation
model is only trained with clear images. Furthermore, we
removed blur augmentation, and then we input the
deblurred images for testing. After acquiring the inference
results from the segmentation model, eventual segmentation
results are obtained from the watershed algorithm. Noted
that in this experiment, all the adjustable parameters for the
postprocessing algorithm are fxed. Table 4 clearly shows
that the deblurred images produced by our method have
better cell feature recognition accuracy than the other state-
of-the-art methods on the 2D SEM image segmentation task.

Moreover, it demonstrates that a deep-learning-
based method can reconstruct most cell structures and
have a positive impact on the segmentation model as the
model is only trained by clear images. Tis experiment
clearly shows that our method can retain the important
features of cells while performing deblurring. Tis in
turn helps in achieving better segmentation results
compared to the other methods.

4.2.3. Deblurring-to-Segmentation Pipeline. We test the
segmentation model’s performance when feeding deblurred
images into their training, which becomes a deblurring-to-
segmentation learning-basedmethod. In this experiment, we
only optimize the segmentation model, while the deblurring
model remains unchanged. We choose M3-1 as the training
dataset, andM3-2 as the testing dataset. Table 5 clearly shows
our method has the highest segmentation accuracy than
other deblurring methods, which means our method has
richer and more accurate feature information feeding to
segmentation training. Moreover, as shown in Figure 8,
deblurring-to-segmentation pipeline performs better than
the single segmentation model on the 2D segmentation task.
Furthermore, the performance on 3D segmentation results is
shown in Figure 9. Te consecutive images demonstrate that
the proposed deblurring-to-segmentation approach can
increase segmentation accuracy. Moreover, this experiment
provides the solution for real-world defocused EM image
segmentation enhancement because this deblurring-to-
segmentation method outperforms the single 2D or 3D
segmentation model with the blur augmentation method.

4.2.4. Ablation Study. We conduct experiments on two
datasets with a 50% training dataset each from M1 and M2 to
study the contribution of each component in SGPN.We started
with an adversarial learning-based network with the least square
adversarial loss. Next, we progressively add components to
demonstrate their improvement and estimate the fnal deblurred
image. Te results are shown in Table 6. As shown in this table,
with the M1 dataset, the introduction of adding the perceptual
loss and diferentiable augmentation improved the performance
by 0.17dB and 0.033 on PSNR and SSIM, respectively. When
evaluating theM2 dataset, the performance improved by 0.15dB
and 0.013 on PSNR and SSIM.When SGPN is trained using LG
(G, D, and VGG19) with the M1 dataset, the ultimate model
gains 0.6dB and 0.055 on PSNR and SSIM compared with
adversarial learning. With the M2 dataset, we obtain an en-
hancement of 0.34dB and 0.027 on PSNR and SSIM, respec-
tively, compared with the baseline.

Figure 10 demonstrates the reconstructions of axons
using the M2 dataset with a sample thickness of 40 nm and
60 nm, respectively. As shown in this fgure, our baseline
model cannot recover most cell boundaries and fails to
reconstruct heterogeneous structures such as mitochondria
and vesicles until adding perceptual loss. On the other hand,
adding diferentiable augmentation for stable adversarial
training improves the spatial pixel distribution of cytoplasm

Table 2: PSNR (DB) and SSIM comparison between diferent deblur methods from the M1 dataset.

Method
5% training 10% training 20% training 50% training

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Blurry 14.85 0.159 14.85 0.159 14.86 0.160 14.86 0.160
Nah et al. [5] 16.21 0.258 16.35 0.269 16.51 0.272 16.92 0.286
Kupyn et al. [9] 16.23 0.229 16.30 0.232 16.73 0.268 17.08 0.312
Tao et al. [8] 16.37 0.276 16.49 0.281 16.58 0.288 17.01 0.297
Tsai et al. [18] 16. 3 0.287 16.62 0.298 16.67 0.317 17.14 0.339
Proposed 16.48 0.291 16.59 0.304 16.62 0.33 17.3 0.346
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Table 3: PSNR (DB) and SSIM comparison between diferent deblur methods from the M2 dataset.

Method
5% training 10% training 20% training 50% training

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Blurry 13.97 0.228 — — — — — —
Nah et al. [5] 14.31 0.246 14.42 0.254 14.55 0.261 14.65 0.276
Kupyn et al. [9] 14.38 0.263 14.46 0.269 14.58 0.278 14.72 0.285
Tao et al. [8] 14.45 0.257 14.57 0.263 14.65 0.269 14.74 0.294
Tsai et al. [18] 14.51 0.261 14.63 0.271 14.77 0.282 14.88 0.291
Proposed 14.77 0.27 14.86 0.289 14.92 0.290 1 .01 0.314
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Figure 7: Deblurring results from the M2 dataset. Te top row is the blurry EM image and its clear image. Te rest are deblurring methods
from the study by Nah et al. [5], Kupyn et al. [9], Tao et al. [8], and Tsai et al. [18] and our proposed method. Besides, each column represents
the number of training samples from M1. As can be seen from this fgure, on the fourth column, deblurring model without adversarial
learning causes spatial blur on the whole image.

Table 4: Segmentation accuracy on deblurred images.

Description 2D seg-model
Arand↓

w/o deblurring 0.459
Kupyn et al. [9] 0.360
Tao et al. [8] 0.373
Tsai et al. [18] 0.357
Propose 0.33 

Table 5: Segmentation improvement based on deblur-to-seg-
mentation learning-based method approach.

Description 2D seg-model 3D seg-model
Arand↓

w/o deblurring 0.406 0.252
Kupyn et al. [9] 0.302 0.233
Tao et al. [8] 0.316 0.231
Tsai et al. [18] 0.304 0.232
Proposed 0.287 0.226
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and the background region, but it does not provide a
stronger capability of distinguishing cell boundaries. Adding
semisupervised learning helps SGPN reconstruct qualita-
tively sharper SEM images with a more accurate cell
boundary. Furthermore, it has a positive impact on subse-
quent segmentation tasks.

4.3. Inference Time and Parameters. We profle the pa-
rameters of the models and inferencing times in Table 7. In
this section, we measure the inference time of a batch with
batch size 60.Te input size is 256× 256 for all the compared
methods. We observe that the self-recurrent models,
DeepDeblur [5], and SRN [8] consume longer runtime than

(a) (b) (c) (d) (e) (f )

Figure 8: Ablation study with the M2 dataset. (a) Blurry image; (b) adversarial learning (baseline); (c) adding perceptual loss; (d) adding
diferentiable augmentation; (e) adding semisupervised learning; (f ) clear image. First and second rows have section thickness of 40 nm and
60 nm, respectively.

DeblurGAN-V2 Proposed BANetBlurry Images SRN

Figure 9: Evaluation results for 2D deblur-to-segmentation approach design. Left column is the blurry image and its segmentation result;
SRN and DeblurGAN-V2 is the deblurring method corresponding to the study by Kupyn et al. [9], Tao et al. [8], and Tsai et al. [18],
respectively; right column is our proposed deblurring methods and segmentation results. Note that each column represents a diferent 2D
segmentation model. SRN, DeblurGAN-V2, and the proposed method are implemented through deblur-to-segmentation approaches. As
shown in this fgure, the deblur-to-segmentation approach performs better than a single 2D segmentation model with blur augmentation.

Table 6: PSNR (DB) and SSIM comparison of ABLATION study.

Method
M1 dataset M2 dataset

PSNR SSIM PSNR SSIM
Blurry images 14.86 0.160 13.97 0.228
Adversarial learning (baseline) 16.93 0.291 14.67 0.277
+ Perceptual loss 16.98 0.301 14.74 0.283
+ DifAug 17.10 0.324 14.82 0.290
+ Semisupervised learning 17.53 0.346 15.01 0.304
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Figure 10: Illustration of consecutive EM images for the training of the 3D segmentation model. EM volume: original EM volume with
focused and blur images and its 3D segmentation results; DeblurGAN-V2, SRN, and BANet: deblurring EM images according to the method
from Kupyn et al. [9], Tao et al. [8], and Tsai et al. [18], respectively, and its 3D segmentation results; proposed: deblurring EM images
according to the proposed deblurring method and our 3D segmentation results; label: annotated ground truth. Focused EM images are not
replaced, such as the ffth and seventh columns.Te rest of the deblurring images are implemented with diferent well-performed deblurring
methods. Note that deblur-to-segmentation learning-based approaches, GAN-based or not, are better than the single 3D segmentation
model with blur augmentation. Our proposed method has better performance on recovery of cell features and spatial noise distribution,
leading to higher segmentation accuracy.
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the nonrecurrent methods such as DeblurGAN-V2 [9],
BANet [18], and ours. As shown in Table 7, our method runs
faster than the DeepDeblur and has fewer parameters than
DeblurGAN-V2.

5. Conclusion

In this article, we implement augmented semisupervised
learning in a GAN where we introduce a network called
SGPN, containing hybrid feature extractors (HFE), for
EM image deblurring. Compared with existing models,
our proposed model can better represent the distinctive
spatial distribution of pixels in heterogeneous structural
features from microscopic images and is more general-
izable across diferent datasets. It demonstrates superior
performance to deblur EM images with diferent blur
efects using limited training samples. We gain 1.04 dB
and 0.086 improvements on PSNR and SSIM, respec-
tively, with 50% training dataset of the diferent samples.
Segmentation experiments prove that the proposed
model with semisupervised learning, when used as a
preprocessing step or deblur-to-segmentation approach,
achieves 0.119 and 0.026 decreases in the A-rand score
[36, 37] of 2D and 3D neural segmentation tasks. Our
work signifcantly improved the approach of promoting
segmentation accuracy by restoring the inevitable blurry
images in large-scale serial EM datasets, greatly facili-
tating the reconstruction of neural connectome maps, an
emerging feld of tremendous importance to the un-
derstanding of brain fundamental principles.
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