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Can J Gastroenterol 2001;15(3):166-176. Intestinal epithe-
lium is a rapidly renewing tissue in which cell homeostasis is reg-
ulated by a balance among proliferation, growth arrest,
differentiation and apoptosis (programmed cell death). Until
recently, studies on oncogenesis have focused on the regulation
of cell proliferation. The recognition that apoptosis must be
understood to comprehend how appropriate cell numbers are
maintained and how alterations in any part of the equation can
contribute to malignancy has led to an explosion of research in
this field. The first half of this review gives an overview of mor-
phology and mechanisms of apoptosis, emphasizing key areas of
genetic control such as the bcl-2 family and p53. The second half
of the review focuses on the role of apoptosis in normal cellular
homeostasis and tumorigenesis in the gastrointestinal epithe-
lium. The importance of understanding the molecular biology of
apoptotic pathways in cancer therapy and future directions are
also addressed.
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Rôle de l'apoptose dans l'homéostasie cellu-
laire et la tumorogenèse dans l'intestin
RÉSUMÉ : L'épithélium intestinal est un tissu qui se renouvelle rapide-
ment et dans lequel l'homéostasie cellulaire est régulée par un équilibre
entre la prolifération, l'arrêt de croissance, la différenciation et l'apop-
tose (mort cellulaire programmée). Jusqu'à tout récemment, les études
sur l'oncogenèse ont été centrées sur la régulation de la prolifération cel-
lulaire. La reconnaissance que l'apoptose doit être mieux comprise si l'on
veut déterminer comment les cellules sont maintenues en nombre appro-
prié et comment le changement de toute partie de l'équation peut con-
tribuer à la malignité a mené à une explosion de recherches dans ce
domaine. La première moitié de la présente étude donne une vue
d'ensemble de la morphologie et des mécanismes de l'apoptose, en met-
tant l'accent sur les aspects clés de la lutte génétique, par exemple la
famille bcl-2 et p53. La deuxième partie porte sur le rôle de l'apoptose
dans l'homéostasie cellulaire normale et la tumorogenèse dans l'épi-
thélium gastro-intestinal. Il est également question de la nécessité de
comprendre la biologie moléculaire des voies de l'apoptose dans le traite-
ment des cancers ainsi que des orientations futures.
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Apoptosis is an active, energy-dependent process of cell
death that occurs during development in response to

certain physiological stimuli and also, in steady-state syn-
thesis, in response to cell injury and stress (1). (The term
�apoptosis� is derived from the Greek words describing the
dropping off and falling off of pellets from flowers or leaves
from trees [2].) This type of cell death involves the deletion
of discrete cells within a tissue and differs from necrotic cell
death in that the cells that are eliminated by apoptosis are
processed without the initiation of an inflammatory
response.

The role of apoptosis in tumorigenesis is now well estab-
lished (reviewed in 3-8). Furthermore, there is increasing
recognition that many of the effects of chemo- and radio-
therapeutic agents are mediated by apoptosis (reviewed in
2,9-11). The first half of this review gives an overview of
the morphology and mechanisms of apoptosis, emphasizing
key areas of genetic control, such as the bcl-2 family and
p53. The second half of the review focuses on the role of
apoptosis in normal homeostasis and tumorigenesis in the
gastrointestinal epithelium. The importance of understand-
ing the molecular biology of apoptotic pathways in cancer
therapy and future directions are also addressed. Discussion
is restricted to the simple epithelium of the hollow organs of
the gastrointestinal tract rather than the liver and pancreas.

MORPHOLOGY AND
DETECTION OF APOPTOSIS

Morphological features of apoptosis: The seminal work of
Kerr et al (2) in 1972, building on earlier observations in
vertebrates (12) and insects (13), should be read by those
interested in assaying apoptosis because of the excellent
photomicrographs that document the morphological fea-
tures of the process.  

The morphological features of apoptosis can be sepa-
rated, for clarity, into three sequential phases (14). Initially,
a cell loses contact with its neighbours and detaches from
its substratum; the chromatin becomes condensed into cres-
cent-like caps at the nuclear periphery. There is nucleolar
disintegration, compaction of organelles with endoplasmic
reticulum dilation, clumping of ribosomal particles, cyto-
skeletal filament aggregation and cytoplasmic volume
reduction. There is also loss of specialized surface structures
such as microvilli and junctional structures. In the second
phase, blebs of plasma membrane develop, which can split
away from the cells. This is a very dramatic process and can
give the cells a �boiling� appearance when viewed on time-
lapse video microscopy. Both the nucleus and the cytoplasm
split into fragments of various sizes, with the remaining cell
becoming a round, smooth membrane-bound body referred
to as an �apoptotic body�. In the third phase, there is pro-
gressive degeneration of the residual nuclear material and
cytoplasmic structures. At this stage, the plasma membrane
becomes permeable to dyes such as tryptan blue. Apoptosis
is rapid and is often completed in vivo in 4 to 8 h, but it
may be much quicker in embryogenic cell systems and in
some cell cultures.

Identification and quantification of apoptosis: The num-
ber of techniques available for identifying apoptosis are
summarized in Table 1. Because apoptosis is defined by a
series of distinct changes in cellular morphology, light and
electron microscopy provide the best evidence for detecting
and quantifying apoptosis in intestinal epithelium. Many
contemporary studies on intestinal apoptosis supplement
traditional microscopy with in situ techniques for the
detection of broken DNA strands (15,16). In the strictest
sense, �programmed cell death� may be applied to circum-
stances where death is initiated by a genetic program that
leads to autonomous cell destruction. It is now recognized
that a cell may undergo �programmed cell destruction� with-
out fulfilling some, or all, of the morphological criteria of
apoptosis (17). When considering apoptosis in the intes-
tinal epithelium, this is not just a matter of semantic
debate.  For example, epithelial cells are shed from the tips
of the intestinal villi. Because the dimensions of the villi
tips are remarkably constant, it seems reasonable to assume
that the shed cells are undergoing a form of programmed
cell death. However, cells complying with the strict mor-
phological definition of apoptosis are rarely seen at the tip
of the intestinal villus, raising the question of whether
other mechanisms account for cell shedding.

When quantifying apoptosis by morphological features,
other caveats to the technique should be borne in mind
(18,19). The rapid nature of apoptosis means that in any
static analysis, a very small number of apoptotic cells
observed at a given instant might, in fact, reflect a very con-
siderable contribution to cell turnover. There are recog-
nized variations in the speed of apoptosis among cell types
and in relation to different insults. For example, the half-
life of apoptotic fragments following treatment with
hydroxyurea is approximately 3.5 h, while following radia-
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TABLE 1
Techniques for the detection of apoptosis
Traditional microscopy (11)

Light microscopy
Electron microscopy
Acridine orange fluorescence

Biochemical approaches (121)
Agarose gel electrophoresis
Pulsed field electrophoresis

Flow cytometry (reviewed in 122)
Unfixed cells (123)
Fixed cells (eg, propidium iodide [124])

In situ detection of broken DNA strands
5'-triphosphate nick end-labelling (TUNEL) (15)
In situ end-labelling (ISEL) (16)

Recently established techniques
Annexin V immunohistochemical expression (125)
Clusterin immunohistochemical expression (126)
In situ hybridization using digoxigenin-labelled poly (A) 

oligonucleotide probes (127)

References appear in parentheses
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tion it is 15 h (data from our laboratory). A caveat to these
remarks is that such half-life measurements relate to the
removal of apoptotic bodies by phagocytic digestion and
cell migration combined with the true duration of the cell
death process. Hall and Coates (20) have described a
counting technique termed the �wandering mean method�
in an attempt to overcome some of these limitations.

MECHANISMS OF APOPTOSIS
In its simplest model, the stages of apoptosis can be consid-
ered as initiation and signal transduction, genetic regula-
tion (discussed in detail below) and effector mechanisms
(Figure 1). There are numerous stimuli of apoptosis acting
through a variety of pathways, some of which are as yet
poorly defined. Broadly speaking, there are five pathway
classes: 

� receptor-mediated stimuli, such as glucocorticoids,
interleukin (IL)-3 withdrawal and activation of tumour
necrosis factor receptor or �death receptor� family
(Fas/CD95/APO-1 and tumour necrosis factor-R1)
(reviewed in 21);

� stress signals through the sphingomyelin pathway,
including ceramide and c-Jun kinase (reviewed in 22);

� those that induce DNA damage such as x-rays and
other forms of ionizing and nonionizing radiation,
including p53 pathways;

� poorly understood pathways such as uncoupling of
mitochondria via calcium channels and direct
activation of caspase via granzyme B; and

� agents that cause direct physical damage such as heat,
cold and ultraviolet light (Figure 2).

The search to understand the downstream effector path-
ways of apoptosis led to the identification of a whole family
of cellular proteases termed �caspases� (cysteine proteases
that cleave after aspartate residues) (reviewed in 23,24).
There are at least 13 different types that may be activated in
response to different apoptotic signals. Additionally, the
distribution of caspase isotypes varies between cells and tis-
sues, and it is likely that different activation systems operate
at different sites. The �classical pathway� includes Bcl-2
family proteins, Apaf-1 (apoptosis proteases-activating fac-
tor) and caspase 9 (25). An alternative pathway is ligand-
induced aggregation of �death receptors�, leading to
activation of caspase 8 via the adapter protein Fas-associ-
ated death domain protein (FADD)/Mort1 (reviewed in
26). The precise mechanisms leading to cell death after
activation of caspases are generally unclear, although cleav-
age of DNA by endonuclease is a cardinal feature (27).

GENETIC REGULATION OF APOPTOSIS
Caenorhabditis elegans and apoptosis: Observations made
in the nematode Caenorhabditis elegans have laid the foun-
dation for understanding the genetic organization of the
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Figure 1) An overview of apoptotic mechanisms. The schematic dia-
gram illustrates apoptosis initiation, signal transduction, genetic regula-
tion and effector mechanisms. FasL Fas ligand; IGF Insulin-like growth
factor; IL Interleukin; ROS Reactive oxygen species; TNF α Tumour
necrosis factor alpha

Figure 2) Schematic diagram illustrating the various pathways of apop-
tosis resulting in endonuclease cleavage of DNA and regeneration of
reactive oxygen species (explained in text). Multiple apoptotic signals
converge on caspase activation, many of which are regulated by Bcl-2
family proteins. ATM Ataxia-telangectasia malignancies gene;
cyt c Cytochrome c; FADD Fas-associated death domain protein; FasL
Fas Ligand; IGF-I Insulin-like growth factor-1; IL-3 Interleukin-3;
JNK/SAPK c-Jun kinase/stress-activated protein kinase; TNF Tumour
necrosis factor; TNFR Tumour necrosis factor receptor; TRADD TNFR-
associated death domain protein; TRAF TNFR-associated factor
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control of mammalian cell death (reviewed in 28,29).
During this organism�s development, precisely 131 of 1090
somatic cells undergo programmed cell death (30). Eleven
genes control this process, of which three, called ced-9, ced-3 and
ced-4 (the C elegans �apoptosome�), have been studied in
detail. Normal functioning of ced-9, which has striking sim-
ilarity to the mammalian bcl-2 gene, is required to prevent
cell death (31). Moreover, human bcl-2 can prevent cell
death in C elegans and can substitute for ced-9 in ced-9-defi-
cient nematodes. The ced-3 gene encodes a 2.8 kb mRNA,
which has significant homology with the human caspase
(32,33).  Part of the sequence of Apaf-1 shows striking sim-
ilarity to that of ced-4, while Apaf-2 is homologous to
cytochrome c (34).
Mammalian Bcl-2 family genes: The bcl-2 oncogene was
initially discovered as a result of its involvement in the
chromosomal translocation t(14;18)(q32;q21) in human B-
cell lymphoma (35). Subsequently, it was demonstrated
that bcl-2 prevented the induction of apoptosis in B cells
following withdrawal of IL-3 (36). This anti-apoptotic
property of bcl-2 has been demonstrated in many cell sys-
tems (reviewed in 37,38). The Bcl-2 protein has a molecu-
lar mass of 24 kDa and has been shown to be located in the
nuclear membrane, mitochondrial membranes and endo-
plasmic reticulum (39). Its mechanism of action is not
understood, although particular attention has been paid to
the possibility that its anti-apoptotic effect is via an antiox-
idant action (40).

It has become clear that Bcl-2 is only one of a family of
related proteins that are involved in apoptosis control
(Table 2). These all have a degree of homology with Bcl-2,
especially within the conserved domains BH1 and BH2. A
third domain, BH3, appears to confer pro-apoptotic activity
(41).  Bcl-x is one family member that can be alternatively
spliced to form either Bcl-xL (which inhibits cell death) or
Bcl-xS (which promotes apoptosis) (42). Bcl-x protein
expression has been demonstrated in a number of tissues,
but the distribution is different from that of Bcl-2 (43). Bax
(bcl-2-associated x protein) encodes a 21 kDa protein that
can either homodimerize or heterodimerize with Bcl-2 (44),
and it is proposed that the Bcl-2:Bax ratio determines

whether a cell will undergo apoptosis or survival � Bcl-2 in
excess protects cells from apoptosis, and Bax in excess
(homodimers predominate) induces cell apoptosis. This is
known as the Bcl-2/Bax �rheostat�. Bad and Bak are addi-
tional Bcl-2 family pro-apoptotic members that can either
homodimerize or heterodimerize with Bcl-2 (45,46). It is
likely that these proteins interact with one another and
other proteins to different degrees in different cell types to
control apoptosis. 
The p53 tumour suppressor gene: The p53 cellular pro-
tein was first described by Lane and Crawford (47), and
Linzer and Levine (48) as a complex with the simian virus
40 large T antigen in virally transformed rodent cells.
Mutant p53 acts as an oncogene, but wild p53 is a tumour
suppressor gene because transfection into cells suppresses
transformation caused by other oncogenes. The gene is
located on chromosome 17p in humans, and mutations of
p53 have been found in a wide range of human cancers,
including most gastrointestinal malignancies, although the
site of mutations depends on tumour type (49-51). 

The biochemical function of p53 is to bind to specific
DNA sequences, including the promoters of the mdm-2
(murine double minute), Gadd-45 (growth arrest and DNA
damage) and Waf-1/Cip-1 (Cdk-interacting protein) genes.
The last of these is probably the most important; the gene
product of Waf-1/Cip-1 is a 21 kDa protein (p21WAF1/CIP1) that
can bind to cyclin A- and E-dependent kinase II and cyclin
D-dependent kinase, preventing progression past the G1
phase of the cell cycle, and may also be involved in con-
trolling G2 progression in some cell types (reviewed in 52).

In 1992, Lane (53) proposed that p53 was the �guardian
of the genome�.  If DNA is damaged, p53 accumulates and
switches off replication to arrest cells in G1 and to allow
extra time for repair. If repair fails, p53 may trigger cell sui-
cide by apoptosis. The importance of this is illustrated by
experiments demonstrating that p53 wild-type mouse
embryos, but not p53 null mice embryos, will readily abort
following radiation-induced teratogenesis (54,55). How p53
induces apoptosis is not clear, and there may be more than
one mechanism � p53 alters the balance between Bax and
Bcl-2, favouring cell death (56); alternatively, p53 increases
the expression of at least 14 genes, termed �p53-induced
genes�, of which three are potent generators of reactive oxy-
gen species (57). Whether a cell undergoes p53-mediated
growth arrest or p53-mediated apoptosis is probably related
to functional levels of p53 (52) and p21WAF-1/ CIP1 (58).

There is emerging evidence that, analogous to bcl-2, a
p53 family of genes is involved in cell cycle control and
apoptosis. Two additional members, p51 and p73, have
recently been identified (reviewed in 59). Both proteins, at
least when overproduced, can mimic the ability of p53 to
induce apoptosis but, in contrast, appear infrequently
mutated in human cancers.
Other apoptosis regulatory genes: Recently, an increasing
number of transcription activators have been identified in
the initiation and manifestation of apoptosis (reviewed in
60). Examples of cell growth inhibitory transcription fac-
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TABLE 2
Regulatory proteins of apoptosis

Anti-apoptotic (pro-survival) Pro-apoptotic
Bcl-2 family

Bcl-2, Bcl-xL, Mcl-1, Bak subfamily:
Bcl-w (128), Bax, Bak, Bok, Bcl-xS

BH-3 only homologues:
Bid, Bad, Bik, Blk, Hrk, Bim  

Others
RB p53 family: p53, p73 (59)
Survivin (129) c-jun (27)
Bcl-10 (130) c-myc (131)
Bag-1 (132)

References appear in parentheses
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tors are insulin receptor substrate-1, signal transduction and
activation of transcription (STAT) proteins, and examples
of cell growth stimulatory transcription factors are c-myc,
AP-1 and nur77.

APOPTOSIS IN THE NORMAL INTESTINE
Intestinal epithelium: The intestinal epithelium is a rap-
idly renewing tissue in which tissue homeostasis depends on
both cell proliferation and cell death (reviewed in 61).
Most studies of this renewal process have focused on the
control of cell proliferation. However, it is becoming increas-
ingly apparent that the control of cell death is equally if not
more important in the regulation of cell numbers and ulti-
mately susceptibility to neoplastic transformation.

Potten and co-workers (reviewed in 62-65) have devel-
oped and validated a method for quantifying epithelial cells
in relation to their position along the long axis of the intes-
tinal crypt, with position 1 at the base of the crypt (Figure 3).
Using this methodology, it is clear that the intestinal crypt
has a well defined and polarized topographical organization
in which the hierarchy, lineage or cellular �age� can be
assessed by the position of that cell in the tissue. Careful
analysis of cell positional behaviour and hierarchies in the

crypts of the murine colon and small intestine suggests that
the cell renewal in colonic and small intestinal crypts is
broadly similar, with a few important differences. In the
murine small intestine, there are approximately six stem
cells or lineage ancestor cells per crypt located at cell posi-
tions 4 to 5, just above the Paneth cells. In the murine
colon, the number of stem cells is probably similar, but they
are thought to be located at the base of the colonic crypts
(cell positions 1 to 2) (66).
Spontaneous and induced apoptosis: When studying apop-
tosis and using the murine model, intestinal tissue is fixed
in Carnoy�s fixative, carefully sectioned so that the crypt/
villus units can be viewed in longitudinal section and
stained with hematoxylin and eosin. Apoptotic bodies and
fragments can be readily identified and reliably distin-
guished from mitotic and normal cells. To quantify apopto-
sis, each cell position along the long axis of the crypt,
counting the base of the crypt as cell position 1, is scored as
to whether it contains a normal cell, an apoptotic body or
fragment, or a cell undergoing mitosis. These data relating
cell status to cell position can be simply analyzed by com-
puter (67). An apoptotic index defined as the total number
of cells with one or more apoptotic fragments at that cell
position can be calculated. Statistically valid results can be
obtained by counting 200 to 300 well orientated half crypt
sections from four to six mice (68). Over a decade of per-
forming studies at our laboratory, we have shown that the
pattern of spontaneous apoptosis in the small intestine is
different from that in the large intestine. In the former,
spontaneous apoptotic cells are readily observed but are
restricted to the stem cell region (positions 4 to 5), whereas
in colonic crypts, spontaneous apoptosis is very infrequent.
Some authors report that spontaneous apoptosis occurs pre-
dominantly in the outer third compartment of the colonic
intestinal crypt (69,70), and others indicate that it occurs
within the lower crypt compartments (71); we have
observed it occurring in a less topologically restricted way
(Figure 4). Critically, however, few apoptotic cells are
observed at the base of the colonic crypts, where the stem
cells are located. This naturally occurring or spontaneous
apoptosis, which is p53-independent, has been interpreted
as part of the stem cell homeostatic mechanism. When the
process is regressed by bcl-2, the colonic stem cell numbers,
and hence carcinogen target cells, may gradually drift
upwards with time (63).  Additionally, in comparison with
the small intestine, the damage-induced apoptosis response
in the large intestine is blunted and distributed throughout
the crypt. These observations of the differential amounts
and position of apoptosis in the crypts led to the hypothesis
that damaged small intestinal stem cells were deleted by an
�altruistic� apoptotic process, thereby protecting this site
from genetic and carcinogenic damage, whereas in the
colon, damaged cells survive with the consequence of
increased susceptibility to neoplastic transformation (62).

Investigations of apoptosis at other sites in the gastroin-
testinal tract are less plentiful. Hall et al (71) found mor-
phological evidence of apoptosis, both at the base of gastric
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Figure 3) Evaluation of event frequency by cell position. a A longitu-
dinal section of a colonic intestinal crypt, illustrating how the position of
events up the crypt axis can be determined (position 1 being at the crypt
base). b When a number of crypt cross-sections are counted, an event
frequency at each cell position can be plotted
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glands and at the luminal surface, while other studies have
reported evidence of apoptosis along the entire length of
the gastric mucosal pit (72). Helicobacter pylori, the princi-
ple cause of type B gastritis and peptic ulcer disease, and
classified as a type I carcinogen for gastric cancer (73), reg-
ulates gastric cell growth by direct induction of apoptosis.
In terms of tumorigenesis, this is paradoxical (see below),
but one explanation may be that long term increases in
apoptotic rates act as a stimulus to hyperproliferation and
the subsequent promotion of neoplasia (74,75). 
Bcl-2 family, p53 and apoptosis in the intestinal crypt:
Bcl-2 is minimally expressed in the small intestine of both
mouse and human but more strongly expressed at the base
of colonic crypts in both species, indicating that this may be
involved in over-riding the apoptotic (both spontaneous
and induced) homeostatic mechanisms in these cells. This
hypothesis is supported by the finding that, in bcl-2 knock-
out mice, the incidence of spontaneous and induced apop-

tosis is dramatically increased in the stem cell region of the
colon but unchanged in the stem cell region of the small
intestine (76).  

Immunohistochemical and immunoblot studies from
Krajewski et al (77-79), Kitada et al (80), and Wilson and
Potten (81) have characterized the intestinal expression of
various Bcl-2 family members (Figure 5). Moss et al (69),
observing apoptosis mainly at the luminal surface in normal
human colonic epithelium, reported a strong positional cor-
relation between Bak expression and apoptosis. Overall, the
differential positional expression of pro- and anti-apoptotic
factors fits with the hypothesis that their ratios in a given
cell (�rheostats�) are important in controlling the sensitivity
of that cell to apoptosis. 

The expression of wild-type p53 in the normal intestinal
epithelium is low; therefore, the role of p53 in spontaneous
apoptosis was examined in studies comparing normal and
p53-knockout mice. Interestingly, the levels of spontaneous
apoptosis were similar in both types of mice, indicating that
spontaneous apoptosis is p53-independent (68). In con-
trast, when the changes that occur in p53 expression fol-
lowing exposure to ionizing radiation in the small and large
bowel were examined, interesting patterns emerged. In the
small intestine, there was a strong p53 immunoreactivity
that overlaid the apoptosis cell position incidence fre-
quency plot precisely, whereas radiation damage in the large
intestine resulted in increased levels of p53 and apoptosis

Apoptosis and intestinal epithelium

Can J Gastroenterol Vol 15 No 3 March 2001 171

Figure 4) Frequency of S-phase and apoptotic cells along the length of
an intestinal crypt. a Small intestine. b Colon. The frequency of cells
labelled with tritiated thymidine (S-phase) at each cell position (unirra-
diated adult mouse) is shown as a continuous line; the frequency of
spontaneously occurring apoptosis (unirradiated adult mouse) is shown
as a dashed line; and frequency of radiation-induced apoptosis (42 h
after 1 Gy gamma-irradiation) is shown as a dotted line. In the small
intestine, peak frequency of apoptosis is at cell positions 4 to 6. In con-
trast, apoptosis is less topographically restricted in the colon. The pro-
posed stem cell positions for small intestine and colon are indicated by
the arrowheads

Figure 5) Diagram of expression of p53, p21 and various members of
the Bcl-2 family in the small intestinal (a) and colonic epithelia (b).
*Radiation induced
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occurring at a lower level and distributed along the whole
crypt. However, apoptotic bodies were surprisingly negative
for p53 protein expression, suggesting that the presence of
p53 at cell position 4 (stem cells) is associated with regula-
tion of cell cycle check point genes and/or initiation of
repair mechanisms (82). The p53 knockout studies sug-
gested that damage-induced apoptosis is p53-dependent in
the small intestine and illustrates the limited ability of
colonic stem cells to undergo apoptosis (83).

APOPTOSIS AND INTESTINAL
TUMORIGENESIS

Animal models and cancer development: Over the past
decade, the experimental use of transgenic models has
helped elucidate some of the mechanisms underlying the
pivotal role of apoptosis in oncogenesis (reviewed in 84).
Transgenic mice bearing a bcl-2-immunoglobulin minigene
designed to mimic the human t(14:18) translocation highly
express bcl-2 in B cells. As with the human B-cell lym-
phoma counterpart, lymphoid tissue from these mice pro-
gresses spontaneously to a benign hyperplasia and, after
many years, to high grade malignant large B-cell lym-
phoma. The extended latency indicates that bcl-2 expres-
sion alone is insufficient for tumorigenesis and an
additional transforming event, such as a rearranged myc
gene, is required (85).

Additional studies using viral oncoproteins as tools in
transgenic mice models have clearly shown a role for apop-
tosis suppression in tumour progression. Symonds et al (86)
used a choroid plexus epithelium (CPE) model � a normally
nondividing brain epithelium cell. Expression of a wild
T antigen in CPE results in aggressive nonclonal tumour
growth, whereas truncated T antigen (T121), which inacti-
vates the pRB (retinoblastoma) protein but not p53,
induces very slow growing tumours (87). This indicates that
p53 inactivation in these cells contributes to tumour pro-
gression rather than initiation. Indeed, tumour growth is
retarded by wild-type p53 (88).
Apoptosis in intestinal tumorigenesis: What is the evi-
dence that abnormalities in apoptosis are involved in the
development of intestinal tumours? Using morphology to
quantify apoptosis, a number of studies have found an
increased apoptosis index from normal colonic epithelium
through adenomas to the carcinoma stage (89,90).
Additional evidence comes from the observation that a
number of dietary factors (eg, fibre) and chemopreventive
agents (eg, nonsteroidal anti-inflammatory drugs ([NSAIDs])
prevent colonic tumour formation by promoting apoptosis.
For example, it has been proposed that the chemopreven-
tive effect of NSAIDs results from increased intestinal
apoptosis brought about by decreased expression of Bcl-2 as
a result of cyclo-oxygenase (COX)-2 inhibition (91).

A further role of apoptosis in intestinal tumorigenesis
may lie at the epithelial-lymphoid cell interface. Fas ligand
(FasL) induces apoptosis in sensitive immunocytes (Fas
receptor [FasR]/APO-1/CD95 receptor positive) and regu-
lates several immune responses, including contributing to

immune privilege. FasL was originally thought to be
expressed only in lymphoid cells but has now been shown to
be expressed in epithelial cells from many organs. This has
been termed the �Fas counter-attack� (92). FasL expression
has been demonstrated in a number of human colon cancer
cell lines in vitro (93) and neoplastic colon epithelial cells
in vivo (94), suggesting that the Fas counter-attack is a
prevalent mechanism of immune evasion in colonic cancers.
Bcl-2 family and p53 expression in intestinal tumours:
Many groups have performed (mostly by immunohisto-
chemical means) studies of p53 and Bcl-2 expression in col-
orectal neoplasia. Accepting the methodological limita-
tions of these approaches (95), a number of general
conclusions emerge that suggest that dysregulation of the
expression of these apoptosis-controlling genes occurs dur-
ing colorectal tumorigenesis: 

� p53 protein expression occurs more frequently in
colorectal carcinomas than in adenomas (96,97) and is
associated with a poorer prognosis (98). In sporadic
colorectal carcinogenesis, p53 mutations are likely to
be a late event � a hypothesis supported by the
observation that p53-null mice do not develop
spontaneous colonic tumours (99) and mice with
multiple intestinal neoplasia (MIN) mice (which carry
a mutation in the adenomatous polyposis coli gene) do
not show a change in the spectrum of intestinal
tumours when rendered homozygously null for p53 (100).

� Within the conventional adenoma-carcinoma model,
adenomas have generally been found to express more
Bcl-2 than carcinomas (98,101-104). Watson et al
(104) showed that there was reciprocity of expression
of Bcl-2 and p53 in some neoplasms that were dually
stained for both proteins. This study also demonstrated
higher levels of Bcl-2 expression in normal colonic
crypts adjacent to carcinomas than in normal crypts
more than 5 cm from the tumour, suggesting that
changes in Bcl-2 expression occur at an early stage of
colorectal tumorigenesis.  

� A number of studies have shown that Bcl-2 expression
is positively associated with a favourable clinical
prognosis, although some data are conflicting (98,105).
The finding that colorectal carcinomas that have
increased Bcl-2 expression (and consequently, one
would suppose less apoptosis) had an improved
prognosis is counterintuitive. Although this finding
agrees with findings in breast cancer (106) and non-
small cell lung cancer (107), it contrasts with findings
in other tumours such as lymphoma (108), in which
Bcl-2 confers a poorer prognosis. The explanation for
this paradox is not fully established, but the finding
that colonic adenomas, in general, express more Bcl-2
than adenocarcinomas suggests that carcinomas
expressing Bcl-2 are developmentally �earlier�, stage for
stage, and hence have a better prognosis.
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� One study has shown markedly elevated levels of 
Bcl-xL in colonic adenocarcinomas compared with
normal intestinal mucosa (109). The study also showed
normal expression of the pro-apoptotic protein Bak in
adenomas but reduced expression in carcinomas,
suggesting that reductions in Bak expression occur
early in colorectal tumour progression. Bax expression
(pro-apoptotic) was not significantly altered in either
adenomas or carcinomas. It has recently been shown
that the anti-apoptotic protein Bcl-w is frequently
expressed in colorectal adenomas, and particularly in
adenocarcinomas, but absent in other carcinomas such
as breast, stomach and cervix (110).

THERAPEUTIC MANIPULATION
OF APOPTOSIS IN COLORECTAL CANCER

Chemotherapy and radiotherapy: Recent work has demon-
strated that virtually all cytotoxic drugs and radiotherapy
induce apoptosis in tumour cells (reviewed in 108,111).
This discovery highlights future avenues for therapeutic
intervention because these diverse cytotoxic treatments
have been shown to stimulate a common cell death pro-
gram. For example, early studies by Ijiri and Potten (67)
demonstrated that 18 commonly used cytotoxic drugs and
radiation all induced apoptosis in the proliferative compart-
ment of the small intestinal crypts. In vitro and in vivo
studies have shown that the early apoptotic events (within
12 to 24 h) observed after administration of cytotoxic drugs
or radiation are mediated by DNA damage-induced activa-
tion of p53 and, consequently, is completely absent in p53
knockout mice (68,112). However, p53-independent apop-
tosis may also occur at a later time following cytotoxic
insult (82). Consistent with this observation is the fact
that, in clinical practice, it has been frequently observed
that tumours with mutant p53 are resistant to chemother-
apy or radiotherapy. This can now be understood because
p53-dependent apoptosis cannot be activated by DNA
damage in these tumours (113,114).
COX: There is a wealth of evidence that NSAIDs, which
have a principle action of inhibiting COX isoenzymes,
COX-1 and COX-2, prevent colorectal cancer (90). The
protective effect of NSAIDs may be due to their ability to
induce apoptosis, possibly via the inhibition of COX-2
(115). In turn, overexpression of COX-2 increases Bcl-2
expression. Increased apoptosis has been observed in in vivo
studies of NSAID-induced colitis (116) and in patients
with familial adenomatous polyposis treated with sulindac
(117), as well as in in vitro colorectal cell lines following
addition of either sulindac or acetylsalicylic acid (118). 
Antioxidants: Chemotherapy for disseminated colorectal
cancer relies on 5-fluorouracil (5-FU), but its efficacy
remains disappointing. Current therapeutic strategies rely
on combining 5-FU with other agents that enhance or
complement its action (comodulators), such as leucovorin
(tetrahydrofolate) and levamisole. Recently, it has been
observed that the antioxidants pyrrolidinedithiocarbamate
(PDTC) and the water soluble vitamin E analogue 6-hydroxy-

2,5,7,8-tetramethylachroman-carboxylic acid enhance 5-FU-
induced apoptosis in cultured colorectal cancer cells regard-
less of their p53 status (119,120). PDTC-induced apoptosis
may be mediated via the CCAAT enhancer-binding pro-
tein-beta and involve the activation of the cyclin-depend-
ent kinase inhibitor p21WAF1/CIP1. Other new agents that
induce apoptosis in transformed cells and that have poten-
tial as new anticancer drugs include betulinic acid, pacli-
taxel (Taxol, Bristol Myers Squibb, Canada) and retinoids
(111).

CONCLUSIONS
There are four major messages from this review. First, stud-
ies with the small nematode C elegans have identified a
number of apoptosis-regulating genes � evidence that pro-
grammed cell death is an active process under genetic con-
trol. Many of these genes have mammalian homologues
that seem to regulate mammalian apoptosis. These studies
have also led to the identification of the signal transduction
pathways of apoptosis and the identification of the caspases.
Much remains to be learned in this field. Second, the intes-
tinal crypt is a highly topologically organized system, in
which changes can be quantified. These studies have shown
that there are fundamental differences in position and func-
tion of stem cells, apoptotic processes and regulatory genes
in the small intestine versus the large intestine. These dif-
ferences may explain differences in cancer incidences
between these sites. Third, it has become clear that car-
cinogenesis (and the colorectum is one good example) is
characterized by dysregulation of apoptotic programs.
Finally, there is an increasing focus on potential manipula-
tion of apoptotic processes, with the hope of being able to
interfere with apoptosis regulation and develop new thera-
peutic concepts.
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