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Liver fibrosis represents the uniform response of liver to toxic,
infectious or metabolic agents. The process leading to liver fibro-
sis resembles the process of wound healing, including the three
phases following tissue injury: inflammation, synthesis of col-
lagenous and noncollagenous extracellular matrix components,
and tissue remodelling (scar formation). While a single liver tis-
sue injury can be followed by an almost complete restitution ad
integrum, the persistence of the original damaging noxa results
in tissue damage. During the establishment of liver fibrosis, the
basement membrane components collagen type IV, entactin and
laminin increase and form a basement membrane-like structure
within the space of Disse. The number of endothelial fenestrae
of the sinusoids decreases. These changes of the sinusoids are
called ‘capillarization’ because the altered structure of the sinu-
soids resembles that of capillaries. At the cellular level, origin of
liver fibrogenesis is initiated by the damage of hepatocytes,
resulting in the recruitment of inflammatory cells and platelets,
and activation of Kupffer cells, with subsequent release of
cytokines and growth factors. The hepatic stellate cells seem to
be the primary target cells for these inflammatory stimuli,
because during fibrogenesis, they undergo an activation process
to a myofibroblast-like cell, which represents the major matrix-
producing cell. Based on this pathophysiological mechanism,
therapeutic methods are developed to inhibit matrix synthesis or
stimulate matrix degradation. A number of substances are cur-
rently being tested that either neutralize fibrogenic stimuli and
prevent the activation of hepatic stellate cells, or directly modu-
late the matrix metabolism. However, until now, the elimination
of the hepatotoxins has been the sole therapeutic concept avail-
able for the treatment of liver fibrogenesis in humans.
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Fibrose du foie et altération de la synthése
matricielle

RESUME : La fibrose hépatique est une réaction uniforme du foie a des
agents toxiques, infectieux ou métaboliques. Le processus aboutissant a
la fibrose du foie ressemble au processus de cicatrisation en trois étapes a
la suite d’une lésion tissulaire : I'inflammation, la synthese de com-
posants matriciels extracellulaires collagénes et non collagénes, et le
remodelage du tissu (formation de la cicatrice). Méme s'il ya reconstitu-
tion quasi compléte du tissu hépatique a la suite d’'une seule 1ésion du
foie, la présence continue du facteur agressant initial entraine des lésions
tissulaires. Durant le processus de fibrose du foie, les composants col-
lagenes de type IV de la membrane basale, 'entactine et la laminine, se
développent et forment une structure semblable a celle de la membrane
basale dans l'espace de Disse, tandis que le nombre de fenétres
endothéliales des sinusoides diminue. Ce dernier phénomene s’appelle
<« capillarisation >> en raison de la transformation de la structure des
sinusoides en une structure semblable a celle des capillaires. Au niveau
cellulaire, la fibrogenése du foie commence par l'atteinte des hépato-
cytes, qui se traduit par larrivée de cellules inflammatoires, de plaquettes
et par l'activation des cellules de Kupffer, suivies de la libération de
cytokines et de facteurs de croissance. Les cellules stellaires du foie sem-
blent la principale cible de la réaction inflammatoire parce que, durant
la fibrogenese, elles subissent un processus de transformation en myofi-
broblastes, qui sont les plus grands producteurs de tissu matriciel. Aussi
cherche-t-on 4 mettre au point des moyens thérapeutiques visant a
inhiber la syntheése du tissu matriciel ou a en stimuler la dégradation.
Certaines substances sont actuellement a l'essai : ou bien elles neu-
tralisent I'activité fibrogéne et empéchent l'activation des cellules stel-
laires du foie, ou bien elles modulent directement le métabolisme du
tissu matriciel. Toutefois, le seul moyen dont on dispose actuellement
pour traiter la fibrogenése du foie est I'élimination des hépatotoxines.
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Liver cirthosis is the result of a progressive increase in
connective tissue and a progressive reduction in func-
tional active parenchyma; in other words, liver cirrhosis is a
continuous wound healing process due to a continuous loss
of vital parenchyma caused by different noxa (alcohol,
viruses, metabolic disorders). This process leading to liver
fibrosis includes the three phases following tissue injury:
inflammation, synthesis and deposition of collagenous and
noncollagenous extracellular matrix (ECM) components,
and tissue remodelling (scar formation). Data from experi-
mental animal models and observations of humans indicate
that liver cirrhosis may be reversible when the damaging
agent is withdrawn (eg, eradication of viruses).

MECHANISMS OF ACUTE
AND CHRONIC LIVER INJURY

Inflammation: Inflammatory processes are characterized by
migration of inflammatory cells into areas affected by vari-
ous noxious agents. Migration induced by chemokines
released at sites of injury is mediated by the interaction of
adhesion molecules on migrating inflammatory cells and
adhesion molecules on resident cells (mostly endothelial
cells first and hepatic stellate cells [HSCs] afterwards) (1-4).
Because noxious agents may only induce a ‘disturbance’ of
hepatocytes and not necessarily induce cell death, hepato-
cellular necrosis may be a result of the interaction of ‘dis-
turbed’ hepatocytes with recruited inflammatory cells
(Figure 1). Following hepatocellular necrosis, there is an
activation of repair mechanisms that either lead to a resti-
tution ad integrum or, in the case of progressive disease, to
the replacement of functional parenchyma by matrix (fibro-
genesis). In different animal models of acute liver injury, it
has been shown that the accumulation of inflammatory
cells and the hepatic necrosis precede the proliferation and
activation of HSC:s as well as the formation of a ‘provisional
clot’, which, therefore, are considered to constitute a part of
the expected healing response to hepatocyte necrosis. On
the other hand, HSCs may also be capable of contributing
to the recruitment of inflammatory cells because it has been
demonstrated that HSCs express chemokines (5-9).
Furthermore, HSCs may be important for the transmigra-
tion of inflammatory cells by the synthesis of adhesion mol-
ecules as intercellular cell adhesion molecule-1, vascular cell
adhesion molecules and neural cell adhesion molecules
under conditions of inflammation (2,10,11). Nevertheless,
it is not definitively clear whether necroinflammation is
always needed for the development of liver fibrosis. In fact,
cirrhosis may develop in patients with hemochromatosis
without inflammation. However, in most cases, following
the persistence of noxious agents, necrosis and inflamma-
tion, changes occur that include the so called ‘capillariza-
tion’ of the sinusoids, the progressive deposition of ECM
and the reduced matrix degradation, which finally leads to
a scar formation.

‘Capillarization’ of the sinusoids: Changes of the hepatic
sinusoids referred to as ‘capillarization’ are characterized by
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Figure 1) Pathogenesis of liver fibrogenesis. Recruitment of inflam-
matory cells induced by stressed hepatocyctes followed by hepatocel-
lular death. ICAM-I Intercellular adhesion molecule-1; NCAM
Neural cell adhesion molecule; VCAM-1 Vascular cell adhesion mol-
ecule-1

a decrease in the size and number of endothelial cell fenes-
trae, and the development of a basement membrane within
the space of Disse (12,13). Endothelial cell defenestration
precedes sinusoidal fibrosis. It has been suggested that de-
fenestration may contribute to fibrogenesis by causing a
reduction in endothelial cell sieving of lipids and vitamin A
in the perisinusoidal cell, leading to a depletion of vitamin
A (14). The initial defenestration of endothelial cells
before the development of fibrosis appears to be reversible
with the removal of the hepatotoxin. However, in the case
of persistent damage, matrix proteins, including the base-
ment membrane components collagen type [V, laminin,
entactin and fibronectin, increase with the formation of an
organized basement membrane-like structure immediately
beneath the endothelial cells. There is also accumulation of
collagen types I, II, V and VI, tenascin and undulin in the
space of Disse (15,16). The increase of interstitial collagens
and of laminin is thought to contribute to further endothe-
lial cell defenestration and phenotypic change. ‘Capillar-
ization’ of the sinusoids hinders the normal exchange
between plasma and hepatocytes and is, therefore, a major
contributor to the deterioration of liver function that
occurs with liver disease. Capillarization takes place in the
sinusoids lining the bridge between the portal and the cen-
tral vein, or between two central veins or two portal tracts
(Figure 2).

Progressive deposition of ECM — Scar formation: The
persistence of noxious agents leads to a progressive replace-
ment of hepatocytes by connective tissue. Whereas the
components of the ECM of the fibrotic liver qualitatively
resemble that of normal liver, all components are increased
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Figure 2) Scar formation

in fibrotic liver with an over-proportional increment of sin-
gle ECM proteins.

During early liver fibrogenesis, fibronectin and tenascin
increase within necroinflammatory areas, early fibrous septa
and the outer regions of larger septa. The deposition of fib-
rinogen/fibrin suggests the involvement of a ‘clotting-like
process during short term liver injury and liver fibrosis, indi-
cating that fibrin/fibronectin constitutes a ‘provisional
matrix’, which influences attraction and proliferation of
inflammatory and matrix-producing cells (17,18). The gly-
coprotein laminin was found in early septa and the outer
regions of larger septa but is of less or no importance in
necroinflammatory areas (19,20). In fibrous septa, the pres-
ence of entactin, undulin and von Willebrand factor was
demonstrated, whereby the von Willebrand factor is closely
related to newly formed vessels (16,21,22). SPARC
(secreted protein acidic and rich in cystein; osteonectin,
BM-40) expression also increases during the course of liver
fibrogenesis (23).

In accordance with the scheme of wound healing and
scar formation, collagen type Il is first increased after liver
damage and is finally substituted with collagen type I, the
latter constituting 60% to 70% of the total collagen in the
cirthotic liver (sixfold increment compared with normal
liver). In the case of alcoholic liver disease, however, colla-
gen type Il is the major component of the fibrotic septa
(19,24,25). Furthermore, collagen type IV, V and VI are
also detected in the fibrous septa (19).

Although the amount of matrix in the liver is similar in
different forms of liver damage, the distribution of the ECM
varies with the site and origin of the injury. For example, in
the case of viral hepatitis, there is a periportal inflamma-
tion, which is then followed by fibrosis in the periportal
zones. On the other hand, ECM deposition during the
development of cholestatic fibrosis occurs without inflam-
mation (26). Finally, during alcoholic liver disease, early
injury and fibrosis are mainly pericentral. However, during
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Figure 3) Mechanisms of transforming growth factor-beta-induced
accumulation of extracellular matrix through interaction with activated
hepatic stellate cells. TIMP Tissue inhibitor of metalloproteinase;
a2-M Alphay-macroglobulin

progressive disease, both periportal and pericentral injury
lead to panlobular fibrosis (Figure 2).
Matrix degradation: Accumulation of connective tissue
reflects an alteration in the balance between synthesis and
degradation of ECM. Metalloproteinases (matrix metallo-
proteinase [MMP]) and their specific inhibitors, tissue
inhibitor of metalloproteinase (TIMP)-1 and -2, are
believed to play a crucial role in ECM remodelling. In addi-
tion to HSCs (27-30), TIMP-1 is expressed in rat hepato-
cytes in primary culture and regulated by inflammatory
cytokines (in particular interleukin-6), illustrating that
hepatocytes are involved in ECM protein degradation (31).
Levels and cellular sites of gene expression of two major
collagen-degrading enzymes for MMP-1 and MMP-2 in
normal and fibrotic human livers as well as in human HSCs
were analyzed by Milani et al (32). HSCs expressed both
MMP-1 and MMP-2 mRNA in vitro. The expression of
MMPs and TIMPs in all rat liver cell types was recently
demonstrated, although the cellular expression levels were
markedly different. Gelatinase-B was predominantly
expressed by Kupffer cells (KCs), gelatinase A, stromelysins
1 and 2, and collagenase in HSCs (33). TIMP-1 was mainly
present in HSCs and TIMP-2 in KCs, while TIMP-3
expression was detectable only in hepatocytes. Further-
more, a cytokine-specific regulation of TIMP/MMP expres-
sion was demonstrated, suggesting that the initial matrix
breakdown following liver injury might be enhanced by
tumour necrosis factor (TNF)-a, while the diminished
matrix degradation during chronic tissue injury might be
due to the activation of transforming growth factor (TGF)-B1
through TIMP induction (Figure 3) (33).

CELLS INVOLVED IN LIVER FIBROGENESIS
At the cellular level, origin of liver fibrogenesis is initiated
by the damage of hepatocytes, resulting in a recruitment of
inflammatory cells and platelets, and activation of KCs,
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Figure 4) Pathogenesis of liver fibrogenesis. Activation of matrix-pro-
ducing cells (hepatic stellate cells, myofibroblasts and sinusoidal
endothelial cells). EGF Epithelial growth factor; IGF Insulin growth
factor; Il Interleukin; PDGF Platelet-derived growth factor; TGF Trans-
forming growth factor; TNF Tumour necrosis factor

with subsequent release of cytokines and growth factors.
Whereas it could be shown that sinusoidal endothelial cells
(SECs), bile duct epithelial cells, hepatocytes, KCs, fibro-
blasts and myofibroblasts are involved in fibrogenesis
through the formation of ECM, HSCs seem to be the pri-
mary target cell for these inflammatory stimuli.
HSCs and myofibroblasts: Interstitial fibroblasts, as well as
myofibroblasts, have been shown to be of particular fibro-
genic importance in early stages of cholestatic and serum-
induced hepatic fibrosis models (26). In this context,
however, it must also be mentioned that myofibroblasts are
only insufficiently delimited from activated HSCs (34).
The ‘activation’ of quiescent HSCs is recognized to be
one of the most important steps in the development of liver
fibrosis. Activation describes the proliferation (?) of HSCs
as well as the morphological transformation from vitamin
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A-storing ‘quiescent’ cells, through an intermediate state
(‘transitional’ HSCs), to myofibroblast-like ‘activated’
HSCs, which represent the major matrix-producing cells
during liver fibrogenesis. In vivo initiation of activation of
HSC:s is caused by the synthesis of cytokines and non-pep-
tide mediators produced by damaged hepatocytes, endothe-
lial cells, fibroblasts, platelets and activated macro-
phages/KCs. Regarding matrix synthesis in activated HSCs,
the growth factors TGF-a, TGF-p and TNF-a. are of partic-
ular importance because all of these, especially TGF-p,
upregulate matrix gene expression in these cells (Figure 4)
(35-38).

For a long time, the mechanisms that result in the ter-
mination of HSC proliferation when tissue repair is con-
cluded were poorly understood. However, it was recently
shown that, in vitro and in vivo after acute liver damage,
HSCs express CD95 and CD95L in increasing amounts in
parallel with activation; furthermore, spontaneous apopto-
sis has been shown to occur (39). This suggests that HSCs
induce a self-activated cell death when their work is no
longer needed. However, the fate of activated HSCs during
liver injury is still unclear. It has been suggested that HSCs
continue to stay alive by a mechanism of self perpetuation.
[t was recently demonstrated that TGF-f, the main fibro-
genic mediator, as well as TNF-a, not only reduces prolifer-
ation of activated HSCs, but also inhibits spontaneous and
induced apoptosis in vitro (40). This may be a mechanism
that allows HSCs to survive and continue matrix produc-
tion. However, when the damaging insult is withdrawn, the
increased number of stellate cells is reduced by apoptosis.

During activation of HSCs, the synthesis of ECM pro-
teins by HSCs increases, and the pattern of the synthesized
proteins changes. The ECM proteins produced by quiescent
HSCs are typically deposited in basement membranes
(laminin, collagen type 1V, entactin), whereas activated
HSC:s synthesize more proteins located in the interstitium,
eg, collagen type 1 (15,41-43).

SECs: Evidence has been published that, in addition to
HSCs, SECs are capable of synthesizing ECM proteins,
since it has been demonstrated that SECs synthesize colla-
gen types I, Il and IV, fibronectin, tenascin, undulin,
laminin, entactin, thrombospondin and von Willebrand fac-
tor in vivo and in vitro (13,22,44-48). Whereas perlecan is
expressed by both SECs and portal endothelial cells, synde-
can 1 is produced by SECs and syndecan 3 by portal
endothelial cells (49,50). On the mRNA level, differences
in matrix proteins expressed were found between SECs iso-
lated from normal liver and SECs isolated from injured liver
because SECs from injured liver produce elevated mRNA
levels for collagen types I, 111, IV, fibronectin and laminin
(13,44). Furthermore, it could be demonstrated that SECs
respond upon stimulation with TGF-B1 with an enhanced
synthesis of ECM proteins (Figure 4) (13), which is in accor-
dance with the fact that TGF-B1 receptors are expressed by
SECs (35). The data suggest that, in addition to HSCs,
SECs are also a source of matrix proteins present in the
space of Disse. Although HSCs seem to be responsible for
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the synthesis of matrix proteins at later stages of disease,
endothelial cells play a role under basal conditions as well
as during ‘capillarization’ of the sinusoids at the beginning
of fibrosis.

KCs: Little matrix production has been ascribed to KCs.
Macrophage cultures contain small amounts of fibronectin
and proteoglycans, and mRNA for collagen types I, I1I and
IV (47,51,52). Furthermore, KCs have been shown to
express aggrecan in an in vivo study (53). In mononuclear
phagocytes from damaged livers, increased fibronectin syn-
thesis was demonstrated (54). Nevertheless, KCs and
inflammatory mononuclear phagocytes are of critical
importance for repairing processes as well as for liver fibro-
genesis due to their capacity to synthesize a high amount of
cytokines, which influence matrix synthesis and degrada-
tion by myofibroblast-like cells and other liver cells (Figures 1
and 4) (55,56).

Hepatocytes: Previous reports have claimed that hepato-
cytes contain collagen types I, III and IV, as well as plasma
and cellular fibronectin; laminin; hyaluronic acid; sul-
phated glycoproteins, especially heparan sulphate, der-
matan sulphate, chondroitin sulphate, syndecans and
perlecan; and recently also collagen type XVIII
(47,51,52,57-62). Caution is required before interpreting
matrix synthesis by cultured hepatocytes following the
recognition that contaminating HSCs may be responsible
for ECM production in hepatocyte cultures (63). Studies of
the in vivo incorporation of radiolabelled collagen precur-
sors suggest that hepatocytes play only a minor role in total
collagen production in normal liver and during early fibro-
sis (64).

Bile duct epithelial cells: Bile duct epithelial cells produce
procollagen type I, prolylhydroxylase, syndecan 1, synde-
can 4, glycipan and heparan sulphate. Beyond this, mRNA
for collagen type IV and laminin has been shown in bile duct
epithelium (65,66). This could be of great relevance during
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