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Infection of the human stomach with Helicobacter pylori may develop

into gastritis, ulceration, adenocarcinoma and mucosal lymphomas.

The pathogenic mechanisms that determine the clinical outcome

from this microbial-epithelial interaction remain poorly understood.

An increasing number of reports suggests that disruptions of epithe-

lial barrier function may contribute to pathology and postinfectious

complications in a variety of gastrointestinal infections. The aim of

this review is to critically discuss the implications of H pylori persist-

ence on gastric disease, with emphasis on the role of myosin light

chain kinase, claudins and matrix metalloproteinases in gastric perme-

ability defects, and their contribution to the development of cancer.

These mechanisms and the associated signalling events may represent

novel therapeutic targets to control disease processes induced by 

H pylori, a microbial pathogen that colonizes the stomach of over

50% of the human population.
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Les interactions épithéliales de l’hôte avec
l’Helicobacter pylori : Un rôle pour le dérè-
glement de la fonction de la barrière gastrique
dans l’issue clinique de l’infection ?

L’infection de l’estomac humain à l’Helicobacter pylori peut se transformer

en gastrite, en ulcération, en adénocarcinome et en lymphomes muqueux.

Les mécanismes pathogènes qui déterminent l’issue clinique de cette

interaction épithéliale microbienne demeurent mal compris. Un nombre

croissant de comptes rendus laissent supposer que des dérèglements de la

fonction de la barrière épithéliale contribueraient à la pathologie et aux

complications postinfectieuses de diverses infections gastro-intestinales.

La présente analyse vise à exposer d’un point de vue critique les répercus-

sions de la persistance du H pylori sur la maladie gastrique, en s’attardant

sur le rôle de la myosine kinase, des claudines et des métalloprotéinases

matricielles dans les anomalies de la perméabilité gastrique, et leur con-

tribution à l’apparition du cancer. Ces mécanismes et les événements de

signalisation connexes peuvent représenter de nouvelles cibles thérapeu-

tiques pour contrôler les processus de la maladie induits par le H pylori, un

pathogène microbien qui colonise l’estomac de plus de 50 % de la popu-

lation humaine.

Helicobacter pylori persistently colonizes the stomach of over
one-half of the human population and, in the majority of

cases, causes chronic gastritis. However, the microbial epithe-
lial interactions and gastritis associated with infection may also
cause gastroduodenal ulcers, gastric adenocarcinoma and
mucosal lymphomas (1-3). An American study (4) found that
the lifetime risk for development of gastric cancer in those
infected with H pylori ranges between 1% and 3%. Despite
intensive study, the host-microbial interactions that determine
the clinical outcome of infection remain unknown. The main
H pylori virulence factors that have been associated with
pathogenesis to date include the pathogenicity island-encoded
protein cytotoxin-associated antigen (CagA) and the vacuo-
lating (VacA) cytotoxin (2,3,5-7). Indeed, CagA is the factor
that has most often been linked with the development of ade-
nocarcinoma (2,3,7). H pylori CagA and VacA have been
shown to disrupt epithelial barrier function, and the focus of
the present review is to discuss how this phenomenon may par-
ticipate in disease pathogenesis. Insights into the operating
principles that regulate the interactions between H pylori and
host epithelia may improve our understanding of the initiation
of the diverse disease processes associated with the infection,
and help identify new therapeutic targets. The present review
critically discusses the current knowledge of the effect of

H pylori on epithelial permeability and explores its possible
clinical significance, with particular emphasis on how it may
be linked to the development of gastric cancer.

H PYLORI PERSISTENCE AND DISEASE
H pylori infection of the human stomach is most commonly
acquired in childhood. Although this microaerophilic bacterium
remains in the gastric environment of its host for decades, con-
sequences of colonization are usually benign, marked by a per-
sistent mucosal inflammatory reaction (7,8). However, in a
subset of hosts, this gastritis may lead to severe pathology. In
addition to its well-established role in peptic ulcer disease and
noncardiac gastric adenocarcinoma, H pylori infection has also
been implicated in the development of extragastroenteric dis-
eases (1-3,7,9-13). The possible implication of altered epithe-
lial permeability in the etiology of any of these abnormalities
remains a topic of ardent controversy.

The ability of H pylori to chronically colonize the human
stomach and to cause disease is the focus of intense research and
is the topic of recent reviews (5-8). The scope of host-microbial
interactions and their influence on disease development are
briefly reviewed in the following section. The difficulty of
infecting animal models with human H pylori isolates should
be noted. Similarly, nontransformed confluent human gastric
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cell lines with functional tight junctions have only been estab-
lished very recently (14). This has made research difficult, and
forced scientists to use models of epithelial cells belonging to
phenotypes that may normally not be infected by H pylori. In
view of these limitations, while highlighting observations
based on human gastric cells, the present review critically
addresses research findings that are most relevant to the topic,
regardless of the model system being used.

H pylori is well-adapted to the hostile environment of the
human stomach. The bacterium is likely transmitted via the
fecal-oral route and, once established, can persist for the life-
time of the host. H pylori demonstrates a marked tropism for
gastric mucus-producing epithelial cells (15). The bacterium
expresses a number of adhesins that allow tight attachment to
epithelial cells; this interaction is ultimately the cause of the
chronic inflammatory response in the host (5,7,16-18). These
adhesins also direct H pylori colonization to areas of the stom-
ach containing only few parietal cells, further allowing the
bacterium to circumvent gastroprotective acid production
(19). Facilitation of this process appears to be aided by the fact
that longstanding H pylori-induced gastritis leads to the loss of
specific cell types in the stomach, and a shift in the types of
glycans expressed on the surface of gastric epithelial cells
(16,19). Remarkably, therefore, H pylori can modulate its
adhesin expression pattern to colonize a variety of gastric niches,
and to selectively avoid areas of active inflammation that may
be capable of clearing the infection. H pylori is an incredibly
adaptable micro-organism that is able to persist in the chang-
ing and hostile environment of the stomach, even in the pres-
ence of a chronic inflammatory response.

IMMUNOPATHOLOGY OF H PYLORI

INFECTIONS
There is growing evidence that, in addition to being unable to
clear the infection, the T helper cell (Th)-1 polarity of the
host response to H pylori infection contributes to the develop-
ment of disease in the host. Production of Th-1 cytokines,
including interferon gamma (IFNγ), tumour necrosis factor
alpha (TNFα) and interleukin-1beta (IL-1β) are increased
during H pylori infection, which in turn amplifies the inflam-
matory response (20). IL-1β is also a potent inhibitor of gastric
acid secretion (21). Interestingly, polymorphisms in the
human IL-1 loci, which are implicated in the increased IL-1β

production, are also associated with hypochlorhydria and gas-
tric cancer in patients infected with H pylori (22). Several
reports (23-26) have suggested that the host Th-1 response to
the infection may contribute to the carcinogenic effects of the
bacterium. Similarly, H pylori-stimulated upregulation of
inducible nitric oxide synthase promotes apoptosis and induces
carcinogenesis during the infection, via mechanisms that
remain unclear (27-30). In addition, though still incompletely
understood, the events leading to H pylori-induced B cell pro-
liferation and mucosa-associated lymphoid tissue lymphoma
appear to involve cytokines of both the Th-1 and the Th-2
subsets (31-33).

The principles governing the host microbial interactions
during an infection with H pylori result from a complex multi-
factorial process. For example, microbial factors may include
adaptive point mutations that allow variants to emerge after
selective pressure (eg, antibiotic therapy) (34), restriction bar-
riers to genetic transformation that favour maintenance of
diversity (35), and other factors that add to genetic diversity,

such as local selection due to ligand specificity for local recep-
tors (16,36). Conversely, host factors that contribute to the
chronicity of infection include determinants of bacterial tro-
pism to various gastric niches that circumvent gastroprotective
barriers like acid-producing parietal cells (19), and factors that
polarize the primary adaptive immunity to H pylori to a Th-1
response (20).

Th-1 immunity also appears to compromise parietal cell
responses and induce proliferation of epithelial glycan recep-
tors for H pylori adhesins (37). Interestingly, concurrent intes-
tinal helminth infections that drive a polarized Th-2 immune
response reduce H pylori-induced gastritis and premalignant
gastric atrophy (38). This phenomenon has been linked to the
‘African enigma’, which refers to the surprisingly low rates of
gastric cancers in African countries despite equally high
prevalence rates of H pylori infection (38). Low-grade
mucosa-associated lymphoid tissue lymphomas often regress
on elimination of H pylori and, conversely, they may relapse
after H pylori reinfection (39-41). Persistent host-microbe
interactions with H pylori also increase the risk for gastric ade-
nocarcinoma in humans, the second leading cause of cancer-
related death worldwide (8,10,42). As a result, H pylori is now
considered to be a class 1 carcinogen, and this risk is most com-
monly associated with the ability of some strains to inject
CagA into the host cell (43,44). The development of H pylori-
induced ‘intestinal type’ adenocarcinoma occurs in a well-
defined sequence of events. First, the normal gastric mucosa
progresses through chronic superficial gastritis, which then
leads to atrophic gastritis, and the still poorly understood for-
mation of gastric ulcers. Atrophic gastritis can progress into
metaplasia, dysplasia and, ultimately, adenocarcinoma
(3,8,10,42,45). Yet, for reasons that remain unclear, only a rel-
atively small number of H pylori-infected patients ever pro-
ceeds from gastritis to neoplasia formation (4). Together, these
observations are consistent with the hypothesis that the onco-
genic potential of H pylori may be strain- and/or host-dependent,
and related to specific signalling events of the epithelial-
microbial interaction. Little is known about how these events
may be causally related, and the role played by determinants of
epithelial barrier function in carcinogenesis remains obscure.
As discussed below, such determinants of epithelial barrier may
include tight junctional proteins including claudins. Figure 1
illustrates the main components of gastric tight junctional and
adherens proteins discussed in the present review.

Loss of epithelial barrier function: The role of claudins and
matrix metalloproteinases
While the majority of H pylori micro-organisms swim in the
mucus layer coating the gastric epithelium, approximately 10%
eventually adhere to the epithelial cells (46). H pylori attach-
ment to epithelial cells alters the outcome of infection. Using
a murine model of infection, a recent study (47) observed that
in the gastric mucosa, the mucus cell exhibits the greatest tran-
scriptional response to H pylori. Subsequent cellular alterations
implicate genes that broadly regulate inflammation, angio-
genesis, iron metabolism and tumour suppression (47). Loss
of cell-to-cell adhesion is a well-established precursor of gas-
tric adenocarcinomas, and abnormalities of the adherens
junctional protein E-cadherin have been found to contribute
to this phenomenon as well as to the migratory potential of
tumour cells (48,49). In keeping with these findings, func-
tional inhibition of E-cadherin through mutations initiates
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gastric tumourigenesis (50). A recent study (51) has now
established a possible link between H pylori and these processes.
Indeed, it was found that H pylori modulates the migration of
human gastric epithelial cells by destabilizing E-cadherin in a
Rho-GTP-dependent fashion. Consistent with these observa-
tions, H pylori is capable of altering epithelial permeability, a
topic that will be discussed in the following paragraphs.
Among the various tight junctional proteins that are affected
by H pylori, the authors recently observed that the bacterium
was capable of disrupting tight junctional claudin-4 and -5 in a
strain-dependent manner (52) (Figure 2). In addition to cell
adhesion, polarity may also be lost during carcinogenesis, and a
role for disruption of specific claudins in these events has been
recently suggested. Indeed, while its role in epithelial barrier is
well-established, claudin-4 expression is also inversely corre-
lated with the metastatic potential of pancreatic cancer cells
(53,54). Intriguingly in the context of the present article, a
recent report (55) indicates that loss of tight junctional
claudin-4 correlates with poor differentiation in advanced gas-
tric adenocarcinomas. This observation offers further support

to the hypothesis that disruption in gastric epithelial barrier
function may influence the clinical outcome of infection.
Similarly, loss of claudin-7 has recently been implicated in the
ability of breast cancer cells to disseminate (56). Therefore,
the tight junction acts as a scaffold for signalling proteins
involved in cell growth and differentiation, and loss of normal
tight junctional structure and function, possibly via disruptions
of claudins, may represent an important precursor to the devel-
opment of human carcinomas (57).

Matrix metalloproteinases (MMP), a family of enzymes asso-
ciated with inflammatory processes and capable of degrading
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Figure 1) Schematic illustration of the junctional complexes linking
polarized epithelial cells. Comprehensive listings of tight junctional ele-
ments are available in a number of reviews (68-75). The various com-
ponents of the intercellular junctions have been assigned to three
different groups, and their main representatives are listed below, giving
particular emphasis to those discussed in the text. 1) Intercellular junc-
tional proteins: these include tight junctional proteins per se such as
claudins (CL), occludin (Oc), junctional adhesion molecules (JAM),
and coxsackie virus and adenovirus receptor (CAR), as well as proteins
of the adherens junctions such as E-cadherin (Eca) which helps initiate
tight junctional assembly. Any of these may be directly modified by
microbial products to increase paracellular permeability. 2) Junctional
plaque proteins (crescent-shaped in the figure): these include scaffolding
protein interaction domain proteins such as those belonging to the zonula
occludens family, cingulin or those representing partitioning-defective
proteins (PAR3 and PAR6). The main function of these proteins is to
help crosslink tight junctional proteins to the actin cytoskeleton (dotted
lines). 3) Regulatory factors (star-shaped in the figure): these products
may be cytosolic or linked to tight junctional proteins, to the plasma
membrane, to cellular actin filaments or to the nucleus. They include
atypical protein kinase C, zonula occludens-1-associated nucleic acid
binding protein and a number of G proteins, as well as a long list of other
factors. Their principal function is to signal and regulate, at the transcrip-
tional or post-transcriptional levels, the assembly and/or function of tight
junctions. The myosin II-actin complex may be modulated by myosin-light
chain kinase (MLCK) or Rho kinases (ROCK), which allows the open-
ing of tight junctions and increases paracellular permeability

Figure 2) Helicobacter pylori disrupts tight junctional claudin-4.
Shown are representative micrographs illustrating claudin-4 (red) and
cell nuclei (blue) in epithelial monolayers after 6 h incubation with 
H pylori SS1, a human clinical isolate passaged through mice.
*Abnormalities include focal disruptions of claudin-4 along the pericel-
lular junctions (arrows) and punctate redistribution of claudin-4 into
cytosolic compartments. Original magnification ×400
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components of the extracellular matrix, have become intrigu-
ing candidates on the list of potential markers of oncogenesis.
For example, MMP-7, also called matrilysin, is found in high
concentrations within premalignant gastric ulcers as well as in
pancreatic intraepithelial neoplasia (58-60) implying that, in
addition to its role in host defense and tissue remodelling, this
enzyme may also be an early marker of carcinogenesis. Clearly,
additional research is needed to establish a cause-to-effect rela-
tionship in this interaction. While MMP-7 expression is
known to increase in response to H pylori infection (60), a
potential relationship with defects in epithelial barrier structure
and function has yet to be established. Studies are needed to
assess whether and how elevated MMP-7 and altered claudin-4
(and possibly claudin-7) may coincide with events leading to
increased gastric permeability, which may then help link the loss
of epithelial barrier with lesions of premalignant significance.

In addition to their effects on epithelial barrier function,
the upregulation of host proteinases may also contribute to the
mitogenic response of epithelial cells. A number of growth fac-
tors and their receptors are upregulated in response to H pylori
exposure. Specifically, epidermal growth factor (EGF) receptor
expression is increased during H pylori-induced gastritis in
humans and this micro-organism can activate the EGF recep-
tor on gastric epithelial cells (61,62). H pylori infection also
leads to an increase in the EGF receptor ligand, heparin-binding
EGF (HB-EGF) (62,63). Current research data (64) suggest
that H pylori activates a G-protein coupled receptor, leading to
MMP release and cleavage of HB-EGF. The proteinases
responsible for the cleavage of HB-EGF remain unknown. In
addition to stimulating MMP-7, H pylori increases MMP-1 and
MMP-3 release and activity in transformed adenocarcinoma
gastric stomach epithelial cancer cell lines and the micro-
organism may itself have MMP-3 activity (65). Cag-positive
strains activate nuclear factor-kappa B and induce the expres-
sion of MMP-9 in MKN28 and MKN45 gastric epithelial cells,
and increased levels of MMP-9 are found in biopsies from
H pylori-infected patients (66). Overall, altered expression of
host growth factors in response to H pylori signalling has been
implicated in gastric adenocarcinomas, and MMPs may play an
important role in this processs. It has been recently demon-
strated that the H pylori-induced EGF receptor transactivation
required metalloproteinase cleavage of HB-EGF (63).
However, the exact molecular, biochemical and physiological
mechanisms involved in this chain of events remain unclear.

Loss of epithelial barrier function: The role of myosin light
chain kinase
The gastric epithelium acts as a selective barrier that prevents
potentially harmful luminal agents (eg, microbial products,
food antigens, toxins) from penetrating underlying tissues,
while allowing for exchanges of ions and small molecules (67).
Tight junctions and adherens junctions between gastric
epithelial cells play a key role in this barrier function, and con-
sist of a complex interaction among several protein families.
Tight junctions can easily be recognized under transmission
electron microscopy (68,69). Figure 1 offers an overview of the
main tight junctional structures discussed in the present
review. For comprehensive articles on the composition and
function of these structures, interested readers are directed to
recent reviews on this topic (68-75). Tight junctions comprise:

• transmembrane proteins belonging to several families
including occludin, claudins and the immunoglobulin

superfamily members: junctional adhesion molecules
(JAM) and coxsackie virus and adenovirus receptor; 

• an ever-increasing number of cytosolic proteins,
including zonula-occludens (ZO)-1, -2 and -3, and
partitioning defective proteins (eg, PAR3 and PAR6),
that form complex junctional plaques; and 

• a mixed group of cytosolic, membrane-bound or
nuclear-associated proteins that interact with the
former two groups to regulate epithelial permeability,
polarity and proliferation.

Transmembrane proteins are thought to directly regulate
paracellular diffusion. Proteins of the tight junctional plaques
may act as adaptors (eg, ZO proteins), and the cytosolic and
nuclear components function as signalling and regulatory pro-
teins. Adaptor proteins help connect the transmembrane com-
ponents to cytosolic factors such as GTPases and protein
kinases. Many tight junctional proteins are directly or indi-
rectly attached to actin filaments. For example, claudins,
occludin and junctional adhesion molecules are anchored to
actin filaments and myosin light chain (MLC) of the perijunc-
tional actinomyosin ring by the linker proteins of the ZO family
(76-78). Paracellular permeability may be increased by phospho-
rylation or degradation of transmembrane tight junctional pro-
teins (79). In addition, dephosphorylation of MLC by MLC
kinase (MLCK) or by Rho kinases may also physiologically reg-
ulate paracellular permeability by placing tension on the tight
junctional complexes (80). The molecular mechanisms respon-
sible for this process are topics of intensive research efforts.

It has been well-established that the paracellular permeabil-

ity offered by tight junctions could be altered in response to

physiological and pathological stimuli (81). Recent reports

(80,82,83) indicate that a variety of pathogens may actively

disrupt epithelial barrier function by subverting cellular path-

ways, including those that lead to the activation of MLCK. As

illustrated in Table 1, these effects are commonly mediated via

microbial toxins and/or proteases. Interestingly, a recent study

(84,85) has found that a membrane permeant inhibitor of

MLCK was able to inhibit the tight junctional disruptions

induced by enteropathogenic Escherichia coli (EPEC) or TNFα

and IFNγ (84,85). In view of the implication of TNFα, a Th-1

cytokine, in the modulation of barrier function, and the signif-

icance of Th-1-mediated pathogenesis during H pylori infec-

tions, these findings may provide fertile ground from which to

develop a new class of therapeutic agents targeting the loss of

gastrointestinal barrier function.
H pylori preferentially adheres near the tight junctions of

gastric mucous cells (15,47,87). Strains possessing the Cag
pathogenicity island translocate the CagA protein into host
cells via a type IV secretory system (88,89). Findings from
recent studies (90) using Madin-Darby canine kidney cells or
gastric adenocarcinoma cells indicate that translocated CagA
increases paracellular permeability by recruiting ZO-1 and JAM
to sites of bacterial attachment. Other reports (91) have shown
that H pylori strains producing VacA modulate the integrity of
the epithelium by increasing tight junction permeability to
small ions and molecules. Indeed, adherence of VacA-producing
strains reduced transepithelial electrical resistance in cell
monolayers in vitro, while isogenic VacA −/− mutants lost this
ability. Acid-activated VacA on its own was also found to
increase paracellular permeability for small molecules in vitro,
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without affecting the transcellular fluxes of 5 kDa or 47 kDa
probes (92). In addition to a direct effect of the bacterium,
transmigration of inflammatory cells in response to infection
may also contribute to a disruption of epithelial barrier func-
tion (93). The degree of H pylori-induced gastritis has been
associated with permeability changes (94), consistent with the
findings that TNFα and IFNγ are able to disrupt epithelial
junctions by activating MLCK (85,86). However, studies
(95,96) involving human subjects have argued for and
against the ability of the bacterium to disrupt tight junctions
of the gastric epithelium. Yet, H pylori has the ability to
increase the passage of food antigens across human gastric
biopsies (97), as well as in animal model systems (98). These
findings are consistent with the observations that the infec-
tion may be associated with the development of food allergy
(99,100). Intestinal pathogens such as Vibrio cholerae,
Salmonella species, E coli, Rotavirus, Shigella species and
Giardia species all have been found to directly alter tight
junction permeability, a change suggested to contribute to
disease symptoms (82,83,101-104). Therefore, whether and
how H pylori-induced epithelial permeability defects may
influence the clinical outcome of this infection represents an
important topic for future research.

Loss of epithelial barrier function: Signalling events
Molecular signalling of epithelial permeability is a fast-growing
field of investigation. Studies (105) have found that integrin-
mediated cell migration was mediated by MLCK, following a
cascade of events in which Ras, extracellular signal-regulated
kinase (ERK), and mitogen-activated protein kinase
(MAPK)/ERK serve as essential downstream effectors. However,
signalling events implicated in the MLC-dependent regulation

of epithelial tight junction and barrier function, particularly in
the gastric mucosa, are less clear. A variety of cellular events are
associated with the epithelial abnormalities caused by H pylori,
including apoptosis, cytoskeletal and tight junctional alter-
ations, and loss of barrier function. The complex signalling
events that may be responsible for H pylori-induced disruptions
of gastric epithelial barrier function remain unclear. Figure 3
illustrates possible mechanisms suggested by the scientific lit-
erature currently available. H pylori has proapoptotic effects
(106-108), and immune or microbially induced enterocyte
apoptosis may directly increase epithelial permeability (109-
111). Any of these alterations can be linked to MLCK, which
further underscores the gatekeeper role played by phosphory-
lated MLC in gastrointestinal barrier function. Moreover, acti-
vation of PAR1, which results in caspase-3-dependent loss of
barrier function (112), microbially induced loss of epithelial
barrier (Table 1) and EGF signalling (113), may each implicate
phosphorylation of MLC in their epithelial signalling cascade.
Downstream from Rho, Rho-associated kinase (ROCK)
serine/threonine kinase isoenzymes are known to modulate
cytoskeletal arrangements and cellular contractility via MLC,
as well as tight junctional function (114-116). Furthermore,
intracellular caspases can cleave ROCK and its constitutively
active cleavage products lead to the activation of MLC, and
ultimately to the formation of apoptotic membrane blebbing
and the chromatin condensation characteristic of programmed
cell death (116-119). Interestingly, MAPK activation is also
implicated in tumour progression (120). While levels of
Rho-GTP are increased during the H pylori-induced translo-
cation of E-cadherin from membrane to cytosolic vesicles
(51), the implication of ROCK in H pylori-induced epithe-
lial cell signalling and subsequent injury is less clear.

Effects of Helicobacter pylori on gastric permeability
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TABLE 1
Examples of pathogen-epithelial interactions known to modulate epithelial permeability

Organism Virulence factor Mechanism Reference

Viral

Reovirus Binds JAM, effect on permeability unknown 124

Rotavirus Metabolic interference 103

Adenovirus Fibre protein Binds coxsackie adenovirus receptor 122

Bacterial

Vibrio cholerae ZOT PKC activation 102,148,149

Escherichia coli CNF-1 Rho-dependent disruption of occludin/ZO-1 114

Enteropathogenic E coli T3SS Occludin dephosphorylation 79,150

MLCK activation 83

EspF/T3SS Unclear 151

Enterohemorrhagic E coli T3SS E-cadherin disruption, rac-1 and ezrin activation 79,150,152

Bacteroides fragilis Fragilysin E-cadherin disruption 153

Clostridium difficile Toxin A/B Rho-GTPase and PKC activation 154

Clostridium perfringens CPE Disruption of claudin-3 and -4 155

Shigella flexeneri Unclear Disruption of ZO-1, occluding, and claudin-1 104

Helicobacter pylori CagA, T4SS Recruits ZO-1/JAM, disrupts SHP-2, Grb2 and c-met 44,90,156,157

VacA TJ penetration 91,92

Parasitic

Giardia species Unclear Caspase-3-dependent ZO-1 disruption, MLCK 82,109

Other

Aspergillus, Penicillium Ochratoxin A Disruption of claudin-3 and -4 158

CagA Cytotoxin-associated antigen; Grb2 Growth factor receptor bound protein 2; GTPase Guanosine triphosphatase; JAM Junctional adhesion molecules; MLCK
Myosin light chain kinase; PKC Protein kinase C; SHP-2 Src homology 2 domain-containing protein-tyrosine phosphatase; T3SS Type 3 secretion system; T4SS
Type 4 secretion system; TJ Tight junction; VacA Vacuolating cytotoxin A; ZO-1 Zonula occludens; ZOT Zonula occludens toxin
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Similarly, the significance of cell signalling events such as
Rho-kinase-mediated events to functional parameters of
epithelial barrier require further investigation. Unquestionably,
microbes have evolved elaborate strategies to bypass the tight
junction, including mechanisms independent of MLCK.
Direct binding of microbes to tight junctional elements for
example may disrupt the tight junctions and increase perme-
ability. Examples include coxsackie B virus and adenovirus,
which bind to their tight junctional receptor (coxsackie virus
and adenovirus receptor), which is located between other tight
junctional proteins and E-cadherin (121,122). Similarly,
Clostridium perfringens toxin attaches to claudin-3 via its car-
boxyl terminus, which in turn leads to junctional disruptions
via signalling events that have yet to be uncovered (123).
Epithelial attachment of reovirus is also associated with tight
junctional disruptions by activating nuclear factor-kappa B,
which in turn causes apoptosis (124). In addition, microbial
enzymes may break down tight junctional proteins to allow the
passage of antigenic material. For example, peptidases from the
house dust mite Dermatophagoides pteronyssinus, a potent aller-
gen, cleaves occludin and ZO-1, which in turn allows the pen-
etration of antigenic material (125). Intriguingly, other
observations have found that these serine and cysteine proteases
were able to activate PAR (126), a phenomenon recently linked
to the capability of PAR-agonists to disrupt epithelial perme-
ability via the induction of apoptosis and the activation of
MLCK (112,127). Clearly, much remains to be learned about

the mechanisms leading to tight junctional disruptions, and
their significance for the development of novel therapeutic
strategies.

Signalling pathways of H pylori-induced loss of barrier
function
H pylori activates a broad range of signalling molecules,
including protein kinase C (PKC), ERK and p38 (128-131).
These kinases have been shown to contribute to barrier mal-
function and/or MLC phosphorylation in several in vitro
models (83,132-134), and the fact that MAPKs may also be
implicated in cancer progression (120) further underscores
the possible links between these abnormalities. Figure 3 illus-
trates possible signalling pathways through which H pylori
may disrupt tight junctional function via MLC. It is not clear
whether H pylori may increase gastric permeability via sig-
nalling cascades associated with PKC, ERK or p38. In addi-
tion, while H pylori is known to activate the small
Rho-GTPase (51,135), it is not known whether this leads to
MLC phosphorylation and impaired epithelial barrier func-
tion. Findings from a recent study (136) suggest a key role for
Src homology 2 domain-containing protein-tyrosine phos-
phatase (SHP-2) in H pylori CagA-mediated signalling in
adenocarcinoma gastric stomach cells. The role of ERK in
the epithelial abnormalities caused by this micro-organism
needs to be further investigated. H pylori also activates the
other two members of the Rho family of small GTPases, Rac
and cell division control protein 42 (Cdc42) (128,137),
which are known to influence tight junction assembly and
epithelial permeability (90,138). Indeed, it has been estab-
lished that Rho-A and Rac1 are directly involved in the reg-
ulation of tight junctional structure and function (139).
However, no direct link has yet been established between
H pylori-mediated activation of Rac or Cdc42 and epithelial
barrier dysfunction, nor with other cytoskeletal rearrange-
ments known to occur in response to this bacterium (140).
More research is needed to determine if strain-specific sig-
nalling causing gastric barrier disruptions may explain, at
least in part, the variable clinical outcomes seen in response
to H pylori infection.

In addition to acting as a selective barrier, tight junctions

serve as a scaffold for a number of signalling molecules, and it

is becoming increasingly apparent that the tight junction is

an important component of the pathways that regulate cell

proliferation and differentiation. JAM attached to ZO-1 is

capable of recruiting PAR3 (141). In turn, PAR3 recruits and

assembles a protein complex containing atypical PKC

(aPKC)-PAR3-PAR6 at the tight junction (142,143). PAR6

of this complex binds Cdc42, and this Rho-family GTPase

can activate aPKC, a cascade of events that are crucial for the

assembly of the epithelial tight junctions (142-144).

Furthermore, Cdc42 inhibits protein trafficking to the basolat-

eral membrane and controls the development of epithelial cell

polarity (144). H pylori, through the injection of CagA, pro-

duction of VacA, and possibly through the expression of an

outer membrane protein alters a number of cell signalling and

trafficking pathways in epithelial cells (43,44,90-92,145), a

number of which have detrimental effects on epithelial barrier

structure and function. The additional insult of tight junctional

disruption may have effects on epithelial cell adhesion and

polarity.
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Figure 3) Illustration of the various signaling pathways through which
H pylori may disrupt epithelial permeability. References to specific
reports for each of these steps are discussed in the text. Dotted lines illus-
trate links that have yet to be established. CagA Cytotoxin-associated
antigen; CaM Calcium-calmodulin; DAG Diacylglyerol; ERK
Extracellular signal-regulated kinase; GTPase Guanosine triphos-
phatase; IP3 Inositol-triphosphate; MEK Mitogen-activated protein
kinase/ERK kinase; MLCK Myosin light chain kinase; PLC
Phospholipase C; PKC Protein kinase C; ROCK Rho-associated
kinase; VacA Vacuolating cytotoxin
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H pylori is known to have proapoptotic properties
(106,107). While physiological sloughing of epithelial cells via
apoptosis does not alter epithelial permeability (146,147),
microbially or immunologically activated apoptosis does have
the ability to cause a loss of barrier function (109-112).
Therefore, research findings available to date offer solid sup-
port to the hypothesis that, independently of the chronic
inflammatory response to the infection, at least some strains of
H pylori may express virulence factors that can directly alter
normal epithelial cell functioning and predispose these cells to
malignant transformation.

CONCLUSION

A growing body of evidence in the scientific literature supports
the hypothesis that H pylori may alter epithelial tight junctional
components and disrupt gastric barrier function, and that these
effects may be strain-dependent. While studies (95,96) in human
subjects have yielded controversial findings on this topic,
H pylori has the ability to increase the passage of food antigens
across the gastric epithelium (97,98). This mechanism may rep-
resent a common route towards the development of postinfec-
tious food allergies, which have been reported in association
with H pylori as well as other enteric pathogens (99,100).
H pylori is considered a class 1 carcinogen. Cell adhesion and
polarity are often lost during carcinogenesis, and a role for the

loss of specific claudins in these events has been suggested.
Indeed, in pancreatic cells, claudin-4 expression inversely cor-
relates with metastatic potential (53,54), and it was recently
observed that loss of claudin-4 may be implicated in the devel-
opment of gastric adenocarcinoma (55). In addition, cell adhe-
sion is sensitive to a number of host factors, including MMP.
One of these, MMP-7 (matrilysin), which is secreted by epithe-
lial cells, was recently identified as a precursor of H pylori-
induced gastric adenocarcinoma (58-60). The exact
involvement of disrupted claudins and MMP-7 in the produc-
tion of H pylori-induced loss of gastric barrier function remains
unclear. Nevertheless, the loss of claudin-4 (and possibly that
of other tight junctional proteins), perhaps in association with
increased MMP-7, could contribute to phenotypic changes
induced by H pylori, and thereby increase the metastatic poten-
tial of gastric epithelial cells, consistent with the hypothesis
that H pylori-induced abnormalities at epithelial tight junc-
tions contribute at least in part to the clinical outcome of the
infection.
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