N-3 POLYUNSATURATED FATTY ACIDS STIMULATE BILE ACID DETOXIFICATION IN HUMAN CELL MODELS.

Anna Cieślak, Jocelyn Trottier, Mélanie Verreault, Piotr Milkiewicz, Marie-Claude Vohl and Olivier Barbier

SUPPLEMENTARY MATERIALS

LIST OF ABBREVIATIONS

ASBT,	apical sodium-dependent bile acid transporter
BACAT,	bile acid-Coenzyme A dehydrogenase: amino acid n-acyltransferase
BACL,	bile acid-CoA ligase
BAs,	bile acids
BSEP,	bile salt export pump
CA,	cholic acid
Caco2,	human epithelial colorectal adenocarcinoma cells
CDCA,	chenodeoxycholic acid
CYP,	cytochrome P450
CYP27A1,	sterol 27-hydroxylase
CYP3A4,	cytochrome P450 3A4
CYP7A1,	cholesterol 7α-hydroxylase
CYP8B1,	12α-hydroxylase
DCA,	deoxycholic acid
DHA,	docosahexaenoic acid
DMEM,	Dulbecco's modified Eagle's medium
DMEM/HAM-F-12,	Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient Mixture
EPA,	eicosapentaenoic acid
FACS,	fluorescence-activated cell sorting
FBS,	fetal bovine serum
FGFR4,	fibroblast growth factor receptor 4
FGF-19,	fibroblast growth factor 19
FXR,	farnesoid X-receptor
GBA,	glyco-conjugated bile acid
HCA,	hyocholic acid

HDCA,	hyodeoxycholic acid
HepG2,	human hepatocellular liver carcinoma cells
HNF4α,	hepatic nuclear factor-4
I-BABP,	intestinale bile acid-binding protein
InEpC,	Intestinal Epithelial Cells
KCA,	ketocholic acid
LCA,	lithocholic acid
LCA-S,	lithocholic acid sulfate
LC-MS/MS,	liquid chromatography-tandem mass spectrometry
LRH-1,	Liver receptor homologue-1
LXRα,	liver X-receptor alpha
MRP,	multi-drug resistance protein
NR,	nuclear receptor
NTCP,	Na ⁺ Taurocholate cotransporting polypeptide
N-3 PUFAs,	polyunsaturated fatty acids
OATP,	organic anion transporting polypeptide
ΟSTα/β,	organic solute transpoter alpha/beta
PBC,	primary biliary cholangitis
PI,	propidium iodine
PPARα,	peroxisome proliferator-activated receptors alpha
PSC,	primary sclerosing cholangitis
PUM-1,	pumilio RNA-binding family member 1
PXR,	pregnane X-receptor
qRT-PCR,	quantitative reverse-transcription polymerase chain reaction
RPTEC,	renal proximal tubule epithelial cells

RT,	reverse transcription
RXR,	retinoid X receptor
SHP,	small heterodimer partner
SmGM,	smooth Muscle Growth SingleQuot Medium
SULT,	sulfotransferase
TBA,	tauro-conjugated bile acid
TGR5,	G-protein-coupled bile acid receptor Gpbar1
UDCA,	ursodeoxycholic acid

Supplementary Table 1: Primers and conditions used for quantitative real-time PCR experiments.

Gene	Primers	Annealing Temperature (°C)	RT dilution
ASBT	Sense: 5'-TGACCACATGCTCCACACTG	62°C	Caco-2 1/50 InEpC 1/25
	Antisense: 5'-CCCAGAGTCGACCCACATTT Sense: 5'-CTGCCAACTTTCTCCTGAGACA		RPTEC 1/50
BACAT	Antisense: 5'-CCAATCTGTACTCCTTGACATACA	60°C	HepG2 1/200
BACL	Sense: 5'-GTGGAGGGCGTGTTGTCGCA Antisense: 5'-CCGTCGAAAGTCTGGCCGGG	62°C	HepG2 1/200
BSEP	Sense: 5'-GGGCCATTGTACGAGATCCTAA Antisense: 5'-TGCACCGTCTTTTCACTTTCTG	61°C	HepG2 1/50
CYP3A4	Sense: 5'-CCAAGCTATGCTCTTCACCG Antisense: 5'-TCAGGCTCCACTTACGGTGC	65°C	HepG2 1/50 RPTEC 1/50
CYP27	Sense: 5'-CGGCAACGGAGCTTAGAGG Antisense: 5'-GGCATAGCCTTGAACGAACAG	60°C	HepG2 1/200
CYP7A1	Sense: 5'-AGAAGCATTGACCCGATGGAT Antisense: 5'-AGCGGTCTTTGAGTTAGAGGA	59°C	HepG2 1/50
CYP8B1	Sense: 5'-GAAGCGCATGAGGACCAAG Antisense: 5'-TTGCATATTGCCCAAAGTCTAGT	59°C	HepG2 1/50
FGF19	Sense: 5'-CGGAGGAAGACTGTGCTTTCG	62°C	HepG2 1/50 Caco-2 1/200
	Antisense: 5'-CTCGGATCGGTACACATTGTAG		RPTEC 1/25
FGFR4	Sense: 5'-GAGGGGCCGCCTAGAGATT	62°C	Caco-2 1/200 InEpC 1/25
			RPTEC 1/50
FXR	Sense: 5'- GGTGTTTTAACAGAACAAGTGGC	60°C	Caco-2 1/200
	Antisense: 5'-ACATTGCTGTATTGCGAGTATGG		RPTEC 1/500
HNF4α	Sense: 5'-CGACACGTCCCCATCAGAAG	60°C	HepG2 1/200 Caco-2 1/500
	Antisense: 5'-CTCGAGGCACCGTAGTGTTT		InEpC 1/50 RPTEC 1/100
IBABP	Sense: 5'-ACCGGCAAGTTCGAGATGG Antisense: 5'-CCTTTTCGATTACATCGCTGGA	60°C	Caco-2 1/50 InEpC 1/25
βΚLΟΤΗΟ	Sense: 5'-TTGCCAACGCAAAAGGTCTG	60°C	HepG2 1/500 Caco-2 1/500
	Antisense: 5'-GCCAAAGGCAAATCCCAGTG		InEpC 1/50 RPTEC 1/100
LRH	Sense: 5'- GAATGCGTGGAGGAAGGAATAA	60°C	HepG2 1/200 Caco-2 1/500
	Antisense: 5'-GTCAGAGGGCATAGCTTGGAT		InEpC 1/50 RPTEC 1/50
LXRα	Sense: 5'-GCTGCAAGTGGAATTCATCAACC	64°C	HepG2 1/100 Caco-2 1/500
	Antisense: 5'-ATATGTGTGCTGCAGCCTCTCCA		InEpC 1/50 RPTEC 1/50
Gene	Primers	Annealing Temperature	RT dilution
1			

		(°C)	
MRP2	Sense: 5'-CAAACTCTATCTTGCTAAGCAGG	59°C	HepG2 1/1000 Caco-2 1/1000 InEpC 1/50
	Antisense: 5'-TGAGTACAAGGGCCAGCTCTA		RPTEC 1/50
MRP3	Sense: 5'-CAGAGAAGGTGCAGGTGACA	59°C	Caco-2 1/50
	Antisense: 5'-CTAAAGCAGCATAGACGCCC		INEPC 1/100 RPTEC 1/50
MRP4	Sense: 5'-GGACAAAGACAACTGGTGTGCC	64°C	HepG2 1/200 Caco-2 1/1000
	Antisense: 5'-AATGGTTAGCACGGTGCAGTGG		InEpC 1/50 RPTEC 1/500
NTCP	Sense: 5'-TGATATCACTGGTCCTGGTTCTCA Antisense: 5'-GCATGTATTGTGGCCGTTTG	61°C	HepG2 1/50
OATP1B1	Sense: 5'-TGGTCCACCAACAACTGTGGCA	60°C	HepG2 1/50
	Sense: 5'-AAGTTGTGCTTTGCGATGCTGAGT		
OATP1B3	Antisense: 5'-GTCAGGCCCTCTAGGAGGTGGG	62°C	HepG2 1/50
	Sense: 5'-AGATTGCTTGTTCGCCTCC	59°C	HepG2 1/50 Caco-2 1/50
ΟSΤα	Antisense: 5'-ATTCGTGTCAGCACAGTCATTAG		InEpC 1/50
			RPTEC 1/50
	Sense: 5'-CAGGAGCTGCTGGAAGAGAT	59°C	HepG2 1/50 Caco-2 1/50
ΟSTβ	Antisense: 5'-GACCATGCTTATAATGACCACCA		InEpC 1/50 RPTEC 1/50
PPARα	Sense: 5'- ATATCTCCCTTTTTGTGGCTGCTA	60°C	HepG2 1/200 Caco-2 1/100
	Antisense: 5'-TCCGACTCCGTCTTCTTGATGA		InEpC 1/50 RPTEC 1/100
PUM1	Sense: 5'-CCGTCGAAAGTCTGGCCGGG Antisense: 5'-CATTAATTACCTGCTGGTCTGAAGGA	62°C	All cells: 1/50
PXR	Sense: 5'-GACAGTGCCAGGCCTGCCGCC	62°C	HepG2 1/100 Caco-2 1/100
	Antisense: 5'-CATCTGAGCGTCCATCAGCTCC		InEpC 1/50 RPTEC 1/50
RXR	Sense: 5'-ATGGACACCAAACATTTCCTGC	62°C	HepG2 1/100 Caco-2 1/200
	Antisense: 5'-GGGAGCTGATGACCGAGAAAG		InEpC 1/50 RPTEC 1/200
	Sense: 5'-GTGCCCAGCATACTCAAGAAG	60°C	HepG2 1/1000 Caco-2 1/50
SHP	Antisense: 5'-TGGGGTCTGTCTGGCAGTT		InEpC 1/25 RPTEC 1/50
SULT2A1	Sense: 5'-ACGGATTCGAGGCCACGTCC	62°C	HepG2 1/200 Caco-2 1/500
	Antisense: 5'-TCCGTTTCACTGAGTGCTGTA		InEpC 1/50 RPTEC 1/200
TGR5	Sense: 5'-GACTTTGGACCATGAAGACCAG	60°C	HepG2 1/50 Caco-2 1/50
	Antisense: 5'-GCCCAGACGGAAGTTTCTTATT		InEpC 1/25 RPTEC 1/200

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Dose-dependent and gene-specific modulation of the bile acid-related transcriptome in human hepatoma HepG2 cells treated with EPA and DHA.

HepG2 cells were treated with DMSO (vehicle, 0.1% v/v) or DHA or EPA for 24H at 5, 15, 25 and 50 μ M for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean \pm S.D. of triplicate experiments. The results are representative of two independent experiments. Statistically significant differences were analyzed using one-way analysis of variance (ANOVA) (* *p* < 0.05).

Supplementary Figure 2. Time-dependent and gene-specific modulation of the bile acid-related transcriptome in human HepG2 cells treated with EPA and DHA.

HepG2 cells were treated with DMSO (vehicle, 0.1% v/v) or DHA or EPA at 50 μ M for 6, 12, 18, 24 and 48H for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean±S.D. of triplicate experiments. The results are representative of two independent experiments. Statistically significant differences were analyzed using one-way analysis of variance (ANOVA) (* p < 0.05).

Supplementary Figure 3. Additive and/or synergistic effects of the EPA+DHA combination on the bile acid-related transcriptome in human hepatoma HepG2 cells.

HepG2 cells were treated with DMSO (vehicle, 0.1% v/v) or DHA and/or EPA for 24H at 25 and/or 50 μ M for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean \pm S.D. of triplicate experiments. The results are representative of two independent experiments. Statistically significant differences were analyzed using one-way analysis of variance (ANOVA) (* *p* < 0.05).

Supplementary Figure 4. Preparation of the PUFA solution has minimum impact on the response of BA-related genes in HepG2 cells.

HepG2 cells were exposed to EPA/DHA (25/25 or 50/50µM) prepared either in DMSO or in culture medium containing 125µM BSA for 24H. Total RNA was extracted using the TriReagent® protocol and CYP7A1, CYP27 and MRP3 mRNA levels were determined by quantitative real time PCR as detailed in the materials and methods section.

Statistically significant differences were analyzed using one-way analysis of variance (ANOVA) (* p < 0.05).

Supplementary Figure 5. Time-dependent effects of n-3 PUFAs on the bile acid-induced activation of the pro-apoptotic Caspase 3 pathway in human hepatoma HepG2 cells.

HepG2 cells pretreated with DMSO (vehicle, 0.1% v/v) and DHA/EPA (50/50 μ M) (**A**): for 24H and exposed to 100 μ M BAs (CA, CDCA, LCA, CDA) for 0,5, 1, 2, 3, 6 and 24H, (**B**): for 3, 6, 16 and 24H and exposed to 100 μ M BA (CA, CDCA, LCA, CDA) for 2H. The caspase-3 activity was determined as indicated in the materials and methods section.

The results (mean±S.D.) are representative of two independent experiments. Statistical differences between two groups were analyzed using unpaired two-side *t*-test *versus* vehicle (*) or BAs (\neq) (*p* < 0.05).

Supplementary Figure 6. Dose-dependent and additive/synergistic effects of EPA and/or DHA on the bile acid-related transcriptome in human colon carcinoma Caco-2 cells.

Human colon carcinoma Caco-2 were treated with DMSO (vehicle, 0.1% v/v) or DHA and/or EPA for 24H at 10, 25 and/or 50µM for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean±S.D. of triplicate experiments. The results are representative of two independent experiments. Statistically significant differences were analyzed using one-way analysis of variance (ANOVA) (* p < 0.05).

Supplementary Figure 7. Time-dependent and gene-specific modulation of the bile acid-related transcriptome in colon carcinoma Caco-2 cells treated with EPA and DHA.

Human colon carcinoma Caco-2 were treated with DMSO (vehicle, 0.1% v/v) or DHA and EPA at 50 and 25µM respectively for 6, 12, 18, 24 and 48H for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean \pm S.D. of triplicate experiments. The results are representative of two independent experiments. Statistical differences between two groups were analyzed using unpaired two-side *t*-test (*p* < 0.05).

Supplementary Figure 8. Time-dependent and gene-specific modulation of the bile acid-related transcriptome in RPTEC treated with EPA and DHA.

Human renal proximal tubule epithelial cells (RPTEC) were treated with DMSO (vehicle, 0.1% v/v) or DHA and EPA at 25 and 50µM, respectively for 6, 12, 18, 24 and 48H for mRNA measurements. Total RNA was extracted using the TriReagent® protocol to further measure mRNA levels by quantitative real time PCR as detailed in the materials and methods section.

Each data point represents the mean \pm S.D. of triplicate experiments. The results are representative of two independent experiments. Statistical differences between two groups were analyzed using unpaired two-side *t*-test (*p* < 0.05).

9

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Supplementary Figure 4

Supplementary Figure 5

- - -

+ + +

-

-

+

+

- + -

- -

Supplementary Figure 6

Supplementary Figure 7

12H

6H

24H

48H

12H

6H

24H

48H

Supplementary Figure 8