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Vitamin D has been discovered centuries ago, and current studies have focused on the biological effects of vitamin D on
adipogenesis. Besides its role in calcium homeostasis and energy metabolism, vitamin D is also involved in the regulation of
development and process of metabolic disorders. Adipose tissue is a major storage depot of vitamin D. 1is review summarized
studies on the relationship between vitamin D and adipogenesis and furthermore focuses on adipose metabolic disorders. We
reviewed the biological roles and functionalities of vitamin D, the correlation between vitamin D and adipose tissue, the effect of
vitamin D on adipogenesis, and adipose metabolic diseases. Vitamin D is associated with adipogenesis, and vitamin D sup-
plements can reduce the burden caused by metabolic diseases. 1e review provides new insights and basis for medical therapy on
adipose metabolic diseases.

1. Introduction

Vitamin D is an essential nutrient for the prevention of
rickets and is responsible for the intestinal absorption of
calcium, phosphate, and magnesium [1, 2]. Vitamin D can
be obtained from food, but most of it is synthesized from 7-
dehydrocholesterol in the skin via ultraviolet irradiation
[3, 4]. 1e mechanism of vitamin D action is through its
active form, 1α, 25-dihydroxyvitamin D3 [1α, 25(OH)2D3],
which regulates the transcription of target genes and thus
plays an important role in calcium homeostasis and meta-
bolism [5–7]. Vitamin D deficiency or insufficiency is still a
common issue in developing countries [8, 9]. Among 734
adolescents ranging from 12 to 18 years, 87.6% of partici-
pants had vitamin D deficiency [10]. Aside from its in-
volvement in calcium and bone mineralization, vitamin D
has multiple functions in adipose tissue, adipogenesis,
glucose-insulin homeostasis, cell growth, and so on [11–13].

Adipose tissue is a vital organ in energy homeostasis and
glucose metabolism [14–16]. Adipose tissue is also an en-
docrine organ secreting proteins and releasing fatty acids

[17, 18]. It is composed of various cell types, including
mature adipocytes, preadipocytes, fibroblasts, macrophages,
and immune cells. 1e predominant cell types existing in
adipose tissue are mature adipocytes. Preadipocytes differ-
entiate into mature adipocytes in adipose tissue, and this
process requires the regulation of transcription factors
(peroxisome proliferator-activated receptor (PPAR),
CCAAT enhancer-binding protein (C/EBP), and Kruppel-
like factor proteins) [19, 20]. Vitamin D is mainly stored in
adipose tissue, while vitamin D receptor (VDR) is expressed
in adipose tissue [21, 22]. VDR is an activated transcription
factor of active vitamin D. Previous studies investigated the
effect of vitamin D on adipogenesis in animal models
[23, 24], and results suggested that vitamin D exerts anti-
adipogenic activity in 3T3-L1 preadipocytes [25–27].
Meanwhile, vitamin D deficiency or insufficiency is involved
in the regulation of insulin secretion, glucose levels, and
inflammation causing adipose metabolic diseases, such as
obesity, multiple sclerosis, diabetes, and fatty liver [28–32].

Hence, we reviewed the correlation between vitamin D
and adipose tissue, along with related metabolic disorders
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(diabetes, nonalcohol fatty liver, and cardiovascular dis-
eases). 1is study aimed to establish the relationship be-
tween vitamin D and metabolic disorders and furthermore
to determine whether such disorders are affected by vitamin
D supplementation, adipose vitamin D metabolism, and
increased or reduced vitamin D activation. 1e vitamin D
status, regulation of vitamin D by adipose tissue, effect of
vitamin D on adipogenesis, and related metabolic diseases
were also discussed.

2. Bioactivation of Vitamin D

Only a small amount of fat-soluble vitamin D can be ob-
tained from the diet and from supplements [33]. 1e major
source of vitamin D is produced in the skin through a
sunlight-dependent chemical reaction [4, 34]. Exposure of
the skin to ultraviolet-B radiation from the sun converts 7-
dehydrocholesterol into previtamin D3, which can be iso-
merized to vitamin D3 [35]. Vitamin D3 is then converted
into calcifediol (25-(OH)D) in the liver and further hy-
droxylated into 1,25(OH)2D in the kidney (Figure 1) [36].
Normally, the serum concentration of 25-(OH)D is mea-
sured to determine an individual’s vitamin D status in se-
rum, whereas 1,25(OH)2D is the biological active form of
vitamin D [37–39].

1e biological activity of 1,25(OH)2D is mediated
through binding to VDR [40]. VDR is also well-documented
as calcitriol receptor and is a member of the steroid hormone
nuclear receptor family [41]. In humans, VDR is encoded by
the VDR gene [42]. VDR widely exists in tissues and cells,
such as skeleton, kidney, renal, skin, and immunocytes [4].
In nuclear, 1α,25-(OH)2D3, which is the active form of
vitamin D, is capable of binding to VDR and form a

heterodimer with retinoid X receptor (RXR); the complex
binds to RNA polymerase and VDR interacting protein,
resulting in the regulation of DNA transcription [43, 44].
Downstream targets of VDR are involved in calcium ho-
meostasis, immune response, and cancer development [45].
Hindered VDR expression can impact diverse diseases,
including cardiovascular disease, diabetes, tumors, tuber-
culosis, and multiple sclerosis [46].

After dietary intake, vitamin D needs to be absorbed by
meal of fat through passive diffusion in the intestine. 1e
absorbed vitamin D is transported to the liver by binding to
diverse plasma proteins, such as vitamin D-binding protein
(DBP), β-lipoprotein, and albumin [47–49]. DBP is an
important carrier protein that can attenuate the toxicity of
vitamin D by limiting its bound metabolites to target cells
[50]. In the liver, vitamin D is converted into 25(OH)D
catalyzed by the several hepatic cytochrome P-450s [51–53].
Of note, the metabolite is released into plasma and trans-
ported to the kidney, where it is converted into 1,25(OH)D,
and is finally transported throughout the body (Figure 1)
[54]. After synthesis, absorption, and transport, active vi-
tamin D is distributed to hydrophobic parts of tissues [55].
Unlike other fat-soluble vitamin, vitamin D is not stored in
the liver (except in some fish livers) [56]. Vitamin D is
mostly stored in adipose tissue, and a large amount of vi-
tamin D is combined with lipid, resulting in release and
metabolic difficulties [57, 58].

3. Vitamin D and Lipid Metabolism

3.1. Regulation of Activation of Vitamin D by Adipose Tissue.
Aside from the important roles of vitamin D in intestinal
calcium, phosphate uptake, and bone mass regulation, it is
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Figure 1: Bioactivation of vitamin D.
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also involved in other processes, including cell growth,
immune functions, inflammation regulation, and neuro-
muscular functions [59–63]. Vitamin D could be regulated
by hydroxylation that includes two-step enzymatic pro-
cesses. Hydroxylation is performed by enzymes CYP27B1,
CYP2J2, CYP27A1, and CYP3A4 in the liver and CYP27B1
in the kidney [64]. 1ese enzymes are consecutively
expressed in subcutaneous adipose tissue (SAT) and visceral
adipose tissue [65, 66].1eCYP27B1 gene is expressed in the
SATof lean individuals and in 3T3-L1 preadipocytes, and it
is regulated by calcitonin, hormones, calcium, and phos-
phorus [53]. 1us, the location of these enzymes in adipose
tissue could implicate the production of active vitamin D.

Previous reports showed that the concentrations of vi-
tamin D in blood below 50 nmol/L indicated vitamin D
deficiency, and the reference values of vitamin D levels in
blood should exceed 75 nmol/L; lower serum vitamin D
levels correlated with higher frequency of obesity and ex-
cessive body weight [67–69]. Circulating 25(OH)D level
depends on the storage of vitamin D in adipose tissue, in-
dicating that adipose tissue probably affects the activation,
regulation, or action of obesity via regulation of vitamin D
[57, 70, 71]. In the presence of calcitriol, adipogenesis is
blocked by VDR via downregulating both C/EBPβ nuclear
protein levels and mRNA expression. In addition, 1,25(OH)
2D3 allows for the upregulation of eight twenty-one (ETO),
which is the core-repressor of C/EBPβ, and finally leads to C/
EBPβ deficiency in adipogenesis [72]. VDR expression in

3T3-L1 cells inhabited PPARc mRNA levels, which de-
creased adipogenesis [73]. 1ese data indicated that VDR
reduced adipogenesis through decreasing the expression of
C/EBPβ and PPARc and increasing ETO expression. 1e
molecular mechanism of inhibitory effect of VDR on adi-
pogenesis maybe due to the fact that RXR is a heterodimeric
partner for both PPARc and VDR, respectively, and that
VDR leads to competition between RXR and PPARc to
decrease adipogenesis (Figure 2). Previous studies confirmed
the competitive relationship between VDR and PPARc for
RXR [73–75]. Certainly, the mechanism underlying still
needs to be proved by further investigation. Taken together,
these investigations suggest that vitamin D plays a complex
role through VDR and the transcription pathways in reg-
ulating adipogenesis.

3.2. Effect of Active Vitamin D on Adipogenesis.
Adipogenesis is a cascade of differentiation that leads to
adipocyte maturation. Adipocytes can affect many adipo-
genesis-related functions, such as adipokine secretion, lipid
synthesis, fatty acid transfection, and insulin signaling re-
sponse [76]. A vast amount of molecular interactions is in-
volved during adipogenesis, and the main component is the
expression of C/EBPβ and PPARc [77]. C/EBPβ and C/EBPδ
are expressed in the early stage of adipogenesis. 1e adipo-
genesis is promoted under the regulation of C/EBPα, β, and δ
[78]. 1,25(OH)2D3 can inhibit 3T3-L1 preadipocyte
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Figure 2:1e relationship between vitamin D and adipogenesis. ETO: eight twenty-one. PPARc: peroxisome proliferator-activated receptor c.
C/EBPα: CCAAT enhancer binding protein α. C/EBPβ: CCAAT enhancer binding protein β. C/EBPδ: CCAAT enhancer binding protein δ.
VDR: vitamin D receptor. RXR: retinoid X receptor.
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differentiation by downregulating C/EBPβ and PPARc

(Figure 2) [79, 80]. When combined with genistein, 1,25(OH)
2D3 inhibits adipocyte lipid-binding protein 2 expression and
fat accumulation in 3T3-L1 preadipocytes [81].

VDR plays a vital role in adipogenesis. 1e activity of
vitamin D is performed through 1,25(OH)2D3-VDR ac-
tions, and the target organs of VDR are the liver, kidney,
genitourinary tract, intestine, bone, brain, and various im-
mune cells [5, 82]. VDR is expressed at the early stage of
adipose differentiation [83]. Macrophage inflammation can
induce the expression of VDR [84]. Knockdown of VDR in
mice could lead to low-fat mass, high rates of β-oxidation,
and adipogenesis inhibition; in VDR+/+ cells, 1,25(OH)2D3
treatment can block adipogenesis [72, 83]. In the absence of
1,25(OH)2D3, unliganded VDR also inhibits 3T3-L1 pre-
adipocyte differentiation [73]. 1ese data suggest a potential
correlation between VDR and adipogenesis. In different
phases of adipogenesis, 1,25(OH)2D3 could exert anti-
adipogenic activity through the WNT/β-catenin pathway,
the expression of mRNA modulation, and phosphorylation
of extracellular regulated kinase via the mitogen-activated
protein signaling pathway [80, 85].

Adiponectin is a hormone produced in adipose tissue
and the brain. It is involved in the regulation of fatty acid
oxidation [86, 87]. Adiponectin is abundant in plasma and is
inversely related to body mass index [88]. 1erefore, the
biological effect of adiponectin can be related to serum
concentration. Increased adiponectin in transgenic mice
showed that the differentiation of 3T3-F442A cells is re-
duced through suppression of the expression of pre-
adipocyte factor-1 mRNA and CCAAT enhancer-binding
protein [89]. Adiponectin also plays a role in the suppression
of metabolic disorders that may cause obesity, nonalcoholic
fatty liver disease (NAFLD), or type-2 diabetes mellitus
(T2DM) [87, 90, 91]. Moreover, administration of leptin and
adiponectin can reverse insulin resistance in mice [92].
1,25(OH)2D3 treatment can upregulate adiponectin in vitro
and inhibit anti-inflammatory cytokine expression, and
daily intake of fortified vitamin D can improve inflammation
in T2DM [88, 93, 94]. However, data on the effect of
1,25(OH)2D3 on adiponectin in human adipocytes are
lacking. 1erefore, active vitamin D probably acts in adi-
pogenesis by affecting insulin resistance, VDR, leptin ex-
pression, or inflammatory response [95–100].

4. Vitamin D Deficiency with Lipid
Metabolism Diseases

4.1. Type-2 Diabetes. Diabetes mellitus (DM) is a conse-
quence of metabolic disorders that contributes to the
morbidity of obesity [101].1is disease has four types: type-1
DM (T1DM), type-2 DM (T2DM), gestational diabetes, and
specific diabetes types with known causes [102]. T1DM,
referred to as insulin-dependent DM, is caused by failure to
produce enough insulin; T2DM is caused by the inability of
the body to respond properly to insulin; gestational diabetes
often occurs in pregnant women and could be overcome
after pregnancy; and the fourth kind of DM is diabetes with
known causes [102, 103]. About 90% of diabetes cases are

T2DM. 1erefore, insulin resistance is a major factor for
T2DM development. 1e morbidity of T2DM can be af-
fected by environment, obesity, and age [104].

Low concentration of vitamin D is associated with
T2DM patients. 1e serum concentration of 1,25(OH)D in
69.9% of 103 patients is lower than 20 ng/ml and negatively
correlated with hemoglobin A1C and insulin resistance
[105]. In adults aged over 45 years, vitamin D deficiency is
significantly associated with occurrence of T2DM [106].
Substantial evidence shows a link between vitamin D and
T2DM [107].

Vitamin D deficiency can inhibit pancreatic insulin
secretion; vitamin D can protect β-cells through cytokine
regulation, promote depolarization by regulating the func-
tion of calcium-binding protein on pancreatic β-cells, and
regulate the concentration of calcium ions and the flow of
calcium through the cell membrane [108–111]. 1erefore,
the potential role of vitamin D is to induce the expression of
insulin receptor, promote the expression of PPARc, or affect
glucose transporter activity by regulating intracellular cal-
cium levels [112–114].

Inflammation also participates in contributing insulin
resistance. In T2DM patients, 1,25(OH)D can improve in-
sulin resistance through negative regulation of the expres-
sion of inflammatory cytokines, such as interleukin-1,
interleukin-6, interleukin-8, and tumor necrosis factor α
[115]. Vitamin D deficiency can affect insulin secretion and
resistance; thus, it plays a role in the occurrence and de-
velopment of T2DM [116–118]. However, these meta-ana-
lyses still need to be improved because of the limited
concentration used in the study (at least 2000 IU/day) and
the short investigation period on the patients.

4.2. Nonalcoholic Fatty Liver Disease. NAFLD is a stress-
induced liver injury that is associated with insulin resistance
and metabolic syndrome [119]. 1e causes of NAFLD are
diabetes, obesity, age, and diet [120]. NAFLD has two types,
namely, nonalcoholic fatty liver and nonalcoholic steatohe-
patitis [121, 122]. 1is disease is usually treated through
weight loss and exercise. NAFLD is the most common
chronic liver disorder in western countries [123]. It is a
continuous process of liver injury, which may lead to stea-
tohepatitis, cirrhosis, and liver cancer [124]. Vitamin D plays
an important role in NAFLD development [125]. About 75%
of 5847 insulin resistance and metabolic syndrome patients
have vitamin D deficiency [126]. 1e serum concentration of
1,25(OH)D is lower in patients with NAFLD than in normal
patients, and the fatty liver index is negatively correlated with
1,25(OH)D level [127]. Treatment with vitamin D can im-
prove insulin resistance in patients with glucose intolerance
[128]. In vivo studies found that vitamin D deficiency and
VDR knockdown reduce the secretion of insulin from pan-
creatic β-cells [129]. 1ese results support that low levels of
serum 25(OH)D are related to NAFLD.

Vitamin D is associated with insulin resistance pheno-
typic markers, such as HOMA-IR, ISI, adiponectin, tri-
glyceride, and high-density lipoprotein cholesterol
[130, 131]. A prospective study on 524 nondiabetic patients

4 Canadian Journal of Gastroenterology and Hepatology



aged 40–69 years has reported that serum 25(OH)D level is
negatively correlated with blood glucose level and insulin
resistance level [132]. 1e decrease in insulin sensitivity,
pancreatic β-cell function, and insulin synthesis and se-
cretion caused by low vitamin D level is related to insulin
resistance. Vitamin D deficiency can promote the progress of
impaired glucose tolerance, increase the expression of renin
angiotensin system components, and damage the tran-
scriptional function of pancreatic genes [133]. Vitamin D
also decreases insulin resistance by downregulating the
expression of PPARc2, suppressing the differentiation of
3T3-L1 preadipocytes, and inhibiting adipogenesis [134].
Studies in vivo and in vitro showed that vitamin D is related
to the pathogenesis and progress of NAFLD.

4.3. Cardiovascular Risk. Previous study indicated that en-
dothelial dysfunction represents an early event in cardio-
vascular diseases, and there is an association between
vitamin D levels and endothelial dysfunction. In addition,
vitamin D levels negatively correlated with flow-mediated
dilatation (FMD) in many patients affected by type 2 dia-
betes, whereas current data are still insufficient to confirm
vitamin D deficiency or insufficiency lead to an increased
cardiovascular risk [135]. 1e relationship between vitamin
D deficiency and cardiovascular risk, as well as mechanism
underlying also still needs to be proved by further
investigation.

5. Conclusions

1is review was dedicated to reveal the correlation between
vitamin D and adipogenesis, with emphasis on the diseases
related to adipose metabolic disorders. Vitamin D has
several influences on adipogenesis. Active vitamin D is
mainly produced, stored, and degraded in adipose tissue,
and VDR is expressed in adipose tissue. Vitamin D affects
adipogenesis by regulating the expression of adipocyte
transcription factors, such as PPARc, C/EBPα, and LPL, and
through affecting insulin resistance, VDR and unliganded
VDR, and adipokine secretion.

Adipose metabolic disorders, such as obesity, diabetes,
and NAFLD, were specifically chosen in this review. Obesity
is a common occurrence worldwide, and it can lead to di-
abetes and NAFLD. Many studies have indicated that vi-
tamin D deficiency or insufficiency plays an important role
in the development and process of obesity, diabetes, and
NAFLD. Aside from the diseases discussed in the review,
other diseases are also associated with vitamin deficiency,
such as hyperlipidemia, ketosis, ketonuria, and atheroscle-
rosis. However, the effect of vitamin D on adipogenesis in
lean individuals and the function of calcium in adipogenesis
are still keeping elusive. Vitamin D supplements are a
promising way to alleviate the burden caused by these
diseases. In conclusion, vitamin D administration can
provide a new basis for medical therapy.
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