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Purpose. To compare the diagnostic value of texture analysis- (TA-) derived parameters from out-of-phase T1W, in-phase T1W, and
T2W images in the classification of the early stage of liver fibrosis.Methods. Patients clinically diagnosed with hepatitis B infection, who
underwent liver biopsy and noncontrast MRI scans, were enrolled. TA parameters were extracted from out-of-phase T1-weighted
(T1W), in-phase T1W, and T2-weighted (T2W) images and calculated using Artificial Intelligent Kit (AK). Features were extracted
including first-order, shape, gray-level cooccurrence matrix, gray-level run-length matrix, neighboring gray one tone difference matrix,
and gray-level differential matrix. After statistical analyses, final diagnostic models were constructed. Receiver operating curves (ROCs)
and areas under the ROC (AUCs) were used to assess the diagnostic value of each final model and 100-time repeated cross-validation
was applied to assess the stability of the logistic regressionmodels.Results. A total of 57 patients were enrolled in this study, with 27 in the
fibrosis stage< 2 and 30 in stages≥ 2. Overall, 851 features were extracted per ROI. Eight features with high correlation were selected by
the maximum relevancemethod in each sequence, and all had a good diagnostic performance. ROC analysis of the final models showed
that all sequences had a preferable performance with AUCs of 0.87, 0.90, and 0.96 in T2W and in-phase and out-of-phase T1W,
respectively. Cross-validation results reported the following values of mean accuracy, specificity, and sensitivity: 0.98 each for out-of-
phase T1W; 0.90, 0.89, and 0.90 for in-phase T1W; and 0.86, 0.88, 0.84 for T2W in the training set, and 0.76, 0.81, and 0.72 for out-of-
phase T1W; 0.74, 0.72, and 0.75 for in-phase T1W; and 0.63, 0.64, and 0.63 for T2W for the test group, respectively. Conclusion.
Noncontrast MRI scans with texture analysis are viable for classifying the early stages of liver fibrosis, exhibiting excellent
diagnostic performance.

1. Introduction

Liver fibrosis is the pathological repair response to chronic
liver disease and the key step in the development of cirrhosis,
characterized by excessive accumulation and abnormal
distribution of extracellular matrix [1]. Hepatitis B is be-
coming a major global health crisis since WHO estimated in
2015 that almost 260 million people were living with chronic
hepatitis B virus infection, resulting in more than 800,000
deaths annually [2]. Patients with hepatitis B virus infection

are at risk of progression to cirrhosis, which is often ac-
companied by many complications such as hepatocellular
carcinoma and is strongly associated with mortality and low
quality of life. With the development of medicine, some
reports found that cirrhosis could be prevented or reversed if
therapy was administered in the early stages of liver fibrosis
[3–6] making the diagnosis of the early stage of liver fibrosis
critical. According to guidelines on the management of
hepatitis B virus infection [7, 8], one of the treatment options
that stage 2 or higher of liver fibrosis will be necessary to
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accept the antiviral therapy is the classification standard of
this study. Liver biopsy, the current reference standard for
the assessment of liver fibrosis, is an invasive method with
some known complications including bleeding, pain, sample
errors, and interobserver variability [9]. Alternative non-
invasive methods that can substitute liver biopsy are still
under investigation. MRI has high sensitivity in the detec-
tion of nodular liver parenchymal changes in cirrhosis but
has a poor visual assessment of liver fibrosis, especially in the
early stage. +us, texture feature extraction and machine
learning based on MRIs have been suggested. Texture
analysis (TA) is a new useful, postprocessing method that
can provide more data than the perceivable texture feature
parameters. +ese texture features can be extracted through
machine learning software and can reflect the extent of
heterogeneity, granularity, randomness, and so forth, which
may be associated with histopathological changes and
contribute to the differential diagnosis and assessment of the
development stage of fibrosis. Several promising studies
have reported that texture analysis based on MR images can
be used for the classification of liver fibrosis [10, 11], es-
pecially in advanced fibrosis and significant cirrhosis. Few
studies have reported methods of classification for the early
stages of liver fibrosis, for early detection and subsequent
early treatment that can help prevent its progression and
ultimately reduce the occurrence of complications related to
chronic liver disease.

+e aim of this study was to construct diagnostic models
by analyzing TA-derived imaging parameters based on
noncontrast MR images, including out-of-phase T1-
weighted (T1W), in-phase T1-weighted (T1W), and T2-
weighted (T2W) images of early stages of liver fibrosis and
compare their diagnostic performance to explore whether
noncontrast MR images can be effective in classifying the
early stages of liver fibrosis.

2. Materials and Methods

+is retrospective study was approved by the institutional
review board and local ethics committee. Written informed
consent was obtained from all study participants. All liver
biopsies were clinically indicated.

2.1. Study Participants. Participants who were clinically
diagnosed with hepatitis B infection and underwent both
MRI scan and liver biopsy were screened for this study
between July 2016 and September 2019. +e standard pa-
rameters of diagnosis of hepatitis B infection are the pres-
ence of hepatitis B surface antigen in the serum and a repeat
positive after 6 months. Inclusion criteria were as follows: (1)
adults patients 18 years of age or older; (2) patients who were
diagnosed with hepatitis B clinically and had no other
coexisting chronic liver diseases; (3) patients who underwent
MRI scans before undergoing liver biopsies; (4) patients who
are willing to participate in this study and signed a written
informed consent form; and (5) absence of any signs of
cirrhosis on MRI scans. Exclusion criteria were as follows:
(1) patients with claustrophobia; (2) MR images with large

respiration or motion artifacts; (3) decompensated cirrhosis;
and (4) definite cirrhosis during the imaging and patho-
logical diagnosis. A total of 58 participants were screened: 57
were included while one was excluded due to the failure of
TA extraction.

2.2. MRI Data Acquisition of Liver. All MRI scans were
performed on the same 1.5 T clinical system (Avanto, Sie-
mens Healthcare, Erlangen, Germany) using a 4-channel
body phased-array coil. All participants underwent the same
abdominal MRI protocol, which consisted of the following
sequences: in-phase and out-of-phase T1-weighted axial
images and T2-weighted fat-saturated axial images. +e
imaging parameters of the T1W sequence were TR (repe-
tition time) 200ms, TE (time to echo) 2.2ms/4.4ms (in-
phase/out-of-phase), averages 1, concatenations 1, FoV
(field of view) read 380mm, and FoV phase 78.1%, and slice
thickness 6.0mm and T2W sequence was TR 4000ms, TE
79ms, averages 1, concatenations 1, FoV read 400mm, FoV
phase 70.3%, and slice thickness 6.0mm.

2.3.HistologicalAnalysis. Liver biopsy was performed under
ultrasound guidance. Histopathologic features were evalu-
ated by a pathologist with 10 years of experience who was
blinded to patients’ MRI diagnoses. +e biopsy sampling
area was selected in segment V or VIII, according to
Couinaud’s liver segmentation [12, 13]. +e fibrosis stages
were assessed according to the METAVIR scoring system
[14] and standardized to the common scale. Standardization
was as follows: F0, no fibrosis; F1, portal fibrosis without
septa; F2, portal fibrosis with rare septa; F3, numerous septa
without cirrhosis; and F4, cirrhosis.

In our study, stages F0–F1 of fibrosis were categorized as
early-stage fibrosis and stages F2–F4 as significant fibrosis.
According to guidelines on the management of hepatitis B
virus infection, [7, 8] patients with fibrosis stages≥ 2 need
antiviral therapy. +e enrolled participants were classified
into two groups: patients with early stages of fibrosis who did
not require antiviral therapy and patients in the significant
fibrosis group who required antiviral therapy.

2.4. Acquisition of Texture Features. Texture features were
extracted from in-phase and out-of-phase T1WI as well as
T2WI images of all participants by two radiologists (with 8
and 5 years of experience in abdominal imaging diagnosis,
respectively). All participants’ images were exported in
DICOMS format and then imported into an open-source
software program (ITK-SNAP, V3.30) [15] for manual re-
ceiver of interest (ROI) delineation. For each sequence, one
slice from the biopsy sampling area with no liver lesions and
a low amount of motion artifacts was selected. A free-hand
ROI, as large as possible and avoiding major blood vessels or
liver lesions, was placed on T1WI and T2WI. All DICOMS
and ROI images were imported into A.K (Artificial Intel-
ligence Kit Version; V3.2.0 R, GE Healthcare, Shanghai).
Data processing steps were as follows: the linear interpo-
lation method was resampled with dimensions 1∗ 1∗ 1mm.
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Gaussian filter function was denoised and gray-level dis-
cretized and normalized, reconstructed with Z-score stan-
dardization (mean of 0 and deviation of 1), and fused.
Extracted features based on ROI included the first-order,
shape, gray-level cooccurrence matrix, gray-level run-length
matrix, neighboring gray one tone difference matrix, and
gray-level differential matrix and with the features’ trans-
form type included. Overall, 851 texture features were
extracted per ROI (Figures 1–3).

2.5. �e Intraobserver and Interobserver Agreements. +e
intraclass correlation coefficient (ICC) was applied to ana-
lyze the intraobserver and interobserver agreements of the
feature extraction. Out-of-phase T1W images of all partic-
ipants were used for exploring interobserver ICC, while
T2W images were used for intraobserver ICC. Radiologist A
delineated the ROIs twice on two different weeks to evaluate
the intraobserver agreement and Radiologist B indepen-
dently delineated them once to evaluate the interobserver
agreement with the ROIs delineated by Radiologist
A. Features with mean values of the intra- and interclass ICC
higher than 0.75 were retained [16].

2.6. Statistical Analysis. During the texture analysis process,
the data were analyzed using the following procedure: (1)
Mann–Whitney U test, to explore whether the features were
significant (p< 0.05); (2) univariate logistic regression, to
explore whether the features were discriminative between
the two groups (p< 0.05). (3) the minimum redundancy and
maximum relevance (mRMR) method, to select features
without redundancy and with high correlation; (4) stepwise
multivariable logistic regression, to construct the predictive
model, features with p< 0.05 being independently dis-
criminative; and (5) 100-time repeated cross-validation to
prove that the logistic model was valuable in discriminating
one group from another, in consideration of the small
number of datasets, and that the result was not due to
overfitting (Figure 3). Receiver operating curves (ROC) and
areas under the ROC (AUC) were used to assess the diag-
nostic value of each selected feature and final model.

3. Results

57 participants (20 women and 37men) were enrolled in this
study: 27 having early-stage fibrosis and 30 with significant
fibrosis (details are shown in Table 1).

+e intraobserver ICC of the same reader ranged from
−0.31 to 0.99, and the interobserver ICC of two independent
readers ranged from −0.21 to 0.95. A total of 126 features
were retained and they showed high intra- and interobserver
ICC with ICCs≥ 0.75. +us, features extracted by Radiology
A were used for further analysis.

3.1. Texture Analysis. After univariate logistic regression to
select discriminative features, 8 texture features without
redundancy and with high correlations with labels were
selected from 851 original parameters from the in-phase

T1W, out-of-phase T1W, and T2W images. Each feature
showed a good result (Figure 4). +e performance of these
features is shown in Table 2.

3.2. Model Construction. +e most predictive features were
selected and the final model was constructed in accordance
with the mRMR method through backward stepwise se-
lection with the likelihood radio test in the in-phase T1W,
out-of-phase T1W, and T2W images. +e ROC analysis of
the final model showed that all the sequences had a pref-
erable performance with AUC greater than 0.87, while the
DeLong test showed that no significant difference was found
among each sequence (Figure 5). +erefore, we concluded
that ROC analysis of the final models can be used in the
differentiation of the early-stage and significant fibrosis.

+e 100-time repeated cross-validation was applied to
assess the stability of the logistic regression models. Patients’
data were randomly classified into training and validation set
at a ratio of 7 : 3. Results of the 100-time cross-validation are
shown in Table 3. Cross-validation results gave a mean
accuracy, specificity, and sensitivity of 0.98 each for out-of-
phase T1W; 0 90, 0.89, and 0.90 for in-phase T1W; and 0.86,
0.88, and 0.84 for T2W in the training set and values of 0.76,
0.81, and 0.72 for out-of-phase T1W; 0.74, 0.72, and 0.75 for
in-phase T1W; and 0.63, 0.64, and 0.63 for T2W in the test
group (Table 3). It revealed that the out-of-phase T1W
images had the best accuracy and stability among these three
sequences.

4. Discussion

+e diagnostic tool is defined as perfect if the AUC is 100%,
excellent if it is greater than 90%, and good if it is greater than
80% [17]. According to this, the ROC analysis of diagnosis
models based on TA parameters derived from out-of-phase
T1W, in-phase T1W, and T2WI images in this study all
exhibited good diagnostic accuracy. Cross-validation also
reported good diagnostic accuracy in the training set, fair-to-
good for T1W images and poor for T2W images in the test
group. +e leading cause maybe is data instability related to
the limited numbers of participants. +erefore, a larger
number of patients would have been required in the next
study. Even though there was no statistical difference among
TA parameters derived from the three sequences, AUC results
showed that TA from out-of-phase T1WI exhibited the best
performance in the differentiation of early-stage fibrosis
(F0–F1) from significant fibrosis (F2–F4).+e possible reason
may be the attenuation of the fat signal in out-of-phase T1W
images and it is interesting to note that steatosis, which shows
diffusely decreased liver attenuation, is also one of the features
of chronic liver disease. Some studies have shown that TA
extracted from T1W images has an excellent performance in
the classification of liver fibrosis [10, 11]. However, our study
may be the first to explore TA from out-of-phase T1W images
to classify early-stage fibrosis and to obtain better AUC results
compared to TA from in-phase T1W and T2W images.

+e classification of liver fibrosis using TA features de-
rived fromMR images is under investigation. In 2002, Daniel
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(a) (b)

(c) (d)

Figure 1: A 19-year-old man with hepatitis B infection. (a–c) ROI delineated using ITK-SNAP on out-of-phase T1W, in-phase T1W, and
T2W images. (d) Histopathological features obtained from liver biopsy revealed stages 0-1 of fibrosis. +e patient was classified in the low-
stage fibrosis by the final models.

(a) (b)

(c) (d)

Figure 2: A 40-year-old man with hepatitis B infection. (a–c) ROI delineated using ITK-SNAP on out-of-phase T1W, in-phase T1W, and
T2W images. (d) Histopathological features obtained from liver biopsy revealed stage 2 fibrosis. +e patient was classified in significant
fibrosis by the final models.
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[18] reported that TA based on T2W images can be suc-
cessfully used for separating cirrhotic patients and healthy
volunteers. Subsequently, an increasing number of reports on
TA-derived parameters from MR images for classifying liver
fibrosis have been published. Wang [19] et al. demonstrated
that diffusion-weighed imaging (DWI) had a diagnostic ac-
curacy of 0.86, 0.83, and 0.86 for stages 1, 2, and 3 of liver
fibrosis, respectively, which was lower than the accuracy of
magnetic resonance elastography (MRE), through a meta-
analysis of 14 published reports. Jiang et al. [20] also revealed
that DWI exhibited good diagnostic accuracy for classifying
fibrosis stages and that a higher b value can optimize diag-
nostic performance, through a meta-analysis of 12 published
reports. House et al. [21] revealed that texture features derived
from T2W images demonstrated diagnostic sensitivity for
discriminating patients with or without fibrosis with an AUC
of 0.78 but was less sensitive in staging low and intermediate
levels of fibrosis. Yokoo et al. [22] reported that TA based on
combined-contrast-enhanced (CCE) MR images could be
quantified to predict fibrosis severity by analyzing 165 texture
features extracted from MR images of 46 HCV-infected
patients who underwent CCE liver MRI with the adminis-
tration of superparamagnetic iron oxides and gadolinium
DTPA. Cannella et al. [11] analyzed five histogram-based
parameters extracted on noncontrast 3D-GRE T1W images in

54 patients with nonalcoholic fatty liver disease and con-
cluded that standard deviation and entropy were positively
correlated with the degree of liver fibrosis with AUC 0.755
and 0.769 for significant fibrosis (F2–F4) and 0.746 and 0.754
for advanced fibrosis (F3–F4), respectively. Recently,
Schawkat et al. [10] reported that the TA parameters of T1W
images demonstrated accuracy similar to that of MRE. +ey
analyzed 308 texture features extracted from T1W and T2W
images of 62 patients and compared them to those of theMRE
results and then assessed the diagnostic accuracy of the
classification of liver fibrosis in low-stage (F0–F2) and high-
stage (F3–F4) fibrosis. +ey proved that TA derived from
T1W images had better diagnostic accuracy than T2W images
which was consistent with our findings.

Noninvasive methods of diagnosing liver fibrosis include
serologic markers, MRE, and transient elastography (TE). A

MRI
Out-of-phase T1W
In-phase T1W
T2W

ROI delineated
Radiologist A
Radiologist B

ICC ≥ 0.75

ROI delineated
Features extracted

Mann–Whitney U test, univariable logistic regression

mRMR

Multivariable logistic regression

Construct
final model ROC analysisCross-validation

Figure 3: Flowchart of feature selection and texture analysis.

Table 1: Distribution of stages of fibrosis.

Stage of fibrosis Numbers Categories Ages
0 0 Early-stage fibrosis 34.15± 11.41 27
2 19

Significant fibrosis 42.94± 10.53 10
4 1
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single serum induced marker has limited function in the as-
sessment of fibrosis, but a combination of testing has an im-
proved diagnostic value. A previous study had reported that
combinational serologic models could substitute liver biopsy to
a certain extent and this reduces the need for liver biopsy by
30–40%, but they were effective only in distinguishing between
the absence of fibrosis and advanced fibrosis [23]. MRE and TE
have good diagnostic performance and clinical applicability
among all the noninvasive diagnostic methods of liver fibrosis
[24, 25]. Compared to MRE, TE is a much quicker and less
expensive noninvasive method for assessing liver stiffness, al-
though it needs a high level of expertise and better diagnostic

performance for the classification of advanced fibrosis and
cirrhosis, and it also has a high failure rate in obese patients [26].
MRE has a much higher diagnostic accuracy and stability
compare to TE. But MRE is more expensive and required a
much higher quality of hardware to accomplish this. Compared
to the other noninvasive techniques, TA is a quick and
easily obtainable method that can be applied retrospec-
tively on routinely acquired images without the need for
dedicated hardware. However, TA can be affected by many
confounding factors, including ROI size [27], image ac-
quisition and reconstruction parameters, different software
packages, and lack of standardized methodology [28]. In
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Figure 4: AUC of the selected features with high correlation of each sequence (out-of-phase T1W, in-phase T1W, and T2W).
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this study, for the sake of mitigating some of the variability
related to the imaging technique, we applied TA on pro-
spectively acquired MR images on the same MRI scanner
with the same scanning parameters.

Our study has some limitations. First, the study population
was small due to the inclusion criteria of HBV infection and no
morphological changes on CT and MR images. +ese results
need to be confirmed with larger studies. Second, the

subjectivity of ROI placement through manual delineation
performed on different slices between T1W and T2W and
different patients in this study may increase biases.+ird, there
is a lack of exploring DWI and contrast MR images in this
study. +e diagnostic models based on T1W and T2W images
are too single andmay limit clinical practicality.We also had all
participants get DWI scans. But we excluded the images in the
end because of the large respiration artificial in some patients.

Table 2: Performance of selected features with high correlation.

Image Var. name +reshold Accuracy Sensitivity Specificity
Pos.
pred.
value

Neg.
pred.
value

Out-
of-
phase
T1WI

wavelet_HLL_firstorder_Energy −0.04 0.81
(0.68–0.90) 0.73 0.90 0.88 0.75

original_ngtdm_Coarseness −0.35 0.79 (0.66-
o.88) 0.77 0.81 0.821 0.76

wavelet_HLL_firstorder_Minimum 0.21 0.75
(0.62–0.86) 0.77 0.74 0.77 0.74

wavelet_LHL_gldm_SmallDependenceHighGrayLevelEmphasis −0.16 0.79
(0.66–0.89) 0.90 0.67 0.75 0.86

wavelet_HLL_glrlm_ShortRunLowGrayLevelEmphasis 0.43 0.79
(0.66–0.89) 1 0.55 0.71 1

original_ngtdm_Complexity −0.27 0.79
(0.66–0.89) 0.80 0.78 0.80 0.78

wavelet_HLH_glszm_LargeAreaHighGrayLevelEmphasis −0.28 0.77
(0.64–0.87) 0.73 0.81 0.81 0.73

wavelet_HLH_gldm_DependenceNonUniformityNormalized −0.13 0.77
(0.64–0.87) 0.8 0.74 0.77 0.77

In-
phase
T1WI

wavelet_LHL_glszm_ZoneEntropy 0.16 0.75
(0.62–0.85) 0.73 0.78 0.78 0.72

wavelet_LHH_gldm_DependenceNonUniformityNormalized 0.18 0.73
(0.60–0.84) 0.67 0.85 0.80 0.68

wavelet_LHH_glrlm_ShortRunEmphasis −0.20 0.68
(0.54–0.80) 0.60 0.78 0.75 0.63

wavelet_LLL_glcm_Imc1 −0.41 0.75
(0.62–0.86) 0.90 0.59 0.71 0.84

wavelet_LHL_firstorder_Variance −0.11 0.72
(0.58–0.83) 0.67 0.78 0.77 0.68

original_firstorder_Kurtosis −0.57 0.70
(0.56–0.82) 0.83 0.56 0.67 0.75

wavelet_LHH_gldm_LargeDependenceLowGrayLevelEmphasis −0.07 0.74
(0.60–0.83) 0.83 0.63 0.71 0.77

wavelet_LLH_glszm_SizeZoneNonUniformityNormalized 0.08 0.70
(0.56–0.81) 0.63 0.78 0.76 0.65

T2WI

wavelet_LHH_glrlm_LowGrayLevelRunEmphasis 0.20 0.68
(0.55–0.80) 0.54 0.80 0.57 0.81

original_glszm_GrayLevelVariance 0.16 0.67
(0.53–0.78) 0.53 0.78 0.57 0.78

original_glrlm_GrayLevelNonUniformityNormalized −0.30 0.67
(0.53–0.78) 0.53 0.78 0.63 0.70

original_glrlm_GrayLevelVariance −0.02 0.67
(0.53–0.78) 0.53 0.78 0.67 0.67

wavelet_LHL_glszm_SmallAreaLowGrayLevelEmphasis −0.12 0.68
(0.55–0.80) 0.54 0.80 0.73 0.63

wavelet_HLH_firstorder_Median 0.38 0.68
(0.55–0.80) 0.54 0.80 0.56 0.81

original_firstorder_InterquartileRange −0.36 0.65
(0.51–0.77) 0.51 0.77 0.76 0.52

original_gldm_DependenceEntropy −0.06 0.68
(0.55–0.80) 0.54 0.80 0.80 0.56
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ContrastMR scans were excluded at the beginning for the need
of injected contrast agent. A further study may be needed to
have deep learning in allMRI scans. Fourthly, the lack of stage 0
fibrosis patients included in this study may also lead to range
errors. Fifth, even though TA fromMRI is quick and accessible,
MRI are costly and time-consuming which also limits its
clinical application.

5. Conclusions

In conclusion, noncontrast MRI scans combined with tex-
ture analysis can be used for the classification of early-stage
fibrosis (stage< 2 vs. stage≥ 2) and all had good diagnostic
accuracy. And TA parameters extracted from out-of-phase
T1W images may have better performance compared to TA
based on in-phase T1W and T2W images.
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Figure 5: AUC of the final model of each sequence (T1-IR: out-of-phase T1W, T1: in-phase T1W, and T2 : T2W).

Table 3: Mean value of specificity, sensitivity, and accuracy of 100-time cross-validation in each sequence.

Group Specificity Sensitivity Accuracy

Out-of-phase T1WI Training 0.98 0.98 0.98
Test 0.81 0.72 0.76

In-phase T1WI Training 0.89 0.90 0.90
Test 0.72 0.75 0.74

T2WI Training 0.88 0.84 0.86
Test 0.64 0.63 0.63
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