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Purpose. To develop and validate a radiomic nomogram based on texture features from out-of-phase T1W images and clinical
biomarkers in prediction of liver �brosis. Materials and Methods. Patients clinically diagnosed with chronic liver �brosis who
underwent liver biopsy and noncontrast MRI were enrolled. All patients were assigned to the nonsigni�cant �brosis group with
�brosis stage <2 and the signi�cant �brosis group with stage ≥2. Texture parameters were extracted from out-of-phase T1-
weighted (T1W) images and calculated using the Arti�cial Intelligent Kit (AK). Boruta and LASSO regressions were used for
feature selection and a multivariable logistic regression was used for construction of a combinational model integrating radiomics
and clinical biomarkers. �e performance of the models was assessed by using the receiver operator curve (ROC) and decision
curve. Results. ROC analysis of the radiomics model that included the most discriminative features showed AUCs of the training
and test groups were 0.80 and 0.78. A combinational model integrating RADscore and �brosis 4 index was established. ROC
analysis of the training and test groups showed good to excellent performance with AUC of 0.93 and 0.86. Decision curves showed
the combinational model added more net bene�t than radiomic and clinical models alone. Conclusions. �e study presents a
combinational model that incorporates RADscore and clinical biomarkers, which is promising in classi�cation of liver �brosis.

1. Introduction

Liver disease accounts for approximately 2 million deaths
per year and is the main public health crisis worldwide [1].
Liver �brosis is the main procedure for hepatitis processing
to cirrhosis and is characterized by the deposition of ex-
tracellular matrix in the liver. Cirrhosis is currently the 11th

most common cause of death globally and may be ac-
companied by several complications (i.e., hepatocellular
carcinoma and portal hypertension) which may relate to
disability and life loss. Promising studies have shown that
�brosis can be eliminated or reversed in the early stage, while
cirrhosis is di¢cult to be reversed [2, 3]. So, early diagnosis
of liver �brosis is rather important in liver disease.

Although biopsy is still the golden standard for liver
�brosis staging, it has some limitations, for instance, the
invasive way, poor repeatability, sampling error, and hos-
pitalization [4, 5]. A noninvasive surrogate method for liver
�brosis assessment is under development. �e aspartate
transaminase-to-platelet ratio index (APRI) and the �brosis
4 index (FIB-4) are widely used clinical biomarkers in
staging liver �brosis for their easy accessibility [6]. But APRI
and FIB-4 were constructed based on hepatitis C patients
and had better performance in di¥erentiating advanced �-
brosis and cirrhosis [6]. Transient elastography (TE) andMR
elastography (MRE) are the available imaging tools for
predicting liver �brosis [7]. But TE is vulnerable to obese and
ascites, while MRE is in a high requirement of hardware [8].
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Radiomics analysis is a promising method in predicting
liver fibrosis according to large amounts of studies. Texture
features extracted from contrast MR images, T1 and T2
mapping images, and diffusion-weighted images all
exhibited good to excellent diagnostic values [9–13]. Pre-
vious studies have shown that texture features based on T2W
and T1W images have the potential to stratify liver fibrosis,
while few studies have explored the usefulness of texture
features from out-of-phase T1WI in the classification of
fibrosis [9, 14, 15]. +ough our previous study had shown
that texture analysis based on in-phase and out-of-phase
T1W and T2W images had good diagnostic accuracy in
differentiating early stage fibrosis (F0-F1) and significant
fibrosis (F2–F4) in chronic hepatitis B infection patients, the
texture model from out-of-phase T1W images had a higher
AUC than that from in-phase T1W and T2W images [16].
+inking about the limited number of patients, the value of
texture features from out-of-phase T1WI in classification of
liver fibrosis still needs to be discussed. According to the
European Association for the Study of the Liver (EASL)
guidelines for hepatitis B, hepatitis C, and nonalcoholic fatty
liver disease [17–19], chronic hepatitis patients with fibrosis
stage >2 or higher should accept drug treatment. In this
retrospective study, we will investigate the usefulness of a
combination of radiomics signatures from out-of-phase
T1W images and clinical biomarkers of chronic liver disease
in differentiating significant and nonsignificant liver fibrosis.

2. Materials and Methods

+is retrospective study was approved by the institutional
review board and local ethics committee (no. PJ2016-013-
01). Written informed consent was obtained. All liver bi-
opsies were clinically indicated.

2.1. Study Participants. Participants who were clinically
diagnosed with chronic hepatitis and underwent both
noncontrast MRI scan and liver biopsy were screened for
this study between July 2016 and September 2021. Inclusion
criteria were as follows: adult patients 18 years of age or
older, patients who underwentMRI scans before undergoing
liver biopsies, patients’ timeframe between MRI and biopsy
should be six months, and patients who are willing to
participate in this study and signed a written informed
consent form. Exclusion criteria were as follows: patients
with claustrophobia, MR images with large respiration or
motion artifacts, decompensated cirrhosis, patients with
splenectomy, and MRI exams performed 6 months or later
than biopsy. A total of 145 participants were screened and
139 were included.

2.2. MRI Data Acquisition of the Liver. All MRI scans were
performed on the same 1.5 T clinical system (Avanto, Sie-
mens Healthcare, Erlangen, Germany) using a 4-channel
body phased-array coil. All participants underwent the same
abdominal MRI protocol, which consisted of the following
sequences: in-phase and out-of-phase T1-weighted axial
images. +e imaging parameters of the T1W sequence were

TR (repetition time) 200ms, TE (time to echo) 2.2ms/4.4ms
(in-phase/out-of-phase), averages of 1, concatenations 1,
FoV (field of view) read 380mm, FoV phase 78.1%, and slice
thickness 6.0mm.

2.3. Histological Analysis. A liver biopsy was performed
under ultrasound guidance. Histopathologic features were
evaluated by a pathologist with 10 years of experience who
was blinded to patients’ MRI diagnoses.+e biopsy sampling
area was selected in the liver at the level of the midaxillary
line of the 8th rib. +e fibrosis stages were assessed according
to the METAVIR scoring system [20] and standardized to
the common scale. Standardization was as follows: F0, no
fibrosis; F1, portal fibrosis without septa; F2, portal fibrosis
with rare septa; F3, numerous septa without cirrhosis; and
F4, cirrhosis.

2.4. Clinical Biomarkers. Laboratory results one week before
biopsy were collected from the electronic medical record.
Biomarkers included alanine aminotransferase (ALT), as-
partate aminotransferase (AST), and platelet count (PLT).
APRI was calculated using the following formula: (AST/
upper normal limit× 100/platelet counts), and FIB-4 was
calculated using the following formula:
(age × AST)/(platelet counts × ALT1/2).

2.5. Acquisition of Texture Features. Texture features were
extracted from out-of-phase T1W images of all participants
by two radiologists (with 8 and 5 years of experience in
abdominal imaging diagnosis, respectively). All participants’
images were exported in DICOMS format and then imported
into an open-source software program (ITK-SNAP, V3.30)
[21] for manual receiver of interest (ROI) delineation. For
each sequence, two continuous slices of the right lobe [22]
with no liver lesions and a low number of motion artifacts
were selected. Two free-hand ROIs of the continuous slices, as
large as possible and avoiding major blood vessels or liver
lesions, were placed on out-phase T1WI and laid out as an
ROI image. All images were processed by using the AK
software (Artificial Intelligence Kit Version; V3.2.0R, GE
Healthcare, Shanghai), which complied with IBIS (image
biomarker standardization initiative). Images were resampled
with dimensions of 1 ∗ 1 ∗ 1mm by the linear interpolation
method, and image intensity was normalized with Z-core
standardization (mean of 0 and deviation of 1). Radiomics
features include the first order, shape, gray-level co-occur-
rence matrix, gray-level run-length matrix, neighboring gray
one-tone difference matrix, gray-level differential matrix, and
wavelet transform. Overall, 851 texture features were
extracted per ROI. Details are shown in Figure 1.

2.6. �e Intraobserver and Interobserver Agreements. +e
intraclass correlation coefficient (ICC) [23, 24] was applied to
analyze the intraobserver and interobserver agreements of the
feature extraction. +irty randomly selected patients’ data
were used for ICC analysis. Reader A delineated the ROIs
twice on two different weeks to evaluate the intraobserver

2 Canadian Journal of Gastroenterology and Hepatology



agreement and reader B independently delineated them once
to evaluate the interobserver agreement with the ROIs de-
lineated by reader A. Features with mean values of the
intraclass and interclass ICC higher than 0.75 were retained.

3. Statistical Analysis

All participants were randomly assigned into training group
and test group with a ratio of 7 : 3. Considering the im-
balance of the data, SMOTE was used for data augmentation
of the minority group by increasing synthetic data points
based on the original data points. All statistic data were
performed by using R 3.5.1R (+e R Project for Statistical
Computing (r-project.org)) software. In the training group,
two feature selection methods, Boruta and Least absolute
shrinkage and selection operator (LASSO) [25], were used to
select features. Boruta [26] is an all-relevant feature selection
wrapper built around the random forest classification al-
gorithm, capable of working with any classification method
that outputs a variable importance measure (VIM). +e
method performs a top-down search for relevant features by
comparing original attributes’ importance with the impor-
tance achievable at random, estimated using their permuted
copies, and progressively eliminating irrelevant features to
stabilize that test. +en, LASSO was conducted to choose the
optimized subset of features and multivariable logistic re-
gression was used to construct the radiomics model.
RADscore of each patient was calculated by summing the
selected features weighted by their regression coefficients.
+e discriminative ability of the RADscore was compared by

using theWilcoxon test and receiver operating characteristic
curve (ROC) analysis.

For clinical factors, continuous variables were analyzed
by using the independent t-test orWilcoxon test. Categorical
variables were analyzed by the chi-square test or Fisher’s test.
Univariable logistic regression was used to evaluate the
association between clinical factors and the fibrosis grades.
Finally, a clinical model was built by multivariable logistic
regression. Meanwhile, collinearity was calculated based on
the variance inflation factor (VIF) and a feature with VIF
>10 was removed, and validation was applied by ROC
analysis in the training and test groups.

Significant clinical factors, as well as radiomics scores, were
analyzed in multivariable regression to construct the combi-
nation model. +e discriminative performance of the model
was assessed using the ROC analysis and calibration curve.+e
Hosmer–Lemeshow test was used to test the goodness-of-fit of
the model both in the training and test groups.+e Delong test
was applied to test the area under the ROC curve (AUC) of
different models. A decision curve (DCA) was implemented to
verify the clinical usefulness of the combination model, clinical
model, and radiomic model, by calculating the standardization
net benefits at different threshold probabilities. P< 0.05 was
considered statistical significance.

4. Result

A total of 139 patients (female 64, male 75) were enrolled in
this study, with 42 with fibrosis stage 1 (F� 1), 33 with stage
2 (F� 2), 32 with stage 3 (F� 3), and 32 with cirrhosis. +e

All patients with chronic hepatitis

3 patients failed in obtaining liver samples.
2 patients excluded for inspiration artifacts.
1 excluded for liver blood disease.

Selected patients
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Figure 1: Flowchart of feature selection, model construction, and validation.
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underlying diagnoses for liver biopsy were hepatitis B in-
fection in 82 patients, hepatitis C infection in 4 patients, 15
patients with autoimmune hepatitis, 10 primary biliary
hepatitis, 10 drug-induced hepatitis, and 18 others (in-
cluding overlap syndrome and alcoholic hepatitis). All pa-
tients were assigned into nonsignificant fibrosis (F< 2) (age
47.5± 3.53) and significant fibrosis (F≥ 2) (age
49.27± 19.79). +en patients’ omics data were randomly
divided into training and test groups with a ratio of 7 : 3.

4.1. Interobserver and Intraobserver Agreement. +e ICC of
the interobserver of the two independent readers ranged
from −0.39 to 0.99, and the ICC of the intraobserver of the
same reader ranged from −0.75 to 0.99. A total of 176
features were retained and all showed high interobserverand
intraobserver ICCs with ICCs≥ 0.75. +us, features
extracted by reader A were used for further analysis.

4.2. Radiomics Model Construction. After the Boruta and
LASSO regression processes, the five most predictive fea-
tures were retained as shown in Figure 2. +en, a radiomic
model was conducted and RADScores were all calculated.
+e Wilcoxon test exhibited that discrimination of
RADscore had a statistical difference both in training and
test sets. ROC analysis showed that AUCs of the training and
test groups were 0.87 (95% CI: 0.80–0.94) and 0.82 (95% CI:
0.69–0.96). Details are shown in Figure 3.

4.3. Clinical Model Construction. Results of univariable lo-
gistic regression of the clinical factors are FIB-4 2.03 (95%
CI: 1.43–3.29) (P � 0.001) and APRI 1.8 (95% CI: 1.16–3.40)
(P � 0.032). +en, the clinical model was constructed, and
ROC analysis showed that the AUCs of the training and test
groups were 0.80 (95% CI: 10.70–0.89) and 0.78 (95% CI:
10.61–0.94). Details are showned in Figure 3.

4.4. Combinational Model Construction. After the multi-
variable logistic regression, RADscore and FIB-4 were in-
cluded in the final combinational model, while APRI was
excluded for collinearity. +e AUCs of the training and test
groups of the combinational model were 0.93 (95% CI:
0.88–0.98) and 0.86 (95% CI: 0.74–0.99). +e Delong test of
AUC showed AUC of the combinational model and clinical
model had statistical significance, while the others showed
no statistical significance. +e calibration curve and Hos-
mer–Lemeshow test exhibited acceptable goodness of fit
with P> 0.05. +e decision curve of the radiomic model,
clinical model, and combinational model all yielded more
benefits than the treat-all and treat-none schemes and in-
dicated that the combinational model provided much more
net benefit than the radiomic model and clinical model.
Details are shown in Figures 3–5 and Table 1.

5. Discussion

In this study, we developed and validated a noncontrast MRI
radiomics nomogram for classification of liver fibrosis which

incorporated the most predictive radiomics signatures and
FIB-4 and had the potential to classify nonsignificant and
significant fibrosis in a noninvasive way. Liver fibrosis is an
important dynamic course during hepatitis processing to
cirrhosis and is caused by the deposition of extracellular
matrix. Liver fibrosis is difficult to diagnose because fibrosis
is characterized by subtle changes and cannot be visible
using CT or MRI examinations. Texture analysis is a new
method that can extract features from images and transform
them into visible variables. By analyzing these variables,
more subtle changes inside the images can be obtained for
further study.

For the construction of the radiomics model, the Boruta
algorithm and LASSO regression were used for feature se-
lection because of the redundancy of omics features. Boruta
was developed to identify all relevant variables in a more
efficient and stable way. It has been proved that Boruta was
the most powerful approach for high-dimensional omics
datasets in machine learning. LASSO regression is charac-
terized by the simultaneous fitting of generalized linear
models and variable selection based on the strength of their
univariable outcomes and regularization. +e AUC of the
radiomics model of the training group is 0.87 (0.80–0.94)
and validated in the test group with an AUC of
0.82 (0.69–0.96). It revealed a radiomics model on the basis
of out-of-phase MRI had the potential for classification of
liver fibrosis. Large numbers of previous studies have proven
that radiomics analysis of CT and MRI images could be a
surrogate method for predicting liver fibrosis [10, 13, 27–29].
Jia et al. [30] extracted histogram and texture parameters of
T1 maps of low and high risk of advanced fibrosis and
constructed a multivariate model integrating median, 5th
percentile, and diff-entropy and reported an AUC of 0.902 in
stratification of advanced fibrosis. Park et al. [31] calculated
the radiomics fibrosis index (RFI) by using a radiomics
model based on gadoxetic acid-enhanced hepatobiliary
phase MRI between stages F0–F2 and F3-F4 and found that
RFI significantly outperformed normalized liver enhance-
ment, APRI, and FIB-4 for staging fibrosis. Schawkat et al.
[9] compared the diagnostic accuracy of texture analysis
combined with machine learning of noncontrast-enhanced
T1W and T2W images and depicted a similar AUC com-
pared to MRE for texture analysis from T1W images and a
significantly lower AUC of T2W images compared to MRE
for classification of lower-stage fibrosis and high-stage fi-
brosis. Radiomics based on noncontrast MRI scans is
promising in assessment of liver fibrosis and may have
potential help in evaluation of fibrosis in antiviral therapy
patients. Direct-acting antiviral (DAA) therapy is popular in
hepatitis C virus treatment which can dramatically improve
sustained virological response [32]. Radiomics combined
with MRI would be relevant to detecting the fibrosis stage
and establishing a priority of DAA treatment for hepatitis C
patients with fibrosis stage F≥ 2.

APRI and FIB-4 are the most widely used clinical bio-
markers for classification of liver fibrosis. Hu et al. [33]
reported that the AUC of the training cohort and test cohort
of a clinical model integrating FIB-4 and APRI were 0.731
and 0.703 for differentiating advanced fibrosis and cirrhosis,
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Figure 2: Result of feature selection of boruta and least absolute shrinkage and selection operator (LASSO) for significant fibrosis (F≥ 2).
(a) Importance and attributes of significant fibrosis (F≥ 2) in boruta. Red represents the rejected attribute and green is the confirmed
attribute. Blue represents uncertain attributes. (b), (c) +e bottom X-axis represents the value of log (λ), while the upper X-axis represents
the number of nonzero parameters. A dotted vertical line was drawn at the optimal values by using the minimum criteria with (λ) 0.00416.
(d) Coefficient of the most predictive features.
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while in our study, the AUC of the clinical model in the
training and test groups were 0.80 and 0.78 and showed poor
performance. Hu et al. [33] constructed a nomogram based
on portal venous phase CT images and reported a diagnostic
accuracy of 0.778 and 0.778 in the training and test cohorts

with an AUC of 0.864 and 0.772 for differentiating non-
advanced from advanced fibrosis. In this study, a combi-
national model incorporated with RADScore and clinic
biomarkers was constructed, and ROC analysis exhibited
good to excellent performance in the training and test

0.0 0.2 0.4 0.6 0.8 1.0
1 – specificity

0.0

0.2

0.4

0.6

0.8

1.0
Se

ns
iti

vi
ty

AUC:0.93 (0.88-0.98)
AUC:0.87 (0.80-0.94)
AUC:0.80 (0.70-0.89)

Radiomics nomogram
Radiomics
Clinics

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 – specificity

AUC:0.86 (0.74-0.99)
AUC:0.82 (0.69-0.96)
AUC:0.78 (0.61-0.94)

Radiomics nomogram
Radiomics
Clinics

(b)

Figure 3: +e area under receiver operator curve (AUROC) of the training group (a) and test group (b).

Points

FIB.4

rad_score

Total Points

Risk

0 10 20 30 40 50 60 70 80 90 100

5 10 15 20 25 300

12020 30 40 50 60 70 80 90 100100

0.4 0.9

-1 6.55 5.5 62.5 3 3.5 4 4.51.51 20.50

(a)

Combined
Clinical
radiomics

All
None

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
rd

iz
ed

 N
et

 B
en

ef
it

0.2 0.4 0.6 0.8 1.00.0
High Risk Threshold

1:4 2:3 3:2 4:1 100:11:100
Cost:Benefit Ratio

(b)

Figure 4: Nomogram (a) and decision curve (b). Decision curve showed more benefit than the treat-all (slash line) and treat-none
(horizontal line) schemes and the combined model added more benefits than the radiomics and clinical model.

6 Canadian Journal of Gastroenterology and Hepatology



groups, with diagnostic accuracy of 0.85 and 0.76 and an
AUC of 0.93 and 0.86.+e decision curve indicated more net
benefit than the radiomics and clinical models alone. +e
nomogram of the combinational model made the prediction
of significant liver fibrosis more accessible and visible. It
revealed that a combinational model of RADscore and
clinical biomarkers is promising in differentiating nonsig-
nificant and significant liver fibrosis. However, APRI and
FIB-4 entailed a risk of overestimating the fibrosis stage due
to the impact of the necroinflammatory activity on trans-
aminases [34]. More stable serological markers incorporated
with RADscore should be discovered. Recently, Mohamed
et al. [35] found that serum levels of vitronectin increased
significantly in cirrhosis patients than in controls. It may
reveal that a combination of RADscore and vitronectin may
be promising in classification of liver fibrosis.

+ere are also some limitations in our study. First, the
limited sample size in this study might decrease the statistical
power and external validation should be required in another
cohort. Second, the lack of fibrosis stage F0may add some biases
to the results.+ird, considering the limited number of patients,
we included all patients with different kinds of chronic liver
fibrosis. Amore detailed classification of patientsmay be needed

in a further study. Fourth, as previous studies have shown that
diagnostic performance of clinical biomarkers may be influ-
enced by ASL level and necroinflammation activity, the no-
mogram integrating FIB-4 may add some error to the results.
So, a further study with more details should be performed.

In conclusion, radiomics based on noncontrast MRI
have potential in stratification of liver fibrosis. A combi-
national model integrating radiomics and clinical bio-
markers is promising in improving diagnostic values
compared to the radiomic model and clinical model.
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Figure 5: Calibration curve ((a) training group and (b) test group). Calibration curves exhibited excellent good of fit.

Table 1: Results of radiomics, clinical, and combinational models.

Accuracy Sensitivity Specificity Positive pred. value Negative pred. value
Radiomics
Train 0.84 (0.75–0.90) 0.87 0.76 0.90 0.71
Test 0.80 (0.65–0.91) 0.86 0.67 0.86 0.67

Clinic
Train 0.85 (0.63–0.81) 0.96 0.52 0.64 0.93
Test 0.68 (0.51–0.89) 0.90 0.48 0.62 0.83

Combined
Train 0.85 (0.76–0.91) 0.95 0.68 0.83 0.90
Test 0.76 (0.60–0.88) 0.91 0.56 0.72 0.83
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