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Objective. Gastroesophageal adenocarcinoma (GEA) is a high deadly and heterogeneous cancer. RNAN6-methyladenosine (m6A)
modifcation plays a non-negligible role in shaping individual tumour microenvironment (TME) characterizations. However, the
landscape and relationship of m6Amodifcation patterns and TME cell infltration features remain unknown in GEA.Methods. In
this study, we examined the TME of GEA using assessments of the RNA-sequencing data focusing on the distinct m6A
modifcation patterns from the public databases. Intrinsic patterns of m6A modifcation were evaluated for associations with
clinicopathological characteristics, underlying biological pathways, tumour immune cell infltration, oncological outcomes, and
treatment responses. Te expression of key m6A regulators and module genes was validated by qRT-PCR analysis. Results. We
identifed two distinct m6A modifcation patterns of GEA (cluster 1/2 subgroup), and correlated two subgroups with TME cell-
infltrating characteristics. Cluster 2 subgroup correlates with a poorer prognosis, downregulated PD-1 expression, higher risk
scores, and distinct immune cell infltration. In addition, PPI and WGCNA network analysis were integrated to identify key
module genes closely related to immune infltration of GEA to fnd immunotherapy markers. COL4A1 and COL5A2 in the brown
module were signifcantly correlated to the prognosis, PD-1/L1 and CTLA-4 expression of GEA patients. Finally, a prognostic risk
score was constructed using m6A regulator-associated signatures that represented an independent prognosis factor for GEA.
Interestingly, COL5A2 expression was linked to the response to anti-PD-1 immunotherapy, m6A regulator expression, and risk
score. Conclusion. Our work identifed m6A RNA methylation regulators as an important class of players in the malignant
progression of GEA and were associated with the complexity of the TME. COL5A2 may be the potential biomarker which
contributes to predicting the response to anti-PD-1 immunotherapy and patients’ prognosis.
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1. Introduction

Gastroesophageal adenocarcinomas (GEAs) are still a major
cause of cancer-related mortality worldwide [1]. Currently,
the development of efective targeted therapeutics for GEA
patients lags behind that for other cancers. Despite recent
improvements in multidisciplinary and multimodality
treatment, the overall prognosis for GEA patients remains
poor, with a global 5-year survival rate lower than 30% for
gastric cancer (GC) and approximately 19% for oesophageal
adenocarcinoma [2]. Due to the high heterogeneity and
complicated disease processes of GEA, there is still a lack of
efective prognostic markers in this disease. Terefore,
identifying molecular biomarkers and novel potential
therapies are critical to predict the GEA patient prognosis
and determine personalized treatment.

Notably, N6-methyladenosine (m6A), the most abundant
modifcation on mRNAs in eukaryotes, is closely related to
stem cell diferentiation, immune response, embryonic de-
velopment, and microRNA (miRNA) editing; it also plays an
essential role in the progression of various cancers [3–7]. Te
m6A methylation levels in tumours mainly depend on the
expression of m6A methylation regulators. m6A is modulated
by methyltransferase complexes (“writers”), demethylases
(“erasers”), and RNA-binding proteins (“readers”), which
perform a series of biological functions [8]. Te aberrant
expression of m6A regulators plays a vital regulatory role in
tumour progression, prognosis, and radioresistance. Li et al.
[9] showed the characteristics of m6A RNA methylation
across 33 types of cancer and speculated that the mechanism
of m6A RNA modifcation might be associated with the
activation or depression of some oncogenic pathways, such as
the PI3K-AKT-mTOR signalling, KRAS, and P53 pathways.
However, given the limited knowledge of the role of m6A
methylation in GEA, studying the precise correlation between
m6A-related regulator genes and its clinical prognosis is in
high demand.

Immunotherapy represented by immunological check-
point blockade (ICB, PD-1/L1, and CTLA-4) has demon-
strated surprising clinical efcacy in a small number of
patients with durable responses. In September 2017, the U.S.
Food and Drug Administration (FDA) granted accelerated
approval for pembrolizumab for the treatment of patients
with recurrent, locally advanced, or metastatic gastric ade-
nocarcinoma or GEA whose tumours expressed PD-L1 and
with disease progression on or after 2 or more systemic
therapies. Disappointingly, the response rates of immune
checkpoint inhibitor monotherapy in GEA are approxi-
mately 10%–25% depending on the number of previous lines
of chemotherapy and PD-L1 status [10]. Hence, it is im-
portant and necessary to understand the complexity of the
tumour microenvironment (TME) and identify subclasses of
the tumour immune microenvironment existing in the
patients’ tumours to predict and administer corresponding
immunotherapy. Notably, several studies have indicated
a special relationship between TME-infltrating immune
cells and m6A modifcation. For instance, Han et al. [11]
showed that loss of YTHDF1 in classical dendritic cells
enhanced the cross-presentation of tumour antigens and the

cross-priming of CD8+ Tcells in vivo, and YTHDF1 may be
a potential therapeutic target in anticancer immunotherapy.
Zhang et al. [12] determined three distinct m6Amodifcation
patterns in gastric cancer and found that the TME cell-
infltrating characteristics under these three patterns were
highly consistent with the three immune phenotypes of
tumours. Yang et al. [13] suggested that m6A demethylation
by fat mass and obesity-associated protein (FTO) increases
melanoma growth and decreases the response of anti-PD-1
blockade immunotherapy. Li et al. [14] showed that Alkbh5
regulated the composition of tumour-infltrating Tregs and
myeloid-derived suppressor cells and sensitized tumours to
cancer immunotherapy. However, until now, the role of
m6A regulators in the malignancy and prognosis of GEA has
not been comprehensively clarifed. Terefore, research
focusing on m6A regulators is warranted to elucidate the
potential regulatory mechanism of m6A methylation in the
TME, which may reveal the potential mechanism and targets
of immunotherapy.

In this study, we systematically evaluated the role of m6A
modifcation, and correlated the m6A modifcation with the
TME cell-infltrating characteristics in GEA. Two GEA
subtypes (cluster1/2) were determined via the consensus
clustering for m6A regulators that stratifed the prognosis of
patients, diferent TIICs, and PD-1 expression. After
WGCNA analysis, low COL5A2 expression was found to be
linked to enhance response to anti-PD-1 immunotherapy.
Risk score developed from three m6A regulator-based sig-
natures was an independent prognostic indicator of patients
with GEA. Te m6A regulator-based risk signatures were
signifcantly related to the immune cell infltration levels of
patients with GEA. Furthermore, we collected GEA samples
to validate our key genes expression by qRT-PCR.Terefore,
this study sought to provide insights into the regulatory
mechanisms associated with the TME and the strategies for
GEA immunotherapy.

2. Materials and Methods

2.1. Data Processing. Te overall fow chart is shown in
Figure S1. Te mRNA (RNA-sequencing) fragments per
kilobase of transcript per million fragments standardized
expression data and corresponding clinicopathological
features of TCGA-STAD&ESCAcohorts were retrieved for
159 GEA tissues and 39 adjacent nontumour tissues from
Te Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/) and 121 GEA tissues from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). Pa-
tients without prognostic information were excluded from
the analysis.Te dataset of GSE96669 was obtained using the
GPL10558 platform (Illumina Human HT-12 V4.0 ex-
pression BeadChip). We utilized the limma package to
conduct the normalization process, deleting the normal or
repeated samples for subsequent analysis. Ten, the clini-
copathological parameters for included samples also were
download from the TCGA database. Te relevant data
TCGA and GEO provided are publicly available and open
source; hence, approval by a local ethics committee was not
required.
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2.2. Evaluation of Tumour-Infltrating Immune Cells (TIICs).
CIBERSORTalgorithm was applied to calculate the fractions
of the 22 types of TIICs [15], which is considered better than
previous deconvolution methods for the analysis of un-
knownmixture content and noise.We used this algorithm to
statistically estimate the relative proportions of cell sub-
populations from complex tissue expression profles, making
it a useful tool to estimate the abundances of special cells in
the mixed tissue. In this research, we used the R package
“CIBERSORT” to estimate the fraction of immune cells of
TCGA samples, which followed by quality fltering that
tumour samples with P< 0.05 were selected for the following
analysis.

2.3. Generation of Immune Score, Stromal Score, and ESTI-
MATE Score. Te ESTIMATE algorithm was exploited to
infer the fraction of immune and stromal cells in tumour
tissues based on gene expression signature, including the
microarray expression, data sets, new microarray, as well as
RNA-seq transcriptome profles. Te R script of the ESTI-
MATE algorithm was downloaded from the public source
website (https://sourceforge.net/projects/estimateproject/).
Ten, we calculated the immune scores, stromal scores, and
ESTIMATE scores for each sample of the TCGA dataset,
respectively. Te higher the respective score, the larger the
ratio of the corresponding component in the TME. After we
got three scores from the ESTIMATE method, we could
classify the samples into high- and low-level groups
according to the median score, respectively.

2.4. Selection of m6A Methylation Regulators. A total of
21m6A methylation regulators were extracted from GSE96669
and TCGA database for identifying diferent m6Amodifcation
patterns mediated by m6A regulators in GEA. Although 21
regulators have been systematically analyzed in gastric cancer
[12], they have not been systematically analyzed in GEA.Tese
21 m6A regulators included 8 writers (CBLL1, METTL3,
METTL14, KIAA1429, RBM15, RBM15B, WTAP, and
ZC3H13), 2 erasers (ALKBH5 and FTO), and 11 readers
(ELAVL1, FMR1, HNRNPA2B1, HNRNPC, IGF2BP1,
LRPPRC, YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
YTHDF3). Ten, the correlation between the expression of
these m6A RNA methylation regulators and diferent clini-
copathological features were systematically evaluated.

2.5. Unsupervised Clustering of m6A Methylation Regulators.
In order to further investigate the function of m6A RNA
methylation regulators in GEA, we clustered the GEA
patients into diferent groups by using the R package
ConsensusClusterPlus (50 iterations, resample rate of 80%,
and Pearson correlation, http://www.bioconductor.org/)
based on the expression of the 21m6A RNA methylation
regulators [16]. Te number of clusters and their stability
were determined by the consensus clustering algorithm.
Principal components analysis (PCA) was used with the R
package for R v3.6.3 to study the gene expression patterns
in diferent GEA groups.

2.6. Diferentially Expressed Genes (DEGs). We used R
package “limma” with log2|fold-change (FC)|> 1 and ad-
justed P value <0.05 to perform diferentiation analysis of the
gene expression, and DEGs were generated by the com-
parison between GEA samples vs. adjacent noncancerous
samples in TCGA and GSE96669 datasets. Venn online
software (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to identify the overlapping DEGs be-
tween tumour and normal samples.

2.7. Weighted Gene Coexpression Network Analysis
(WGCNA) of DEGs. WGCNA is a useful tool to establish
the coexpression network between the gene pattern and
clinical traits using theWGCNA package in R based on the
RNA-seq data from TCGA database [17]. In the frst step,
we calculated a similarity matrix using biweight mid-
correlation, as it is more robust to outliers. After that,
a weighted adjacency matrix was defned by raising the
coexpression similarity to appropriate soft-thresholding
power. Te best power (β-value) was chosen based on the
criterion of approximate scale-free topology. Ten, we
transformed the adjacency into a topological overlap
matrix (TOM) and calculated the corresponding dis-
similarity to minimize the efects of noise and spurious
associations. Hierarchical clustering was used to produce
a hierarchical clustering tree and dynamic tree cut method
to assign coexpressed genes to each module. Modules were
constructed with a minimum module size of 20 genes, and
highly similar modules were combined using a dissimi-
larity threshold of 0.25.

2.8. Screening SignifcantModules andFunctionalEnrichment
Analysis. In order to identify the signifcance of each
module, gene signifcance (GS) was calculated using
linear regression by log 10 conversion of the p value
between gene expression and clinical features. Module
eigengenes (MEs) were defned as the frst principal
component of each gene module and adopted as the
representative of all genes in each module. Ten, we
calculated the correlation between gene modules and
clinical traits by the WGCNA package in R and draw
a heatmap. After obtaining these, genes in the gene
modules from Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway en-
richment analysis were performed to observe the function
of selected signifcant gene modules using the cluster
Profler package in R. Enriched terms and pathways with
adjusting P value <0.05 were selected.

2.9. Protein-Protein Interaction (PPI)Network andHubGenes
Identifcation. For clarifying the drivers of inducing car-
cinogenesis in a more reliable way, PPI analysis was
performed necessarily. Te Retrieval of Interacting Genes
(STRING) database (http://string-db.org) online tool was
used to evaluate interactive relationships and generate PPI
networks among the DEGs in selected gene modules. Te
interaction score 0.7 served as the cutof value prior to

Canadian Journal of Gastroenterology and Hepatology 3

https://sourceforge.net/projects/estimateproject/
http://www.bioconductor.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://string-db.org


visualization. Ten, Cytoscape software (http://cytoscape.
org/development_team.html) was selected to visualize the
results of the PPI networks. Furthermore, CytoHubba app
identifying hub objects from the complex interaction in
the Cytoscape software was used to fnd top hub genes.
Subsequently, top hub genes were selected and ranked by
the maximal clique centrality (MCC) method. Afterward,
to select key genes that afect the prognosis, survival data
including the living status and survival time was extracted
from the TCGA database. Kaplan–Meier survival curves
were built to screen for genes signifcantly associated with
the prognosis.

2.10. Construction of m6A-Related Gene Signature.
Univariate Cox regression analysis of the expression of
21m6A RNA methylation regulators was conducted to
determine the candidate genes associated with overall
survival (OS). After that, regulators associated with OS in
univariate analyses were subsequently selected for the
least absolute shrinkage and selection operator (LASSO)
Cox regression to construct a m6A-related risk signature
for clinical prognosis [18]. Finally, three m6A RNA
methylation regulators with their corresponding co-
efcients were determined by the minimum mean cross-
validated error, choosing the optimal penalty parameter λ
related to the minimum 10-fold cross validation within
the training set. Te risk score of each patient with GEA in
the TCGC cohort was calculated using the following
formula:

Risk score(RS) � 􏽘
N

i�1
(Coef i × Xi), (1)

where Xi is the standardized expression value of each
selected m6A RNA methylation regulator, and Coefi is the
corresponding coefcient of the gene. All patients were
divided into low- and high-risk groups based on the
median value of the risk scores. Survival curves in the
high-risk and low-risk groups were estimated using the
Kaplan–Meier method. In addition, the receiver operating
characteristic (ROC) curves and area under the ROC
curves (AUC values) were applied to access sensitivity and
specifcity. AUC >0.5 was considered as a signifcant
diagnostic model.

2.11. Gene Set Enrichment Analysis (GSEA). GSEA is
a computational method usually used to determine
whether a set of basically defned gene sets exhibit sta-
tistically signifcant diferences between two biological
states. GSEA was provided by the JAVA program with
MSigDB v7.1 and downloaded from the website of Broad
Institute [19]. According to the median value of RS, the
samples were divided into two groups, and
“c2.cp.kegg.v7.1.symbols.gmt” gene set enrichment
analysis was carried out, with a p value <0.05 and q-value
<0.05 as indicative of statistical signifcance. Te en-
richment pathway was visualized using the R packages
“ggplot2” and “cluster Profler.”

2.12. Patients and Sample Information. We totally collected
16 non-neoplastic and neoplastic samples from GEA pa-
tients who underwent surgical treatments in the Gastroin-
testinal Surgery Department of Jinan Central Hospital
Afliated to Shandong University from 2018 to 2020. Fresh
tumour and non-neoplastic tissues were frozen and stored at
−80°C that was used for PCR analysis. Clinical characteristics
of the included patients are shown in Supplementary
Table S1. Tis research was approved by the Medical Ethics
Committee of Jinan Central Hospital Afliated to Shandong
University and the sample acquisition and usage was per-
formed in accordance with the approved guidelines. In-
formed consent was acquired from each involved patient.

2.13. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). For evaluating the expression levels of three
signature regulators and hub genes, we extracted the total
RNA from clinical GEA samples by using RNA trizol reagent
(CWBIO). According to the instructions of the manufac-
turer, cDNA synthesis was carrying out by using the reverse
transcription kit (CWBIO). Te qRT-PCR analysis was
conducted on the LightCycler 480 Real-Time PCR System.
Te PCR mixtures were preheated for 5min at 95°C, fol-
lowed by 45 cycles of 95°C for 10 s, and 60°C for 45 s, and the
fnal dissolution curve analysis was performed according to
manufacturer’s instruction. Related gene expression levels
were calculated using the 2−△△CT method and the related
GAPDH mRNA expression was used as an endogenous
control. Primer sequences are presented in Supplementary
Table S2.

2.14. Statistical Analysis. Data were analyzed using the R
software (version 3.6.3) and GraphPad Prism (version 6).
Wilcoxon’s test was used to compare the expression of m6A
RNA methylation regulators between cancer and normal
tissues. Spearman correlation analysis was performed using
“corrplot” package in R. Te distributions of age, sex, his-
tological grade, and TNM stage between clusters and be-
tween risk subgroups were analyzed using the chi-square
test. Wilcoxon rank sum or Kruskal–Wallis rank sum test as
the signifcant test depending on the number of clinico-
pathological features and immunotherapy response for
comparison. Survival curves were plotted by using the
“survival” package in R.Te ROC analysis was performed for
the evaluation of the AUC value in the follow-up period with
the “survival ROC” package. Log-rank test was used to assess
statistical signifcance. All statistical results with p< 0.05
were regarded to be statistically signifcant.

3. Results

3.1. Te Landscape of m6A Methylation Regulators and TIICs
in GEA. To explore the important biological functions of
eachm6ARNAmethylation regulator in tumourigenesis and
development, we frst compared the expression of 21m6A
methylation regulators in tumour and normal samples. Te
results indicated that most m6A RNAmethylation regulators
were signifcantly overexpressed in tumour samples of GEA
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patients (Figures 1(a)–1(d)). Ten, correlation analysis was
also employed to investigate the relationship between the
expression level of m6A RNA methylation regulators of
GEA. We found that the relationship between the 21m6A
RNA methylation regulators was positively correlated
(Figures 1(e) and 1(f )). Te analyses presented above sug-
gested that high heterogeneity of the expressional alteration
landscape in m6A regulators between normal and tumour
samples, indicating that the expression imbalance of m6A
regulators may play a crucial role in the GEA occurrence and
progression.

Ten, the diference between GEA tissues and adjacent
tissues in 22 immune cell types was analyzed by using the
CIBERSORT algorithm in TCGA. We frst show the dis-
tribution of 22 immune cells in each GEA patient in Sup-
plementary Figure S2A. Obviously, the proportion of
immune cells in GEA tumour tissues was signifcantly
diferent from that in normal tissues (Supplementary
Figure S2B). We speculate that the change in the correlation
of immune cells may be an internal characteristic that can
refect external diferences. Ten, we investigated the mutual
relationship between 22 immune cells in GEA samples, and
the results showed that most of the relationships between the
immune cells were negatively correlated, and the M2
macrophages and naive B cells were most negatively cor-
related (Supplementary Figure S2C). Meanwhile, the posi-
tive correlation between resting NK cells and activated
memory CD4 T cells was the most signifcant (Supple-
mentary Figure S2C). Te results of the above analysis in-
dicate a complex tumour immune microenvironment,
further confrming the existence of a large heterogeneity of
GEA for immunotherapy.

3.2. Correlation of TMEComponents with Clinicopathological
Characteristics and m6A Methylation Regulators. To de-
termine the relationship between the proportion of immune
and stromal components in the TME and the clinicopath-
ological characteristics, we analyzed the corresponding
clinical information of GEA cases from TCGA database.Te
stromal score was positively correlated with TMN-T stage
(P � 0.009), tumour grade (P< 0.01), and tumour stage
(P � 0.037) (Supplementary Figure S3A); immune scores
were associated with advanced tumour grade (G3>G2&G1,
P � 0.021), higher TNM-N level (N3>N0, N1&N2,
P � 0.042), and higher immune scores in females than in
males (P � 0.045) (Supplementary Figure S3B); the ESTI-
MATE score showed a positive correlation with the N and T
classifcation of the TNM stage, tumour grade, and sex
(P< 0.05) (Supplementary Figure S3C). Terefore, these
results indicated that the ratio of immune and stromal
components was related to the progression of GEA, such as
invasion and metastasis. Ten, to explore the correlation
between the high/low ratio of immune and stromal com-
ponents in the TME andm6A regulators, we found that most
m6A regulators were highly expressed in samples with low
immune and stromal scores, which indicate a special con-
nection between TME components and m6A regulators
(Supplementary Figures S3D and S3E).

3.3. Consensus Clustering for m6A RNA Methylation Regu-
lators Correlated with Distinct Survival and Immune Cell
Infltration. As GEA patients have a very poor prognosis, we
tried to classify patients with qualitatively diferent m6A
modifcation patterns based on the expression of m6A RNA
methylation regulators to explore its possible pathogenesis.
According to the expression similarity of m6A RNA
methylation regulators, k� 2 was the best, with clustering
stability datasets increasing from k� 2–9 (Figures 2(a)–2(c),
Supplementary Figure S4). Hence, GEA samples from
TCGA dataset were preclassifed into two subgroups (100
samples in one group labelled Cluster 1 and 59 samples in
another subgroup labelled Cluster 2 through consensus
cluster analysis. PCA was performed to elucidate the dif-
ference in transcriptional profles between Cluster 1 and
Cluster 2 subgroups. Our results showed a clear distinction
between these two subgroups, which indicates the reliability
of our typing (Figure 2(d)). Kaplan–Meier survival analysis
for the clustered samples revealed a noticeable decrease in
the OS of Cluster 2 compared with Cluster 1, suggesting that
the 21methylation regulators could classify the GEA samples
at the prognostic level (Figure 2(e)). Moreover, we dis-
covered that Cluster 2 had lower PD-1 expression and that
most TIIC fractions were signifcantly higher in Cluster 1,
such as resting CD8 T cells, monocytes, and mast cells
(P< 0.05, Figures 2(f) and 2(g)). Te clustering results
suggested that patients with diferent modifcation patterns
may possess diferent immune cell infltration fractions and
therapeutic efects.

3.4. Diferentially Expressed Genes (DEGs) Screening and
WGCNA Analysis. Considering the diversity of immune
phenotypes of GEA, we further explored potential gene
biomarkers associated with immunotherapy. First, we
identifed 1341 DEGs in the GSE96669 dataset (Supple-
mentary Table S3) and 6360 DEGs in the TCGA dataset
(Supplementary Table S4) between tumour samples and
adjacent normal samples of GEA patients (Figures 3(a) and
3(b)). Of these, 492 overlapping DEGs were selected for
further analysis (Figure 3(c), Supplementary Table S5).
Subsequently, WGCNA was performed to construct a gene
coexpression network to correlate gene modules with trait
data such as m6A clusters, immune scores, and stromal
scores. In the case of a scale-free network and topological
overlap, a hierarchical clustering tree based on dynamic
hybrid cutting is established after the outlier samples were
eliminated (Figure 3(d), Supplementary Figure S5A). To
ensure a scale-free network, we selected β� 4 (scale-free
R2 � 0.90) as a soft threshold (Supplementary Figure S5B).
Finally, six gene modules were identifed (Figure 3(e)).

Te module trait relationships were estimated by the
correlation betweenmodules and phenotypes, whichmade it
easier to identify highly correlated modules and phenotypes.
Figure 3(e) shows that the brown module was signifcantly
related to immune scores (cor� 0.65, P � 2e − 19). In ad-
dition, scatter diagrams of gene signifcance are shown in
Figure 3(f ). To explore the function of the signifcant
modules and key genes, GO and KEGG pathway enrichment
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Figure 1: Te landscape of m6A RNA methylation regulators in GEA. (a, b) Heatmaps of expression levels of 21m6A RNA methylation
regulators (normal sample vs. tumour sample) from the TCGA database (a) and GSE96669 database (b). (c, d) Violin diagrams visualizing
21m6A RNA methylation regulators in GEA (assume blue is normal and red is gastric cancer) corresponding to (a, b). (e, f ) Spearman
correlation analysis of the 21m6A regulators in GEA samples from the TCGA database (e) and GSE96669 database (f ). ∗P< 0.05; ∗∗P< 0.01;
∗∗∗P< 0.001; N: normal sample; T: tumour sample.
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Figure 2: Diferential overall survival, TIICs, and risk-signature regulators expression of GEA in the cluster 1/2 subgroups. (a) Consensus
clustering matrix for k� 2. (b) Consensus clustering cumulative distribution function (CDF) for k� 2–9. (c) Relative change in the area
under CDF curve for k� 2–9. (d) Principal component analysis of the total RNA expression profle in TCGA dataset. GEA in the Cluster 1
subgroup are marked with red and the Cluster 2 subgroup is marked with blue. (e) Kaplan–Meier overall survival (OS) curves for patients in
the Cluster1/2 subgroup. (f ) Te diferential expression of PD-1 between Cluster 1 and Cluster 2. (g) Vioplot visualizing diferentially
expressed immune cells between Cluster 1 and Cluster 2 (assume blue is Cluster 1 and red is Cluster 2). GEA: gastroesophageal
adenocarcinoma.
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Figure 3: Continued.
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analyses were performed. GO analysis showed that the genes
in the brown module were mainly enriched in extracellular
matrix organization, extracellular structure organization,
and so forth (Figure 4(a)). Meanwhile, KEGG pathway
enrichment analysis indicated that the genes in the brown
module were mainly associated with protein digestion and
absorption, the PI3K-Akt signalling pathway, and so forth
(Figure 4(b)). Based on the abovementioned analysis, it is
not difcult to fnd the most enriched pathways associated
with cancer progression.

3.5. Hub Genes Identifcation and Its Role in Immunotherapy.
Te PPI network among genes in the brown module (40
nodes and 52 edges) was established by using the STRING
database. Based on the MCC scores, the top ten highest-
scored genes in the brown module were selected as hub
genes for further analysis (Figure 3(g)). Furthermore, two
hub genes (COL4A1 and COL5A2) in the brown module
were signifcantly negatively related to the prognosis of
patients with GEA (P< 0.05, Figures 5(a) and 5(b)). Con-
sistent with the above bioinformatic results, qRT-PCR
analysis also revealed that COL4A1 and COL5A2 were
signifcantly highly expressed in tumours (Figures 6(a) and
6(b)). Immunotherapies represented by PD-1/L1 and
CTLA-4 blockades have undoubtedly emerged as a major
breakthrough in cancer therapy. COL4A1 expression was
signifcantly related to PD-L1 and CTLA-4 expressions
(Figures 5(c), 5(d)). In addition, COL5A2 had a signifcant
correlation with PD-1/L1 and CTLA-4 expressions (Figures
5(e)–5(g)). Te above results suggested that COL4A1 and
COL5A2 may be potential biomarkers for predicting the
efect of immunotherapy. Ten, in the anti-PD-1 cohort
(GSE78220), a signifcant clinical response to anti-PD-1

immunotherapy in patients with low COL5A2 expression
was observed compared to those with high COL5A2 ex-
pression (Figure 5(h)). Taken together, COL5A2 may be
a potential biomarker contributing to predicting the re-
sponse of anti-PD-1 immunotherapy.

3.6. Construction and Validation of Prognostic Signatures for
m6A RNA Methylation Regulators. To investigate the
prognostic value of the 21m6A regulators in GEA, univariate
Cox regression analysis was performed based on the ex-
pression levels of the regulators from TCGA. Our data
showed that the expression of KIAA1429, HNRNPA2B1,
and FMR1 is signifcantly correlated with the prognosis of
patients. (P< 0.05, hazard ratio> 1, Figure 7(a)). Moreover,
qRT-PCR assays revealed that the expression of KIAA1429,
HNRNPA2B1, and FMR1 was signifcantly upregulated in
tumour samples (Figures 6(c)–6(e)). To further assess the
prognosis of each patient, the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis of the 3
prognostic regulators was conducted (Figures 7(b) and 7(c)),
and the coefcient of each independent prognostic gene is
shown in Supplementary Table S6. Te LASSO results
showed that KIAA1429, HNRNPA2B1, and FMR1 were
powerful prognostic factors and a risk signature was con-
structed. Kaplan–Meier survival curve analysis demon-
strated signifcant prognostic diferences between the high-
and low-risk groups (Figure 7(d)). Subsequently, time-
dependent receiver operating characteristic (ROC) curves
and areas under ROC curves (AUCs) were calculated to
verify the reliability of the risk signature (AUC� 0.943,
Figure 7(e)). Ten, the univariate and multivariate Cox
regression analysis results suggested that the risk score is an
independent prognostic indicator (Figures 7(f ) and 7(g)). In

(g)

Figure 3: Identifcation of DEGs and construction of the weighted coexpression network with WGCNA. (a, b) Volcano map of DEGs in
TCGA and GSE9669, respectively; green indicates downregulated genes, and red indicates upregulated genes. (c) Venn diagrams of
diferentially expressed genes of TCGA datasets and GSE96669 dataset. (d)Te cluster dendrogram of genes of GEA patients. Each branch in
the fgure represents one gene, and every color represents one coexpression module. (e) Correlation between the gene module and clinical
characteristics, includingm6A cluster, immune scores, and stromal scores.Te correlation coefcient in each cell represented the correlation
between the gene module and the clinical characteristics, which decreased in size from red to blue. (f ) Scatter diagram for module
membership vs. gene signifcance in the brownmodule. (g) Identifcation of the hub genes from the PPI network in the brownmodule using
maximal clique centrality (MCC) algorithm. GEA: gastroesophageal adenocarcinoma; PPI: protein-protein interaction.
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Figure 5: Continued.
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addition, Cluster 2 had a higher risk score and expression of
KIAA1429, HNRNPA2B1, and FMR1 than Cluster 1 (Fig-
ures 7(h) and 7(i)), which was consistent with the fact that
Cluster 2 had a worse prognosis than Cluster 1.

Furthermore, we evaluated the relative abundance of 22
TIICs for each patient within two risk groups using
CIBERSORT. We observed a signifcant diference in the
infltration fraction of T follicular helper, monocyte, and

CD8 T cells (Figure 7(j)). Moreover, to screen for the
possible signalling pathways and mechanisms that were
signifcantly altered within the high- and low-risk groups,
GSEA was performed with data from the TCGA cohort. As
shown in Figure 7(k), RNA modifcation-related pathways
and cancer-associated pathways were more enriched in the
high-risk group. Pathway enrichment analysis provided
evidence of the molecular mechanisms afected by the risk
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Figure 5: Survival analysis of hub genes and their role in immunotherapy. (a, b) Comparison of prognosis between low and high expression
level of three hub genes (COL4A1 and COL5A2) using Kaplan–Meier curves. (c, g) Correlation analysis of three hub genes with im-
munological checkpoint (PD-1/L1 and CTLA-4) expression. (h) Distribution of COL5A2 expression in distinct anti-PD-L1 clinical response
groups.
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Figure 6: qRT-qPCR analysis and correlation analysis. (a–e) Validation of three m6A RNA methylation regulators and two hub genes in 8
pairs of GEA patient samples. (f–h) Correlation analysis between COL5A2 and FMR1, KIAA1429, risk score, respectively.
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signature. Importantly, risk signature gene (FMR1 and
KIAA1429) expression and risk score were found to be
signifcantly correlated with COL5A2, implicating COL5A2
as an important marker of prognosis (Figures 6(f)–6(h)).

4. Discussion

In the present research, we attempted to demonstrate the
expression patterns, prognostic values, and efects of m6A
regulators in GEA on the TME. Diferential expression
analysis found that the majority of m6A RNA methylation
regulators were signifcantly diferentially expressed be-
tween adjacent normal and tumour samples, suggesting
that these m6A regulators are closely associated with
cancer proliferation. Compared to normal tissues, GEA is
locally infltrated with higher immune cell subgroups,
including naive B cells, memory B cells, plasma cells,
gamma delta T cells, M0 macrophages, M1 macrophages,
resting dendritic cells, and active dendritic cells. Mean-
while, ESTIMATE algorithm-derived immune scores,
stromal scores, and ESTIMATE scores were applied to
facilitate the quantifcation of the nontumour components
in malignancy [20]. Stromal, immune, and ESTIMATE
scores for tumour tissue were found to be signifcantly
associated with the clinicopathologic features of the tu-
mour, such as age, diferentiation grade, and TNM stage.
Importantly, the expression of most m6A regulators was
signifcantly associated with immune/stromal scores.
Terefore, these results demonstrated that aberrant im-
mune infltration and m6A regulator expression in GEA,
as a tightly regulated process, which might play important
roles in the tumour development and that this process has
clinical importance.

We characterized the efects of distinct m6A methylation
modifcations on diferent GEA subtypes by clustering m6A
regulators. Te two subtypes showed signifcant diferences
in patient prognosis, PD-1 expression, immune cell in-
fltration, and RS. Tis suggests that the diferences between
the two subtypes are essential and refect the heterogeneity of
the immune microenvironment of GEA, which is worthy of
further study. To investigate the expression characteristics of
m6A methylation regulators in tumours, many studies
clustered the tumour samples into diferent subtypes using
consensus clustering analysis. For instance, Jing Chen et al.
[21] identifed two clusters of clear cell renal carcinoma with
signifcant diferences in OS and tumour stage between them
based on the expression pattern of m6A RNA methylation
regulators by means of consensus clustering. Similarly, Yi
et al. [22] showed that two molecular subtypes were iden-
tifed by consensus clustering for 15m6A regulators, and two
subtypes were distinct in the prognosis, PD-L1 expression,
immunoscore, and immune cell infltration. However, to
date, the expression of m6A regulators has remained elusive
for typing research by consensus clustering analysis in GEA.
In our research, we identifed a special relationship between
m6A modifcation patterns and tumour immune cell
infltration.

To explore potential genetic markers to predict the efect
of immunotherapy in GEA patients, we systematically

clustered the coexpressed genes by WGCNA. Tis approach
allowed us to identify gene modules most related to cancer
immunological phenotypes. COL4A1 and COL5A2, the two
hub prognostic genes in the brown module, in the collagen
family were selected for further analysis. Désert et al. [23]
reported that elevated expression of COL4A1 was signif-
cantly correlated with the tumour stage and worse overall
survival in patients with hepatocellular carcinoma. Zhang
et al. [24] demonstrated the abnormally high expression of
COL4A1 in GC and high expression of COL4A1 was closely
correlated with the primary tumour size, lymph node me-
tastasis, and distant metastasis, with the silencing of
COL4A1 signifcantly inhibiting cell proliferation of GC cells
in vitro. Meanwhile, elevated COL4A1 gene expression has
been found to be associated with trastuzumab resistance in
GC [25]. Several studies have reported that COL5A2 might
play a crucial role in the initiation and progression of tu-
mours using bioinformatics technologies [26, 27]. More
importantly, COL5A2 was correlated with stromal scores in
GC, promoted the recruitment of circulating monocytes into
the TME, and facilitated their diferentiation into tumour-
associated macrophages [28]. Similarly, in our research, we
found that COL4A1 and COL5A2 were signifcantly related
to the prognosis of GEA patients and TME infltration
characteristics. Intriguingly, the expression of COL5A2 and
COL4A1 was signifcantly correlated with ICB (PD-1/L1 and
CTLA-4) expression. Notably, COL5A2 expression was also
linked to the response of anti-PD-1 immunotherapy. Te
above results suggest that COL5A2 is a potential gene
marker to predict the efect of immunotherapy in GEA
patients.

Whether m6A RNA methylation regulators have
a prognostic value in cancer is of great signifcance [29]. We
performed univariate and LASSO Cox regression analyses to
construct a prognosis-related risk signature with three m6A
RNA methylation regulators, including KIAA1429,
HNRNPA2B1, and FMR1, which divided the GEA patients
into low- and high-risk groups. In the m6A methyl-
transferase complex, KIAA1429 acts as a scafold in bridging
the catalytic core components of the methyltransferase
complex and RNA substrates, which afect the installation of
m6A at specifc locations [30]. Miao et al. [31] found that
KIAA1429 could serve as an oncogene in gastric cancer by
stabilizing c-Jun mRNA in an m6A-independent manner.
HNRNPA2B1 is a nuclear reader of the m6A mark and has
important efects on primary microRNA processing and
alternative splicing. Barceló et al. [32] reported that
HNRNPA2B1 acts as a regulator of KRAS-dependent
tumourigenesis through the critical pancreatic ductal ade-
nocarcinoma cell signalling pathway PI3K/AKT. Te FMR1
gene and the consequent lack of synthesis of FMR protein
(FMRP) are associated with the fragile X syndrome, and
FMRP plays a critical role in chromatin dynamics, RNA
binding, mRNA transport, and mRNA translation [33, 34].
Li et al. [35] indicated that high expression of KIAA1429 and
HNRNPA2B1 was signifcantly associated with the poor
prognosis in osteosarcoma, and m6A regulators might be
involved in osteosarcoma progression through a humoral
immune response. Zalfa et al. [36] reported that there was an
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association between FMRP levels and the invasive pheno-
type in melanoma. In accordance with previous results, we
found that the three-gene risk signature, KIAA1429,
HNRNPA2B1, and FMR1, showed good performance for
predicting the GEA patient prognosis and immune cell
infltration characteristics. Importantly, our further study
revealed that patients in diferent risk groups had diferent
levels of T-cell and macrophage infltration. Moreover,
COL5A2 expression was signifcantly related to KIAA1429
and FMR1 expression. Terefore, we speculate that the m6A
modifcation of COL5A2 may play an important role in the
immunotherapy and prognosis of GEA, which needs further
validation.

Te tumour microenvironment plays an essential reg-
ulatory role in tumourigenesis, and its heterogeneity can
lead tomultiple dimensions, including patient prognosis and
therapeutic response [37–39]. Here, we analyzed the mo-
lecular signature of immune cell infltration in diferent m6A
RNA methylation modifcation patterns. Notably, CD8+
Tcells mostly originated from normal mucosal tissues, while
macrophages and Treg cells were enriched in GEA tissues.
Terefore, we indicated that the downregulated immuno-
genicity of cancer cells potentially contributes to the for-
mation of an immunosuppressive microenvironment. Li
et al. [40] reported that a large population of CD8+ T cells
showed continuous progression from an early efector
“transitional” into a dysfunctional T-cell state, and the

intensity of the dysfunctional signature was related to tu-
mour reactivity. m6A RNA modifcation controls the dif-
ferentiation of naive T cells and sustains the suppressive
functions of Tregs [5, 41]. Ten, our work revealed that three
m6A regulators are highly expressed in CD8+ T cells, Tregs,
and macrophages, which was consistent with previous
works. In short, we frst discovered that KIAA1429,
HNRNPA2B1, and FMR1 regulate T-cell diferentiation in
the GEAmicroenvironment, which may provide new targets
to optimize immunotherapy.

In summary, this study systematically evaluated the
prognostic value, TME profles, novel subtypes, and im-
munotherapy response in GEA patients based on m6A
regulator expression. We also generated a risk signature to
evaluate the prognosis of each GEA patient. Importantly,
COL5A2 was found to be linked to the response of anti-PD-1
immunotherapy, m6A regulator expression, and risk score.
Te information from this study contributes to our un-
derstanding of m6A RNA regulators and the TME of GEA
and may help the development of a new generation of
immune therapeutics and precision treatment in GEA.

Data Availability

Te datasets used in this study are available from TCGA
(https://portal.gdc.cancer.gov/repository) and GEO (http://
www.ncbi.nlm.nih.gov/geo/) databases.
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