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Aim.Te aim of this study is to identify cuproptosis-related lncRNAs and construct a prognostic model for pancreatic cancer patients
for clinical use. Methods. Te expression profle of lncRNAs was downloaded from Te Cancer Genome Atlas database, and
cuproptosis-related lncRNAs were identifed. Te prognostic cuproptosis-related lncRNAs were obtained and used to establish and
validate a prognostic risk score model in pancreatic cancer. Results. In total, 181 cuproptosis-related lncRNAs were obtained. Te
prognostic risk score model was constructed based on fve lncRNAs (AC025257.1, TRAM2-AS1, AC091057.1, LINC01963, and
MALAT1). Patients were assigned to two groups according to the median risk score. Kaplan–Meier survival curves showed that the
diference in the prognosis between the high- and low-risk groups was statistically signifcant. Multivariate Cox analysis showed that
our risk score was an independent risk factor for pancreatic cancer patients. Receiver operator characteristic curves revealed that the
cuproptosis-related lncRNA model can efectively predict the prognosis of pancreatic cancer. Te principal component analysis
showed a diference between the high- and low-risk groups intuitively. Functional enrichment analysis showed that diferent genes
were involved in cancer-related pathways in patients in the high- and low-risk groups. Conclusion. Te risk model based on fve
prognostic cuproptosis-related lncRNAs can well predict the prognosis of pancreatic cancer patients. Cuproptosis-related lncRNAs
could be potential biomarkers for pancreatic cancer diagnosis and treatment.

1. Introduction

Pancreatic cancer is the most common malignant tumor of
the pancreas. Despite recent advances in surgery, chemo-
therapy, and targeted therapy, the 5-year survival rate of
pancreatic cancer patients is only 9% [1, 2]. Approximately
80% of patients are not diagnosed until an advanced stage,
which limits treatment options [3]. Terefore, the identif-
cation of diagnostic and prognostic biomarkers is crucial for
patients with pancreatic cancer.

Cell death-related biomarkers can predict prognosis in
patients with pancreatic cancer, including single-gene di-
agnosis and multigene risk models [4, 5]. Recently, scientists
have proposed a new type of cell death called cuproptosis [6].
Cuproptosis is a copper-dependent and regulated cell death
mechanism that is diferent from other known cell death
regulation mechanisms. Copper ions directly bind to

lipoacylated components in the tricarboxylic acid cycle,
leading to abnormal aggregation of lipoacylated proteins and
loss of Fe-S cluster proteins, resulting in toxic protein stress
and ultimately mediating cell death [6]. Copper is an es-
sential substance in organisms and is related to the growth
and metastasis of tumor cells [7]. Te serum copper con-
centration of patients with pancreatic cancer is signifcantly
higher than that of normal patients, and blocking the ab-
sorption of copper can inhibit the progression of pancreatic
cancer [8, 9].

Long noncoding RNAs (lncRNAs) are RNAs with
a length of more than 200 nt that can regulate transcription
and translation, participate in intracellular signaling path-
ways, and regulate substance metabolism [10, 11]. LncRNAs
play an important regulatory role in various diseases, es-
pecially infammatory, viral, and cancer diseases [12–14]. In
pancreatic cancer tissues and cell lines, the expression of the
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lncRNA SNHG16 is signifcantly increased, which is asso-
ciated with a poor prognosis of pancreatic cancer patients,
and SNHG16 knockout can inhibit the proliferation, mi-
gration, and invasion of pancreatic cancer cells [15].
LncRNA PVT1 promotes gemcitabine resistance in pan-
creatic cancer and interacts with histone acetyltransferase 1
to play a synergistic role in chemotherapy resistance [16].
However, the relationship between cuproptosis-related
lncRNAs and pancreatic cancer remains unclear.

In this study, we aimed to establish a new cuproptosis-
related lncRNA risk model to predict the prognosis in pa-
tients with pancreatic cancer. Tese lncRNAs may be bio-
markers of pancreatic cancer prognosis. Subsequently,
various functional enrichment analyses were performed to
determine the underlying mechanisms of cuproptosis-
associated lncRNAs in pancreatic cancer. With this latest
analysis, we can provide new strategies for the diagnosis,
treatment, and prevention of pancreatic cancer.

2. Materials and Methods

2.1. StudyDesign. Pancreatic adenocarcinoma patients from
TeCancer Genome Atlas (TCGA) database were selected as
objects in this study. We conducted a cuproptosis-related
lncRNA risk model to divide all patients into high-score and
low-score groups, aiming to explore the prognostic value of
the risk model and diferences between the high- and low-
risk score groups in patients with pancreatic cancer.

2.2. Database Download. Te data from TCGA (https://
cancergenome.nih.gov) and Genotype-Tissue Expression
(GTEx, https://www.gtexportal.org) databases were used to
analyze the expression of lncRNAs in pancreatic cancer. Te
diferentially expressed lncRNAs were identifed using the
“DESeq2” package in R software. LncRNAs with an adjusted
P value less than 0.05 and absolute fold-change value more
than 0.6 were considered diferentially expressed lncRNAs.
Clinicopathological information and survival time were also
downloaded. After excluding the samples with missing data,
178 pancreatic cancer samples and 171 normal samples were
obtained. With the R package “caret,” 178 pancreatic cancer
samples were divided into a training set (n= 88) and a val-
idation set (n= 90).

2.3. Cuproptosis-Related lncRNAs. We collected the litera-
ture on and obtained 19cuproptosis-related genes (ATP7A,
ATP7B, CDKN2A, DBT, DLAT, DLD, DLST, FDX1, GCSH,
GLS, LIAS, LIPT1, LIPT2, MTF1, NFE2L2, NLRP3, PDHA1,
PDHB, and SLC31A1). Pearson’s correlation analysis was
performed between cuproptosis-related genes and lncRNA
expression levels to identify cuproptosis-related lncRNAs
according to the correlation coefcients (>0.5) and P values
(<0.05) in the training set.

2.4. Establishment of a Prognostic Risk Model.
Prognostic-related cuproptosis lncRNAs were obtained
through univariate Cox regression analysis (P value less than

0.01). Least absolute shrinkage and selection operator
(LASSO) regression analysis of potential prognostic genes
was carried out, and the list of prognostic genes corre-
sponding to the best penalty parameter was obtained. Te
fnal prognostic model of lncRNAs were screened by mul-
tivariate Cox regression (P value less than 0.05). Te risk
score is as follows:

Risk. Score � 􏽘
∞

n�1
Coef lncRNAs ×ExpressionLncRNAs( 􏼁. (1)

All patients were divided into high-risk and low-risk
groups according to the median risk score.

2.5. Prediction Capacity of the Risk Score Model. Te
Kaplan–Meier survival method was applied to evaluate the
availability of the prognostic model in overall survival (OS),
disease-specifc survival (DSS), and progression-free survival
(PFS). Risk score diagrams were used to visualize the
prognostic models. Receiver operator characteristic (ROC)
curves and areas under the curve (AUCs) were used to
analyze the role of cuproptosis-related lncRNAs in pre-
dicting the prognosis of pancreatic cancer patients. In the
entire cohort, the training set and validation set and uni-
variate andmultivariate Cox regression were used to identify
the risk score as an independent predictor of the prognosis of
pancreatic cancer patients. Principal component analysis
(PCA) was conducted to reduce the dimensionality in the
high- and low-risk groups to visualize the ability to dis-
tinguish risk scores.

2.6. Construction of the Nomogram. Clinicopathological
features, including age, gender, grade, TNM stage (T, tumor;
N, regional lymph node; M, metastasis), and prognostic risk
score were taken into account to draw a nomogram using the
R packages “survival” and “rms.” Ten, a calibration curve
was drawn to analyze the consistency between the estimated
probability and actual probability.

2.7. Gene Ontology (GO) Enrichment and Kyoto Encyclopedia
of Genes and Genomes (KEGG) Analyses. GO enrichment
analysis is used to describe genetic products in any or-
ganism, including biological processes (BP), cellular com-
ponents (CC), and molecular functions (MF) [17]. KEGG is
a database for the analysis of signaling pathways from the
perspective of gene and molecular networks [18]. Difer-
entially expressed genes (DEGs) between the high score
group and the low-score group for GO and KEGG en-
richment analyses were carried out by using the “Cluster-
Profler” package in R [19]. Signifcant enrichment was
considered eligible if the P value was less than 0.05 and the
false discovery rate was less than 0.2.

2.8. StatisticalAnalysis. Statistical analysis was performed by
using the R software (Version 4.2.1). Te baseline charac-
teristics of patients in the training group and validation
group were compared by using chi-square tests. Te
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Wilcoxon test was used to determine the lncRNA expression
diference between the tumor group and the normal group.
Te Pearson correlation test was used to analyze correla-
tions. Cox regression was used to analyze the prognosis of
patients by calculating hazard ratios (HRs) and their 95%
confdence intervals (CIs). Univariate Cox regression
analysis was used to identify the lncRNAs that had a sig-
nifcant relationship with the OS of pancreatic cancer pa-
tients (P< 0.05). Multivariate Cox regression analysis was
used to construct the prognostic model by using hazard’s
proportionality of each lncRNA. Visualization of all data was
performed using the “ggplot2” package in R. A P value less
than 0.05 was considered to be statistically signifcant.

3. Results

3.1. Characteristics of Patients. A total of 178 pancreatic
cancer patients were randomly assigned to the training set
(n� 88) and validation set (n� 90). Tere were no difer-
ences in clinicopathological features between the two sets.
Te baseline characteristics of 178 pancreatic cancer patients
are detailed in Table S1.

3.2. Identifcation of Diferentially Expressed lncRNAs and
Cuproptosis-Related lncRNAs. Te expression of lncRNAs in
pancreatic cancer samples and normal tissue samples was
analyzed. A total of 2060 lncRNAs were obtained; among
them, 832 diferentially expressed lncRNAs were screened
out, including 668 upregulated and 164 downregulated
lncRNAs (Figure 1(a)). Correlation analysis was carried out
between 832 diferentially expressed lncRNAs and
19 cuproptosis-related genes. Te results showed that there
were 181 cuproptosis-related lncRNAs.

Univariate Cox regression analysis revealed 33 of
181 cuproptosis-related lncRNAs that were signifcantly
related to the OS of pancreatic cancer (P< 0.05) (Table S2).
Ten, 13 lncRNAs were selected by LASSO regression
analysis (Figures 1(b) and 1(c)). Finally, fve lncRNAs
(AC025257.1, TRAM2-AS1, AC091057.1, LINC01963, and
MALAT1) were obtained by multivariate Cox regression
analysis (Figure 1(d)). Te relationship between the lncRNA
expression and tissue type and the coefcient of each
lncRNA are shown in Figures 1(e) and 1(f). Te prognostic
model was constructed based on these fve lncRNAs in the
training set.

3.3. Establishment and Validation of the Prognostic Model.
Te calculation of the risk score was 0.3335×

ExpressionAC025257.1 − 0.9055× ExpressionTRAM2-AS1
+ 1.2982 × ExpressionAC091057.1− 0.7587 ×Expression
LINC01963− 0.4945×ExpressionMALAT1. Each patient’s
risk score was calculated, and all patients were divided into
high-risk and low-risk groups according to the median risk
score. Te relationship between survival time or mortality
and risk score is shown in Figures 2(a)–2(c).

In the training group, Kaplan–Meier curves showed that
patients with high scores had shorter OS (HR� 3.18, 95% CI
(1.80–5.62), P< 0.001, Figure 3(a)), poorer DSS (HR� 2.94,

95% CI (1.50–5.74), P � 0.004, Figure 3(b)), and worse PFS
(HR� 1.94, 95% CI (1.11–3.37), P � 0.009, Figure 3(c)). To
verify the accuracy of the prognostic model constructed in
the training set, the risk score was applied to the validation
set and the entire group. Both of them showed results similar
to those of the training set (Figures 3(d)–3(i)).

In the ROC curves, the 1-, 3-, and 5-year AUC values of
the risk score in the training set were 0.739, 0.881, and 0.924,
respectively, and the prognostic accuracy of the risk score
was higher than that of other clinical characteristics (age, sex,
grade, and TNM stage) (Figures 4(a) and 4(b)). Te AUCs
for the 1-, 3-, and 5-year OS rates in the validation set were
0.646, 0.709, and 1.000, respectively, and in the entire group,
they were 0.678, 0.797, and 0.906, respectively. Te prog-
nostic accuracies of the risk score were also higher than those
of other clinical characteristics, indicating that the risk
model is stable and efcient in predicting the prognosis of
pancreatic cancer patients (Figures 4(c)–4(f)).

Univariate Cox regression showed that the risk score was
a prognostic factor in the training set (HR� 1.245, 95% CI
1.157–1.340, P< 0.001, Figure 5(a)). Multivariate Cox re-
gression analysis showed that the risk score was an in-
dependent prognostic predictor (HR� 1.262, 95% CI
1.150–1.386, P< 0.001, Figure 5(b)). Te same results were
obtained in the validation set (HR� 1.229, 95% CI
1.047–1.443, P � 0.012, Figure 5(d)) and entire cohort
(HR� 1.239, 95% CI 1.149–1.337, P< 0.001, Figure 5(f)).

3.4. PCA. To explore the distribution of high- and low-risk
groups, we performed PCA. Compared with cuproptosis-
related genes, cuproptosis-related lncRNAs, and diferen-
tially expressed lncRNAs, all patients in the three cohorts
could be clearly divided into two clusters based on our
prognostic model (Figures 6(a)–6(d)), that is, the prognostic
model was used to separate the pancreatic cancer patients
into two sections, indicating that the cuproptosis status of
the pancreatic cancer patients in the low-risk group was
distinguishable from that in the high-risk group.

3.5. Nomogram Based on the Combination of Risk Score and
Clinicopathology. To improve the accuracy of prognostic
evaluation of pancreatic cancer patients from diferent levels,
we established a prognostic analysis nomogram of prog-
nostic cuproptosis-related lncRNAs and clinicopathological
features to predict the survival probability at 1, 3, and 5 years
based on the training set (Figure 7(a)). Verifed by the
calibration analysis, there was excellent consistency between
the nomogram prediction and actual observation
(Figure 7(b)).

3.6. GO and KEGG Analysis. To investigate potential bi-
ological functions and pathways between the high-score
group and the low-score group, we performed functional
enrichment analysis of the DEGs. Tere were 973 DEGs
between the high- and low-risk groups (Figure 8(a)). Te
heatmap and PPI interaction networks of the top 10 DEGs
are shown in Figures 8(b) and 8(c). Te GO and KEGG
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enrichment analyses showed that DEGs are mainly involved
in many biological efects and signaling pathways
(Figures 8(d) and 8(e)). For instance, BP contains regulation
of transsynaptic signaling, modulation of chemical synaptic
transmission, hormone transport, and peptide hormone
secretion. CC contains transport vesicles, collagen-
containing extracellular matrix, distal axons, and trans-
port vesicle membranes. MF contains G protein-coupled
receptor binding, chemokine activity, and extracellular
matrix structural constituents. Te KEGG analysis also
showed signifcant enrichment of DEGs in cancer-related
pathways, for instance, ECM-receptor interaction, cell ad-
hesion molecules, MAPK signaling pathway, chemokine
signaling pathway, and IL-17 signaling pathway.

4. Discussion

Cell death is required for normal development and main-
tenance of tissue homeostasis in multicellular organisms
[20]. Currently, the most studied forms of programmed cell
death include apoptosis, necrosis, ferroptosis, and auto-
phagy [21]. Programmed cell death is closely associated with
the development of cancer [22]. Cuproptosis is a new cell
death mode that is diferent from the known cell death
regulation. Since copper content and copper metabolism are
associated with tumor diseases, we identifed cuproptosis-
related lncRNAs and constructed a risk model to predict the
prognosis of pancreatic cancer patients. Tese lncRNAs may
become novel biomarkers for pancreatic cancer, and the
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Figure 1: Identifcation of prognostic cuproptosis-related lncRNAs by LASSO regression and Cox regression analysis. (a) Volcano plot of
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Training set. (b) Validation set. (c) Entire cohort.
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Figure 3: Continued.

Canadian Journal of Gastroenterology and Hepatology 5



1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 – specificity

AUC at 1 years: 0.739
AUC at 3 years: 0.881
AUC at 5 years: 0.924

(a)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

1 – specificity

Risk, AUC=0.739
Age, AUC=0.523
Gender, AUC=0.550
Grade, AUC=0.600
Stage, AUC=0.456

(b)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 – specificity

AUC at 1 years: 0.646
AUC at 3 years: 0.709
AUC at 5 years: 1.000

(c)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

1 – specificity

Risk, AUC=0.646
Age, AUC=0.517
Gender, AUC=0.580
Grade, AUC=0.616
Stage, AUC=0.504

(d)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0
1 – specificity

AUC at 1 years: 0.678
AUC at 3 years: 0.797
AUC at 5 years: 0.906

(e)

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

1 – specificity

Risk, AUC=0.678
Age, AUC=0.514
Gender, AUC=0.563
Grade, AUC=0.598
Stage, AUC=0.480

(f)
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Figure 3: Kaplan–Meier curves of the risk score based on OS, DSS, and PFS in the three sets. (a) OS, (b) DSS, and (c) PFS in the training set.
(d) OS, (e) DSS, and (f) PFS in the validation set. (g) OS, (h) DSS, and (i) PFS in the entire cohort.
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Figure 5: Independent prognostic analysis in the three groups. (a, b) Training set. (c, d) Validation set. (e, f ) Entire cohort.
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prediction performance of our prognostic model was good
not only in the training set, but also in the validation set and
entire cohort.

In this study, we found that 33 cuproptosis-related
lncRNAs in TCGA-PAAD cohort were associated with
pancreatic cancer survival. We also performed multivariate
Cox regression analysis on prognosis-related cuproptosis
lncRNAs and found that fve lncRNAs, AC025257.1,
TRAM2-AS1, AC091057.1, LINC01963, and MALAT1,
exhibited signifcant prognostic value for pancreatic cancer.

Gene signatures based on copper metabolism-related genes
have been reported in a variety of tumor diseases, and
prognostic models based on several biological functions
have also been widely used in pancreatic cancer [4, 23–26].
We established a risk score to predict the prognosis of
pancreatic cancer based on fve cuproptosis-related
lncRNAs. All patients were randomly divided into two
sets (training and validation sets) in TCGA cohort. Trough
Kaplan–Meier survival analysis, Coxmultivariate regression,
risk curve analysis, ROC curve analysis, and PCA, our
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prognostic model can provide a reference value for evalu-
ating the prognosis of patients with pancreatic cancer. Tese
results demonstrated the accuracy and reliability of the
prognostic model based on cuproptosis-related lncRNAs.

KRAS is one of the major oncogenes of pancreatic
cancer. Searching for new biomarkers and molecular targets
of pancreatic cancer is a hot research topic at present.
LncRNAs play an important role in the development of
pancreatic cancer, and comprehensive analysis and identi-
fcation of lncRNA-related prognostic models have also been

applied in pancreatic cancer [4, 27, 28]. In our prognostic
model, we identifed fve cuproptosis-related lncRNAs that
were associated with the prognosis of pancreatic cancer.
MALAT1 is one of the most abundant lncRNAs in normal
tissues, and emerging evidence has linked MALAT1 to lung
cancer, breast cancer, prostate cancer, and pancreatic cancer
[29]. In pancreatic cancer, importin 7 (a nuclear transport
factor) inhibits the expression of p53 and induces the ex-
pression of MALAT1, resulting in the progression of pan-
creatic cancer [30]. LINC01963 is expressed at lower levels in
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pancreatic cancer tissues and cell lines. Upregulated ex-
pression of LINC01963 in pancreatic cancer cell lines can
inhibit the cell cycle, proliferation and invasion, and pro-
mote cell apoptosis. In addition, LINC01963 negatively
regulates the expression of microRNA-641 and inhibits the
progression of pancreatic cancer [31]. Researchers have also
identifed seven lncRNAs, including AC091057.1, and
generated a risk model, as well as a nomogram, that could
predict the prognosis of cancer patients [32].

We established a nomogram to predict the clinical
outcomes of pancreatic cancer patients. Nomograms are
stable and reliable tools for quantifying individual risk and
are widely used for cancer prognosis [33]. In addition to
clinicopathologic features, prognostic models based on
novel biomarkers can also be incorporated into nomogram
models [34]. For instance, a nomogram predicted 1-, 3-, and
5-year OS rates for pancreatic cancer patients and gave
a prognostic score calculated by m5C-relatedlnRNAs [27].
Te combination of prognosis-associated immune genes and
prognostic factors has a better prognostic value than the
single application in colorectal cancer [35]. Te nomogram
in our study, which contains risk scores and other clini-
copathologic characteristics, can efectively predict the
survival in 1-, 3-, and 5-year pancreatic cancer patients.

Based on our prognostic model, all patients were divided
into two cohorts (high- and low-risk score). We also per-
formed an enrichment analysis between the two groups to
further explore the efcacy of our model in determining
pancreatic cancer. Te DEGs in the two groups were mainly
involved in the process of cancer-related signaling pathways
and biological functions, including tumor
microenvironment-related mechanisms and immune-
related mechanisms. Pancreatic cancer progression is as-
sociated with the tumor microenvironment, in which the
expression of chemokines, accumulation of extracellular
matrix, and the action of cancer-promoting cytokines ac-
celerate the growth, invasion, and metastasis of pancreatic
cancer [36–38]. IL-17 can promote the progression of
pancreatic cancer, and the high expression of IL-17 can
activate the Notch pathway through the NF-KB pathway.
Te inhibition of IL-17 and the Notch pathway can enhance
the therapeutic efect by inhibiting pancreatic cancer growth
in vivo [39]. Studies have shown that activation of theMAPK
pathway is involved in the interaction between pancreatic
cancer cells and cancer-associated fbroblasts [39]. Our
KEGG analysis also showed that ECM-receptor interactions
and the MAPK pathway were signifcantly enriched in the
DEGs of the high- and low-risk score groups. Tese results
improved our understanding of the sophisticated reci-
procities between pancreatic cancer and the tumor micro-
environment and might identify novel therapeutic targets.

Immune checkpoints are receptors expressed by im-
mune cells that contribute to immune escape from tumors,
most commonly programmed cell death protein 1 and cy-
totoxic T lymphocyte-associated protein 4 [40]. In recent
years, immune checkpoint blockade (ICB) has been applied
in the immunotherapy of various tumor diseases [41].
However, ICB is less efective in pancreatic cancer. Te
tumor microenvironment of pancreatic cancer is in an

immunosuppressive state, and the existence of a variety of
immunosuppressive cells, immunosuppressive factors, and
cellular pathways hinders the response of cancer cells to
immunotherapy [42]. Moreover, angiogenesis and immu-
nosuppression frequently occur simultaneously [42]. As we
identifed the clinical signifcance and function of the fve
lncRNAs, combined immunotherapy or antiangiogenic
therapy with targeting cuproptosis-related lncRNAs may
provide new ideas for the treatment of pancreatic cancer in
the future.

Tere were several limitations in this study. First, the
number of lncRNAs in the Gene Expression Omnibus
(GEO) datasets was so small that they could not be used as
the validation set. Terefore, we could only randomly divide
TCGA-PAAD dataset into the training set and the validation
set, which inevitably increased the bias in the study.Ten, we
deleted several samples that contained incomplete clinico-
pathological features, which caused information bias to
a certain extent. Our prognostic model needs to be further
validated by multicenter, large-scale clinical trials or
datasets.

5. Conclusion

In summary, we identifed fve cuproptosis-related lncRNAs
as potential biomarkers for pancreatic cancer. Te risk
model based on the fve lncRNAs can well predict the
prognosis of pancreatic cancer patients. Our study not only
has important signifcance in predicting the prognosis of
pancreatic cancer, but also has certain guiding signifcance
for future research on cancer mechanisms based on
cuproptosis.
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