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Background. Vibration-controlled transient elastography (VCTA) and controlled attenuation parameter (CAP) are used more
frequently to diagnose liver fbrosis and steatosis among nonalcoholic fatty liver disease patients. However, limited robust data are
available on the clinical variables strongly related to these disorders and who needs to be referred for screening.Methods. We used
the National Health and Nutritional Examination Survey 2017-2018 database to identify the clinical predictors strongly related to
liver steatosis and advanced fbrosis. Baseline comparisons among these groups were made based on widely accepted cutofs.
Linear and logistic regressions were performed to identify the associations between the clinical variables and liver steatosis and
fbrosis. We used adaptive lasso regression, gradient-boosted model, and decision trees to determine clinical variables strongly
related to these outcomes. A Näıve Byes classifer and decision trees were used to calculate the predicted probabilities of liver
steatosis and fbrosis. Results. 32% of our population had evidence of liver steatosis using 294 dB/m as a cutof. An increase in age,
serum triglyceride, and body mass index were associated with a statistically signifcant increase in liver steatosis; in contrast,
females had statistically signifcantly lower values for liver steatosis by 15 points in the multivariable linear regression model.
Serum LDL, smoking, and systolic and diastolic blood pressure are poorly associated with liver steatosis in the adaptive lasso
regression. On the other hand, sex, tobacco use, metabolic energy expenditure, and serum triglyceride are the least associated with
liver fbrosis based on decision tree analysis and a gradient-boosted model. In decision trees, people with a body mass index above
30 and HbA1c above 5.7 have a 72% likelihood of liver steatosis compared to 14% for people with a body mass index below 30. On
the other hand, people with a body mass index above 41 have a 38% likelihood of liver fbrosis. Conclusion. Body mass index,
hemoglobin A1c, serum triglyceride level, sex, and age could provide a good prediction for liver steatosis, while body mass index,
blood pressure, platelet counts, hemoglobin A1c, serum LDL, or HDL are highly associated with liver fbrosis and should be used
as an initial screening tool prior referral for VCTE/CAP.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) has become
a signifcant public health problem in low- and middle-
income countries and Western societies [1]. Te point
prevalence of the disease varies between 10% and 35%
worldwide [2]. Te prevalence in the United States is higher
among Hispanics, males, older people, and those with di-
abetes [3]. Te disease is a spectrum of pathologies ranging
from fatty liver infltration or steatosis, steatohepatitis, liver
fbrosis, and hepatocellular carcinoma. Historically, NAFLD

was diagnosed clinically in patients with metabolic syn-
drome components, including diabetes, hypertension,
obesity, and dyslipidemia, along with elevated liver bio-
markers. Insulin resistance disturbs fatty acid metabolism
and increases hepatic fatty acid production, leading to he-
patic steatosis, which acts as a precursor for mitochondrial
reactive oxygen radical production and lipid oxidation.
NASH occurs when this afects enough mitochondria, which
could lead to liver fbrosis. Nonetheless, the interplay seems
more complex, and NAFLD could occur in certain genetic
conditions without insulin resistance (PNPLA gene
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mutation) [4]. Moreover, the efect of pioglitazone, an in-
sulin sensitizer, in reversing NAFLD is limited, suggesting
that other factors play critical roles in NAFLD and that
NAFLD could precede the development of the metabolic
syndrome [4].

Liver biopsy and MRI were used frequently to assess the
degree of hepatic steatosis. However, the former is limited by
its invasiveness and sampling variability, and the latter by its
cost. Assessing liver steatosis and fbrosis with controlled
attenuation parameter (CAP) and vibration-controlled
transient elastography (VCTE), respectively, is more suit-
able, cost-efective, and relatively easy to perform. Also, it
measures the degree of liver steatosis and fbrosis in an area
that’s 100 times larger than the one obtained by liver biopsy
(1 cm in width and 5 cm in depth) [5]. Terefore, VCTE and
CAP are becoming more frequently used to evaluate the
degree of liver fbrosis and steatosis among alcoholic and
NAFLD patients [4].

In the recent meta-analysis by Karlas et al., a CAP cutof
of 294 dB/m had the highest Youden index with the best
accuracy in predicting liver steatosis among patients with
NAFLD (S0 vs. S1–S3) [6]. Similarly, a liver stifness value of
8.2 kPa has the highest accuracy in predicting advanced liver
fbrosis (≤F2 vs. F3-F4) [6]. In our study, we sought to
determine the relationship between diferent clinical pa-
rameters (hemoglobin A1c, triglyceride, LDL, HDL, and
body mass index) in addition to age, sex, physical activity,
smoking, moderate level of alcohol consumption, and av-
erage hours of night sleep, and the values of the CAP and
liver stifness at the previously mentioned cutofs, using the
National Health and Nutritional examination survey in
2017-2018 (NHANS). Also, we looked at the probabilities of
NAFLD among the United States population.

Our study uses a national database representative of the
United States population to identify the predictors strongly
associated with these outcomes among NAFLD patients.
Potentially identify new predictors or efect modifers, cal-
culate the mean values for the CAP among subjects with
diferent predictor values, and calculate the predicted
probabilities for developing liver steatosis or liver fbrosis
among the United States population. In contrast, Zhang et al.
used the database to estimate the prevalence of liver steatosis
and fbrosis among the United States population [7]. Our
analysis focused on determining the strength of the asso-
ciation of diferent variables using linear, lasso, and gradient-
boosted regressions with liver steatosis and fbrosis, which
was not done by the Zhang et al. study. Tis analysis is
fundamental to identifying patients who could beneft most
from screening for NAFLD using this modality. Also, we
used a CAP cutof of 294 dB/m, which has higher accuracy in
predicting liver steatosis among NAFLD patients compared
to the 274 dB/m that was used in their analysis [6, 7].

2. Method

We used the 2017-2018 data from the National Health and
Nutritional Examination (NHANES) database to measure
the association between a variety of clinical variables and the
degree of liver steatosis as measured by CAP and liver

stifness as measured by kilopascals (kPa) via VCTE. Te
following datasets were downloaded from the 2017-2018
NHANES website: patient demographics, results of liver
elastography, alcohol consumption, smoking behavior, lipid
panels, hours of fasting before the CAP and VCTE testing,
average daytime sleeping, blood pressure readings, body
mass index, and the degree of physical activity. To evaluate
the efect of physical activities with the CAP, we converted
the duration of weekly physical activities to weeklymetabolic
energy expenditure using the following procedure: For
vigorous physical activities, we multiply the duration of the
weekly physical activity by eight, while we multiply the
period of weekly moderate physical activities by four, then
we aggregated the moderate and the vigorous weekly
metabolic expenditure for each subject. Regarding smoking
behavior, we modeled the average number of cigarettes
smoked in the last month as a continuous variable. All
predictors’ values approximated the normal distribution
without transformation except for the metabolic energy
expenditure, which was transformed into a 10-base loga-
rithmic form to approximate the normal distribution.

Datasets were combined using the Full Join command in
R-statistical software without excluding any subjects before
creating the survey object. Seventy patients with a history of
viral hepatitis were excluded from our analysis. Also, we
excluded 236 people who did not have ten valid measure-
ments or whose IQR/M> 30%. We used the examination
weights (MEC) in our survey regression analysis as rec-
ommended by the NHANES website. Fasting weights were
added to the examination weight whenever the analysis
included a lipid panel. All statistical analyses were done
using R version 3.6.2. Continuous baseline values were re-
ported as a median and interquartile range, while categorical
variables were reported as proportions with 95 confdence
intervals (CI) using the logit function.

Several analyses were done. In the frst one, we examined
the association between the CAP and the following cova-
riates: patient’s age, sex, LDL values, triglyceride values,
hemoglobin A1c, body mass index, smoking, weekly met-
abolic energy expenditure, alcohol consumption, hyper-
tension, hours of fasting before the procedure, and average
sleeping hours per day using a linear regression model.
Before running the regression analysis, we looked at the
association between the outcome (CAP) and each contin-
uous variable using the Loess smoother function to ensure
a linear or near-linear association. To have more in-
terpretable estimates in the linear regression model, we
divided the low-density lipoprotein and triglyceride values
by 20, age was divided by ten, and we used the log (10)
transformation of the weekly metabolic energy expenditure
to approximate the normal distribution for this variable. We
modeled systolic and diastolic blood pressure as continuous
variables, with both centralized around their means.

Tough hemoglobin A1c is not part of the metabolic
syndrome, we used it due to the lack of data on fasting blood
sugar in the NHANES database. Also, our study focuses on
identifying variables that are frequently used in clinical
practice to identify patients at risk for liver steatosis or f-
brosis. Terefore, we used body mass index instead of waist
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circumference. Also, these variables are highly correlated
with each other and with liver steatosis, as shown in
Figures 1S and 2S (supplementary material).

We used two other approaches to determine the pre-
dictors that substantially afect liver steatosis. In the frst
approach, we used the subset variable selection method
using the RegSubsets package in R. In this method, the
algorithm would select the model with the lowest Bayesian
information criteria (BIC) and determine the efect of each
predictor on reducing the BIC. In the second approach, we
performed an adaptive Lasso regression. In contrast to the
frst approach, lasso regression penalizes the model while
adding the covariates. In this approach, we ran an ordinary
least squares model using all the predictors that were used in
linear regression. Ten, we used the inverse of these pre-
dictor coefcients as a penalty term in the 10-fold cross-
validation to determine the optimal value of lambda. Ten,
we used the one standard error lambda value in lasso re-
gression. Tis latter approach will shrink the coefcient
parameter and drop the covariates contributing least to liver
steatosis.

Also, we modeled the CAP and liver stifness values
(kPa) as binary outcomes using logistic regression models at
the cutof level of 294 dB/m for the former and 8.2 kPa for
the latter, as recommended by Karlas et al. [6]. Te same
predictors used in the multivariable linear regression model
were used in the multivariable logistic regression model with
liver steatosis as an outcome. For the multivariable logistic
regression model with liver fbrosis as an outcome, we only
used the predictors that explains more than 5% of the model
variance as determined by the gradient-boosted model
(BMI, platelet count, hemoglobin A1c, and diastolic blood
pressure), but we added the total weekly metabolic energy
expenditure because it is a strong confounder and has a weak
correlation with other predictors (no collinearity). More-
over, we calculated the predicted probabilities of developing
liver steatosis among diferent values of predictors using the
Näıve Bayes Classifer.

Finally, we used a decision tree algorithm to identify the
appropriate cutof of our continuous variables that best
predict liver steatosis and fbrosis at 294 dB/m and 8.2 kPa,
respectively. We used 10-fold cross-validation to identify the
lowest value for the cross-validation error. Ten we used the
corresponding complex parameter (CP) in the decision
tree model.

3. Results

Baseline characteristics for our population are shown in
Table 1. Te median age for our study was 38 (IQR 19–57).
Males’ and females’ proportions were approximately equal.
Te median body mass index was 27, with a median met-
abolic energy expenditure of 1680 calories per week, and
32% of the participants had CAP values above 294 dB/m. It is
worth mentioning that our data likely represent healthier
people than those encountered in the hospital setting.

Figures 1–10 show our evaluation of the unadjusted
linear association between each predictor and the controlled
attenuation parameter. Te linear assumption generally

holds except for the sleeping, moderate level of alcohol
consumption, and number of fasting hours before the
procedure variables. For the sleeping variable, as shown in
Figure 10, people who sleep more than 6 hours have lower
values for the CAP compared to those who sleep less than
6 hours. Te result of the univariate unadjusted model after
creating a spline term after 6 hours is shown in Table 1S
(supplementary material). People who sleep more than
6 hours have CAP values lower by 15 points compared to
those who sleep less, with a statistically signifcant result.
Similarly, we looked at the infuence of hours of fasting
before the procedure and the value of CAP. As shown in the
Loess smoother and the result of univariable analysis for this
model in Table 2S, only fasting more than 10 hours before
the procedure is associated with a reduction in the CAP
values with an average of 3.8 dB/m.Tese two variables were
not included in the multivariable model because they are
weak confounders and adding them would result in a wider
confdence interval due to the decreasing number of par-
ticipants with complete case analysis.

As shown in the Loess smoother for the other explan-
atory data analysis, the linear association between the pre-
dictor and the outcome did not hold when body mass index
values above 45, triglyceride levels were above 1000mg/dL,
LDL values were above 300mg/dL, and metabolic energy
expenditure values were above 5730 METs/week. Also, these
cutofs were at or above the 0.95 quartiles for these cova-
riates. Terefore, in our multivariable linear regression
model, the analysis was limited at these cutofs for these
covariates, which will prevent overestimation or un-
derestimation of the predictors’ efect on liver steatosis or
fbrosis.We decided not to include a smoother term or factor
these predictors at these cutofs due to the small number of
subjects who have values above these cutofs. Results for the
multivariable linear regression model with liver steatosis as
an outcome are shown in Table 2.

In this model, age, serum triglyceride level, and body
mass index are strongly and signifcantly associated with the
CAP. For each ten-year increase in age, there was a 4.46
increase in the CAP values. An increase in serum triglyceride
level by 20mg/dL was associated with a 2.5 increase in the
CAP values, and an increase in the body mass index by one
value was associated with 4.73 increase in the CAP values.
On the other hand, females have 15.36 lower CAP values
compared to males. For each one-point increase in the
hemoglobin A1c value, there were 7.51 increments in the
CAP values. For each 10-fold increase in the total metabolic
energy expenditure per week, there was a 13.5 points re-
duction in the CAP values. Still, the results didn’t reach the
statistically signifcant cutof of 0.05 for the latter two
covariates. Also, we tested several other models with in-
teraction terms. However, the variance analysis for these
models was not signifcantly diferent from this model. Te
calculated R2 for this model was 51.3%.

To further test the robustness of our estimates, we
evaluated the collinearity (correlation) among our pre-
dictors. Generally, there was a slight correlation among
predictors except for a relatively strong correlation between
hemoglobin A1c and serum triglyceride values, body mass
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index, and age, with a correlation of 0.29, 0.34, and 0.23,
respectively, and between systolic and diastolic blood
pressure with a correlation of 0.48. Te correlation matrix

was calculated after we replicated each subject in our dataset
by its weight (Figure 1S). All results for the correlation
structure were statistically signifcant at 0.05 except between
metabolic energy expenditure and diastolic blood pressure
and between platelet count and systolic blood pressure.
Figure 2S illustrates the correlation matrix among a subset of
the predictors in addition to serum HDL and waist cir-
cumference.Tere was a strong negative correlation between
HDL and triglyceride (−0.43), and the correlation between
triglyceride and liver steatosis was slightly higher than HDL
and liver steatosis (0.36 vs. −0.27). Terefore, we used serum
triglyceride levels instead of serum HDL in the previously
mentioned multivariable regression model. Waist circum-
ference and BMI were strongly correlated with each other
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Figure 1: Loess smoother between age and controlled attenuation
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200

300

400

C
on

tro
lle

d 
at

te
nu

at
io

n
pa

ra
m

et
er

4020 8060
Body mass index

Figure 2: Loess smoother between the body mass index and the
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a week. (5) Drinks alcohol once a week. (6) Drinks alcohol 2-3 times
a month. (7) Drinks alcohol once a month. (8) Drinks alcohol
7–11 times a year. (9) Drinks alcohol 3–6 times a year. (10) Drinks
alcohol 1-2 times a year. (11) Does not drink alcohol.
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(0.92) and with liver steatosis (0.65 vs. 0.59, respectively), as
shown in Figure 2S. Because BMI is a widely used and easily
accessible clinical parameter, we used it in our models in-
stead of waist circumference.

It's noteworthy to emphasise that regression analysis
relies on complete case analysis. Data on liver steatosis and
fbrosis were available for 5,948 participants, but only 1747
participants had complete data on all the variables that were
used in the above linear regression model. However, if we
exclude the metabolic energy expenditure (METs) variable
(the predictor that has the largest number of missing values),
1894 participants will have complete data in all the variables.
Te results of the linear regression model excluding METs
with liver steatosis as an outcome as shown in Table 6S.
Tere was no signifcant diference in the coefcient’s values
between this model (Table 6S) and the one that included
METs (Table 2). However, the R2 for the former analysis was
81%.

Our sensitivity analysis found that serum LDL, systolic
and diastolic blood pressure, and smoking were not strongly
associated with CAP values and were dropped out of the
adaptive Lasso regression analysis (as shown in Table 4S). In
the subset predictor selection algorithm, body mass index,
serum triglyceride level, age, sex, hemoglobin A1c, and
diastolic blood pressure achieved the model with the lowest
BIC. In contrast, adding systolic blood pressure, moderate
levels of alcohol consumption, smoking, metabolic energy
expenditure, and serum LDL level results in increasing the
value of the BIC (Figure 3S).

Table 3 illustrates the diference in baseline covariates
between patients with CAP above and below 294 dB/m. Te
result reaches a statistically signifcant level for age, body
mass index, metabolic energy expenditure, hemoglobin A1c,
triglyceride level, and sex in univariate analysis.

Te result of the multivariable logistic regression model
using a CAP cutof at 294 dB/m as an outcome and all other
predictors as covariates is shown in Table 4. We excluded
systolic blood pressure, diastolic blood pressure, serum LDL,
and smoking from the multivariable model due to their poor
correlation with the outcome of interest (they were dropped
out of the adaptive lasso regression). We categorized our
predictors into diferent strata for easy interpretability. Also,
we reported adjusted relative risks (RR) among diferent
predictors strata. Body mass index was the most clinically
signifcant predictor for liver steatosis, with an adjusted RR
of 3.91 for those with a BMI above 33 compared to those
below 24. High serum triglyceride levels and diabetes are
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Figure 8: Loess smoother between the triglyceride values and the
controlled attenuation parameter.
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Figure 10: Loess smoother between sleeping hour values and the
controlled attenuation parameter.

Table 2: Result of the multivariable linear regression model in-
cluding the following covariates: LDL, triglyceride level, age, sex,
hemoglobin A1c, total metabolic energy expenditure per week,
body mass index, alcohol consumption, average number of ciga-
rettes smoked per day for the last month, and systolic and diastolic
blood pressure.

Estimate Std.
error t value Pr (>|t|)

(Intercept) 125.65 29 4.36 0.012
LDL∗ −1.32 1.357 −0.972 0.39
Triglyceride∗ 2.477 0.545 4.539 0.023
Age∗∗ 4.455 1.463 3.046 0.034
Sex −15.361 4.857 −3.162 0.0387
Hemoglobin A1c 7.514 2.733 2.75 0.0514
Metabolic energy
expenditure∗∗∗ −13.459 5.36 −2.5 0.066

Body mass index 4.7306 0.3511 13.473 0.000176
Alcohol consumption∗∗∗∗ −0.923 0.798 −1.157 0.312
Smoking 0.4837 0.3478 1.391 0.24
Systolic blood pressure 2.824 1.852 1.52 0.20
Diastolic blood pressure 1.1 1.785 0.615 0.572
∗Values are divided by 20. Terefore, the estimated value refects each
20-unit increase in the predictor value. ∗∗Values are divided by 10.
Terefore, the estimate refects each 10-unit increase in the predictor value.
∗∗∗value is the logarithm scale with base 10; therefore, the estimate refects
each 10-fold increase in the predictor value. ∗∗∗∗Alcohol consumption: 1,
drinks alcohol daily; 2, drinks alcohol almost daily; 3, drinks alcohol
3-4 times a week; 4: drinks alcohol 2 times a week; 5, drinks alcohol once
a week; 6, drinks alcohol 2-3 times a month; 7, drinks alcohol once a month;
8, drinks alcohol 7–11 times a year; 9, drinks alcohol 3–6 times a year; 10,
drinks alcohol 1-2 times a year; and 11 does not drink alcohol.
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associated with an adjusted RR of 2. It is worth mentioning
that the accuracy of the model using these predictors in-
creases with a cutof of 294 dB/m compared to 245 dB/m and
an area under the receiver operator curve of 0.83 vs. 0.798, as
shown in Figure 4S. Results were similar when we didn’t
exclude people in 0.95 quartiles or more on the predictor
values, as shown in Table 3S.

We used the decision tree algorithm to identify the
appropriate cutof of our variables that best predict liver
steatosis using 294 dB/m as a cutof. Te result of the de-
cision tree is shown in Figure 5S. BMI and hemoglobin A1c
are our decision tree’s most important predictors for liver
steatosis. Patients with a BMI above 30 and hemoglobin A1c
above 5.7 have a 72% chance of liver steatosis compared to
14% among those with a BMI less than 30.

Finally, we looked at the probability of liver steatosis at
294 dB/m as a cutof using a naı̈ve Bayes classifer. 32% of
our study population has liver steatosis (like decision tree
analysis). Bodymass index continues to be a strong predictor
for liver steatosis in this method of classifcation as well.
People with a bodymass index of less than 24 have the lowest
likelihood of liver steatosis at 0.4%. Patients with HBA1c
above 5.8 have a high probability of liver steatosis, as shown
in Figure 5SB.Te accuracy of our Näıve Bayes’ classifer was
78%. Te results are shown in Table 5S.

Regarding liver fbrosis, in our decision tree analysis, when
a liver stifness value of 8.2 kPa was used as an outcome cutof
(advanced fbrosis), a body mass index at 41 was strongly
predictable for liver fbrosis. Platelet counts strongly predict
liver fbrosis among people with BMI less than 41, while age
and serum LDL strongly predict liver fbrosis among those
with BMI above 41, as shown in Figure 6S. Body mass index,
platelet counts, and hemoglobin A1c and diastolic blood
pressure are the most critical predictor in predicting liver
fbrosis in the gradient-boosted model, as shown in Figure 7S,
followed by AST/ALT ratio, age, and serum triglyceride level.

Te baseline characteristics and the results of multi-
variable logistic regression models for liver fbrosis are
shown in Tables 5 and 6, respectively. Te multivariable
logistic regression with liver stifness at 8.2 kPa cutof as an
outcome, lack of sex, smoking, moderate level of alcohol
consumption, serum LDL, systolic blood pressure, serum
triglyceride, and age because these covariates are weak
predictors, as shown in the gradient-boosted model
(Figure 7S) (each account for less than 5% of the model
variance).

In the multivariable linear regression model with liver
fbrosis as an outcome and age, sex, hemoglobin A1c, serum
HDL, body mass index, platelet counts and diastolic blood
pressure as predictors (Table 7S). Sex, hemoglobin A1c,
serum HDL at 50mg/dL cutof, body mass index, diastolic
blood pressure, and AST/ALT ratio were statistically sig-
nifcant predictors for liver fbrosis. Te R2 for this model
was 20% (Loess smoother between HDL, body mass index,
age, hemoglobin A1c and liver fbrosis are shown in
Figures 8S–11S). In this model we centralized the contin-
uous predictors around their means to make the in-
terpretation for the intercept easier, but we dichotomized
HDL at 50mg/dL and platelets at 125 because participants
with serum HDL below 50 had an increase in their liver
stifness values in our explanatory data analysis, as shown in
Figure 8S and platelet value of 125 was identifed as a sig-
nifcant cutof in our regression tree.

Comparisons among diferent predictors between par-
ticipants below and above the age of 50 are shown in
Table 8S. We chose age 50 as a cutof for these comparisons
because participants above that age had a mean value of liver
stifness around 6 kPa.

4. Discussion

In the setting of a rising incidence of metabolic syndrome
worldwide and in the United States, the incidence of NAFLD
is expected to rise which could lead to liver fbrosis and
subsequently cirrhosis in some patients (20–30% of those
with NAFLD) [4]. Also, liver steatosis independently in-
creases the risk for cardiovascular disease, type II diabetes,
and chronic kidney disease and impairs the efcacy of
medical therapy [4]. Terefore, it is important to correctly
identify patients with NAFLD to provide an early in-
tervention to prevent long-term cardiovascular and liver
damage. However, there is debate on the best cutof of the
CAP and VCTE that has the highest accuracy in predicting
liver steatosis and fbrosis, particularly among patients with
NAFLD. Also, the interobserver variability between readings
could reach upto 20 dB/ml for the CAP particularly among
people with high a BMI in the absence of liver fbrosis, which
could afect the steatosis classifcation. Moreover, liver
steatosis could afect liver fbrosis measurement among
patients with NAFLD [4, 8, 9]. Nonetheless, in the recent
meta-analysis by Karlas et al., a cutof of 294 dB/ml for the
CAP had the highest accuracy in classifying NAFLD patients

Table 3: Baseline characteristics between people who had liver steatosis and those who did not using a cutof value of 294 dB/m.

≥294 dB/m <294 dB/m P value
Age (median, 95% CI) 52 years (49–54) 26 years (25-26) <0.001
Body mass index (median, 95% CI) 34 (33-34) 24.5 (23.6–26.1) <0.001
Metabolic energy expenditure (median, 95% CI) 1440 kcal/week (1184–1680) 1960 kcal/week (1820–2258) <0.001
Hemoglobin A1c (median, 95% CI) 5.7 (5.7-5.8) 5.4 (5.3-5.4) <0.001
Triglyceride (median, 95% CI) 117mg/dL (109–128) 75mg/dL (71–78) <0.001
LDL (median, 95% CI) 113mg/dL (104–119) 104mg/dL (100–106) 0.026
Females (proportions, 95% CI) 41 (38–44) 54 (52–56)
Alcohol intake 7 (7-8) 7 (6-7) 0.08
Hypertension (proportions, 95% CI) 0.25 (0.22–0.29) 0.13 (0.11–0.16) <0.001
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Table 4: Te result of the multivariable logistic regression model with liver steatosis as a binary outcome using 294 dB/m as the cutof.

Covariates Coefcient 95% CI P value Adjusted relative
risk

Standard error
for the

adjusted RR
Intercept 1.06 0.9034–1.243 0.52
Age 1.0026 1–1.005 0.17
Reference (10–57mg/dL)
Triglyceride (57–133mg/dL) 1.172 1.06–1.29 0.033 1.85 0.375
Triglyceride (133–400mg/dL) 1.247 1.1–1.40 0.021 2.18 0.467
Reference (40–720)
Mets total B (720–2760) 0.901 0.846–0.960 0.032 0.722 0.0735
Mets total C (2760–5680) 0.927 0.810–1.06 0.33 0.797 0.177
Reference (male)
Female 0.903 0.842–0.967 0.04 0.87 0.03
Hemoglobin A1c reference (4.1–5.2)
Hemoglobin A1c B (5.2–5.8) 1.0187 0.911–1.139 0.76 1.066 0.21
(5.8–6.5) 1.069 0.945–1.211 0.35 1.24 0.26
(6.5–14.2) 1.320 1.183–1.472 0.008 1.99 0.344
Body mass index reference (15.7–24.1)
Body mass index (24.1–33.6) 1.08 0.997–1.164 0.13 1.54 0.413
Body Mass index (33.6–45) 1.50 1.367–1.642 <0.01 3.91 1.06

Table 5: Baseline characteristics between people who had liver fbrosis and those who did not using a cutof value of 8.2 kPa.

≥8.2 kPa <8.2 kPa P value
Age (median, 95% CI) 55 years (44–57) 48 years (46–51) <0.001
Body mass index (median, 95% CI) 36 (35–37) 27.5 (27-28) <0.001
Metabolic energy expenditure (median, 95% CI) 1080 kcal/week (720–1440) 1920 kcal/week (1680–1987) 0.21
Hemoglobin A1c (median, 95% CI) 5.8 (5.7–5.9) 5.4 (5.4-5.4) <0.001
Triglyceride (median, 95% CI) 105mg/dL (99–117) 85mg/dL (81–89) 0.011
LDL (median, 95% CI) 109mg/dL (92–119) 105mg/dL (101–109) 0.724
Females (proportions, 95% CI) 0.41 (0.36–0.47) 0.51 (0.49–0.54) 0.005
Alcohol intake 8 (7–9) 7 (6-7) 0.033
Hypertension (proportions, 95% CI) 0.27 (0.22–0.33) 0.16 (0.14–0.18) <0.01

Table 6: Multivariable logistic regression model with liver fbrosis as an outcome using 8.2 kPa as cutof.

Covariates Coefcient 95% CI P value
Intercept 1.12 1.07–1.17 0.007
Sex reference (male) 0.973 0.95–0.99 0.06
Hemoglobin A1c reference (4.1–5.2)
5.2–5.8 1.02 1.004–1.033 0.06
5.8–6.5 1.08 1.04–1.13 0.021
6.5–14.2 1.2 1.15–1.28 0.002
Metabolic energy expenditure reference (40–720 kcal/week)
720–2760 kcal/week 0.974 0.955–0.992 0.05
2760–5680 kcal/week 0.98 0.956–1003 0.16
Body mass index reference (15.7–24.1)
24.1–33.6 0.996 0.97–1.02 0.73
33.6–45 1.15 1.1–1.2 0.004
Platelet count reference (8–209 cells/microliter)
209–818 0.963 0.94–0.99 0.07
Diastolic blood pressure reference (54–63mmHg)
63–86mmHg 0.98 0.943–1.01 0.3
86–133mmHg 0.98 0.935–0.992 0.23
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into those with and without liver steatosis, and an 8.2 kPa
cutof for liver stifness had the highest accuracy in classi-
fying these patients into those with <F2 vs. F3 and F4 fbrosis
(advanced fbrosis) [6].

Using a large national database, we sought to determine the
association between diferent clinical variables and the value of
CAP and liver fbrosis. Tis would help general practitioners
identify people at risk and whom to refer for liver steatosis and
fbrosis screening. Tis is important, especially with the lack of
serological tests that could early recognize NAFLD and the
available serological tests for detecting liver fbrosis (AST to
platelet ratio index (APRI), Fibrosis-4 score (FIB-4) that has
aminotransferase levels, platelet counts and age as predictors,
and nonaAlcoholic fatty liver disease fbrosis score (NAFLD
fbrosis score) that has age, body mass index, blood glucose
level, aminotransferase levels, platelet counts, and serum al-
bumin as predictors) lack accuracy in predicting liver fbrosis
compared to liver-related outcomes such as progression of the
Model for End-Stage Liver Disease (MELD) or liver-related
mortality [10].

Zenovia and colleagues evaluated the relationship between
a variety of clinical parameters and liver steatosis and fbrosis.
Tey concluded that body mass index, serum low-density li-
poprotein, serum triglyceride level, fasting blood glucose, and
serum uric acid correlate strongly with higher CAP. However,
their study was limited by its small sample size [11]. In our
multivariable regression model, we found that patients’ age,
body mass index, serum triglyceride level, and sex are sig-
nifcantly associated with CAP, while hemoglobin A1c and
weekly metabolic energy expenditure are strongly associated
with CAP with near statistically signifcant results at a P value
cutof of 0.05. In our analysis, the strength of association be-
tween hemoglobinA1c and liver steatosis increase slightly from
7.5dB/m for one value increment in hemoglobinA1c to 9.4 dB/
m after removing triglyceride level from the multivariable
model due to the correlation among them (correlation of 0.29).
On the other hand, serum LDL was not independently asso-
ciated with liver steatosis. It’s worth mentioning that serum
HDL is highly and negatively correlatedwith serum triglyceride
level and liver steatosis (−0.43, −0.27), as shown in Figure 2S
but we used serum triglyceride level in our multivariable linear
regression model with CAP as an outcome due to the higher
correlation of triglyceride with CAP and to avoid collinearity.

In the unadjusted analysis, people who slept more than
six hours had CAP ffteen points lower than their coun-
terparts. Te protective efect of sleep on liver steatosis is
further supported by Mikolasevic et al. [12], who found
a signifcant reduction in liver steatosis with more than
6 hours of sleep at night. Our univariate results further
supported the Julio et al. study, which found that sleep of
fewer than 6 hours is highly associated with cardiometabolic
risk factors with an HR of 2.14 [8]. Adding hours of sleep to
our multivariable regression analysis resulted in decreasing
the total number of participants with complete case analysis
and thus widening the confdence interval.

Body mass index was the strongest predictor for liver
steatosis and fbrosis in our analysis (in regression tree analysis,
the adaptive lasso regression for liver steatosis, and the
gradient-boosted model for advanced liver fbrosis. Gupta et al.

found that for each one-unit increase in bodymass index above
23, there was a 19.6 times increase in the risk of hepatic steatosis
in people above 50 years old [9]. Our data showed that patients
with a body mass index of more than 34 and less than 45 had
a relative risk of 4 for hepatic steatosis compared to those with
BMI values less than 24 after adjusting for other confounders.
Furthermore, our results were supported by Mjelle et al., who
also found that CAP increases with increasing BMI values
within the normal range with 4.4 dB/m for each 1 unit increase
in BMI compared to 4.73 dB/m in our analysis [13]. In ad-
dition, our decision tree analysis showed that body mass index
is the strongest parameter associated with liver steatosis and
fbrosis. People with a BMI more than 30 and prediabetes have
a 72% probability of liver steatosis, and those with a BMI above
30 and HBA1c less than 5.7 have a 43% probability of liver
steatosis. On the other hand, our decision tree analysis using
liver fbrosis as a binary outcome shows that people with a BMI
more than 41 have a high probability of liver fbrosis (38%).
Among those with a BMI below 41, platelet values could further
determine the risk for liver fbrosis. Te decision tree was able
to detect interactions between BMI, platelet values, age, and
serum LDL levels that were not detected in our regression
model. Furthermore, this method is less afected by collinearity
among predictors in contrast to regression analysis.

Hemoglobin A1c was strongly associated with liver
steatosis and fbrosis in our multivariable regression anal-
ysis, Näıve Bayes analysis, decision trees, and gradient-
boosted model. Patients with hemoglobin A1c of more
than 5.8 but less than 6.5 had a 7% higher risk of developing
liver steatosis after adjusting for other covariates in the
multivariable analysis, as shown in Table 4. Te increase in
liver steatosis among patients with prediabetes was also
reported by Naeem et al. study [14]. Te result from the
multivariable logistic regression model and the decision
trees clearly shows that prediabetes is an independent risk
factor for liver steatosis, especially in people with a body
mass index above 30 (Figure 5S). On the other hand, hy-
pertension particularly systolic blood pressure is poorly
associated with liver steatosis, with results being removed
from the adaptive lasso regression in addition to smoking
and serum LDL values which suggest that these variables
don’t explain the variability in CAP values.

It is worthmentioning that 32% of our data has evidence of
liver steatosis using 294dB/m cutof ultrasound criteria.
Majelle et al. found similar fndings, with 33% of the healthy
cohort have evidence of liver steatosis using ultrasound criteria
[13]. From the available literature, it appears that the accuracy
of CAP in detecting hepatic steatosis is much lower in NAFLD
compared to other etiology of hepatic steatosis such as hepatitis
C. Furthermore, CAP appears to have higher accuracy in
detecting higher stages of hepatic steatosis (>S1) with in-
creasing the area under the ROC compared to the lower degree
of hepatic steatosis (S0 vs. S1) as demonstrated in the
individual-level meta-analysis by [6]. Nonetheless, the recent
meta-analysis by Karlas et al. [6] concluded that 294dB/m is
the most accurate cutof in identifying liver steatosis (S0 vs.
S1–S3) among NAFLD patients to date.

In our logistic regression models using the linear form of
our predictors (age, sex, serum triglyceride level, metabolic
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energy expenditure, moderate alcohol consumption, he-
moglobin A1c, and body mass index) and CAP as an out-
come, the AUC was slightly higher when we used a higher
cutof for the CAP (294 dB/m vs. 245 dB/m), as shown in
Figure 4S. Te increase in model accuracy at the 294 dB/m
cutof compared to 245 dB/m cutof when including all the
metabolic predictors suggests that the 295 dB/m cutof is
more accurate compared to lower cutofs among patients
with NAFLDwhich goes in hand with the recent Petrof et al.
analysis.

Our results using multivariable linear, logistic re-
gression, lasso regression, Naı̈ve Bayes analysis, and re-
gression trees show that body mass index and hemoglobin
A1c, in addition to serum triglyceride level and age, are the
main strong predictors in predicting liver steatosis, while
smoking, systolic and, to a lesser extent, diastolic blood
pressure and LDL values are weak predictors. On the other
hand, BMI, hemoglobin A1c, platelet counts, diastolic blood
pressure, and AST/ALT ratio, in addition to HDL at the
50mg/dL cutof, are the main predictors that predict liver
fbrosis as demonstrated by gradient-boosted models, de-
cision trees, and multivariable linear regression analyses
(Figures 6S, 7S, and Table 7S, respectively).

In the linear regression model that has liver stifness
values as an outcome (Table 7S). Sex, hemoglobin A1c,
serum HDL (at the 50mg/dL cutof), AST/ALT ratio, di-
astolic blood pressure, and platelet counts at the 125 cutof
are clinically and statistically signifcantly associated with
liver fbrosis, with the strongest association for platelet
counts at 125 cutof, followed by AST/ALT ratio, sex, he-
moglobin A1c, and HDL at 50mg/dL cutof and body mass
index. On the other hand, and in contrast to liver steatosis,
age was not signifcantly associated with liver fbrosis in the
adjusted multivariable linear model, nor was it in the
gradient-boosted model. It is notable that serum triglyceride
level was strongly and statistically associated with liver
steatosis and highly negatively correlated with serum HDL
values. In contrast, serumHDL at 50mg/dL cutof appears to
be strongly associated with liver fbrosis in the multivariable
linear model, while serum triglyceride and LDL values were
not and therefore were omitted from the multivariable linear
model. Similarly, both variables were ranked low (7th and
9th, respectively) in the gradient-boosted model. Te lower
number of participants with liver fbrosis (9% of our data
population; 7% among those below the age of 50 and 12%
among those more than 50 years old (Table 8S)) has limited
the prediction of liver fbrosis in our models and could
account for the mild discrepancy between the multivariable
linear model, gradient-boosted model, and decision tree (age
at 37 years old was identifed as an important cutof in
determining the risk of liver fbrosis among people with BMI
above 41, while age was not signifcant in the other two
models).

Tough our study used the same data used by Zhang
et al. [7]. We used several machine learning algorithms to
identify the predictors and their cutofs that are strongly
associated with liver steatosis and fbrosis. Terefore, our
data provide valuable insight into stratifying the risk of liver
steatosis and fbrosis among the general population. E.g.,

patients with a BMI less than 30 are less likely to have liver
steatosis, while hemoglobin A1c helps further stratify the
risk among those with a BMI over 30. Similarly, patients with
a BMI less than 41 and a platelet count of more than 125 are
less likely to have a signifcant degree of liver fbrosis. While
those with a BMI of more than 41 have a 38% risk of liver
fbrosis. Also, age and serum LDL and blood pressure further
determine the risk of fbrosis among those with a BMI
above 41.

Our results, particularly the decision trees, could help
physicians identify people who should be referred for VCTE/
CAP testing. Validating our fnding of decision trees in
prospective cohort studies with liver biopsy could help
implement ultrasound-based screening for liver steatosis
and fbrosis among NAFLD patients more cost-efectively.

Te fbrosis-4 index for liver fbrosis (FIB-4 score) that
depends on age, serum ALT, AST, and platelet count is
widely used to identify people with liver fbrosis. However,
the test has variable accuracy in predicting changes in liver
fbrosis (0.65–0.81) and liver-related events (0.71–0.89).
Also, if we used 3.25 as the cutof, the test would have a high
specifcity of 0.92 but a low sensitivity of 0.51. Te AST/
platelet ratio index (APRI) seems to have poorer accuracy.
Te NAFLD-fbrosis score incorporates the patient’s age,
body mass index, and the presence or absence of impaired
fasting glucose and albumin to the predictors of the FIB-4
score. Our results suggest that patients’ body mass index,
age, hemoglobin A1c, and platelet counts, LDL and HDL at
the 50mg/dL cutof, and blood pressure are the most im-
portant predictors for predicting liver fbrosis in NAFLD
patients. Terefore, our results suggest incorporating some
adjustments to the parameter values for the NAFLD fbrosis
score in addition to adding new parameters for the LDL,
HDL, and blood pressure andmodeling the hemoglobin A1c
as a continuous variable instead of dichotomizing it. Tis
could potentially increase the accuracy of the NAFLD score.
Tis goes in hand with lee et al., who conclude that the
NAFLD fbrosis score does not seem to provide more ac-
curacy in predicting changes in liver fbrosis or liver-related
events compared to the FIB-4 score alone [10].

Our study has some limitations: it mainly comprises
relatively healthy volunteers, which is well demonstrated by
the fact that the 95th percentile of the BMI was 42.5, 7.2 for
the hemoglobin A1c, and 171 for the LDL values. Te ab-
sence of data on extreme values in our covariates has resulted
in wider standard errors for our coefcient estimates in our
models. Terefore, we highly recommend validating our
decision tree results using data from patients who have
metabolic syndrome, which will help in further accurately
identifying people who would beneft most from ultrasound-
based screening. Also, a signifcant number of patients had
missing values on liver functions or platelet counts. Since
machine learning algorithms rely heavily on complete case
analysis and imputation methods could lead to unstable
results, our results could be biased if patients with missing
values had values diferent from their subgroups.

On the other hand, our study provides valuable insight
into predictors that could be used to stratify the risk of liver
steatosis and fbrosis and thus identify who could beneft
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most from screening. Moreover, some of our predictors,
such as smoking, metabolic energy expenditure, hours of
sleep, and fasting before the procedure, rely on people’s
reliability in providing accurate information. Informative
bias could have resulted from diferential recall errors be-
tween people with and without liver steatosis or fbrosis.
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Supplementary Materials

A document entitled “Supplementarymaterial” was added to
our submission to avoid attaching more than 10 fgures or
tables in the main manuscript. Te frst fgure (Figure S1)
illustrates the correlation matrix between the predictors that

were used in our analysis. Te second fgure (Figure S2)
illustrates the correlation matrix among subset of predictors
including serum HDL and waist circumference. Te third
fgure (Figure S3) shows the reduction in the Bayesian in-
formation criteria while adding predictors to the model with
Controlled Attenuation Parameter as an outcome. Te
fourth fgure (Figure S4) illustrates the receiver operator
curve for two logistic regression models at two diferent
cutofs of the Controlled Attenuation Parameter (294 vs.
245 dB/m). Te ffth and sixth fgures (Figures S5 and S6)
illustrate the decision trees for liver steatosis at 294 dB/m
and advanced liver fbrosis at 8.2 kPa as outcomes re-
spectively. Te seventh fgure (Figure 7S) shows the relative
importance of diferent predictors in predicting liver fbrosis
using gradient boosted model (relative infuence refects the
changes in model variance after imputing values of each
predictor, a larger variance change indicates important
predictor). Figures 8S–12S illustrates the loess smoother
association between liver stifness and serum HDL, hemo-
globin A1c, body mass index and age respectively. Table 1S
illustrates the linear association between liver steatosis and
sleep using a spline term at 6 hours. Table 2S: illustrates the
relationship between liver steatosis and hours of fasting prior
to the procedure. Table 3S displays the result of logistic
regression model using liver steatosis as an outcome and all
predictors in our data without excluding people with ex-
treme predictor values. Tables 4S displays the result of
adaptive lasso regression for liver steatosis. Table 5S shows
the result of naı̈ve base classifer for the liver steatosis
outcome at diferent predictor cutof. Table 6S shows the
result of multivariable linear regression model with liver
steatosis as an outcome, and serum LDL, triglyceride, age,
sex, hemoglobin A1c, body mass index, moderate alcohol
consumption, smoking, systolic and diastolic blood pressure
as predictors (excluding the metabolic energy expenditure to
increase the number of participants with complete case
analysis). Table 7S shows the result of linear regression
model using liver stifness as an outcome and age, sex,
hemoglobin A1c, serum HDL at 50mg/dL cutof, body mass
index, platelet counts at 125 cutof, diastolic blood pressure,
and AST/ALT ratio as predictors. Table 8S shows the ad-
justed comparison between participants above and below the
age of 50 on diferent covariates. (Supplementary Materials)
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