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Gastric cancer (GC) is a common digestive tract malignancy worldwide. N-myristoyltransferase 1 (NMT1) has been implicated in
many cancers, but its association with gastric cancer remains to be clarifed. Tus, this paper elucidated the role of NMT1 in GC.
TeNMT1 expression level in GC and normal tissue samples as well as the relationship between NMT1 high or low expression and
overall survival in GC was analyzed via GEPIA. GC cells were transfected with NMT1 or SPI1 overexpression plasmid and short
hairpin RNA against NMT1 (shNMT1) or shSPI1. NMT1, SPI1, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR levels were
detected through qRT-PCR and western blot. MTT, wound healing, and transwell assays were applied to test cell viability,
migration, and invasion.Te binding relationship of SPI1 and NMT1was determined through a dual-luciferase reporter assay and
chromatin immunoprecipitation. NMT1 was upregulated in GC, the high level of which connected with a poor prognosis.
Overexpressed NMT1 elevated viability, migration rate, and invasion rate of GC cells, whereas NMT1 knockdown leads to the
opposite results. Besides, SPI1 could bind to NMT1. Overexpressed NMT1 reversed the efects of shSPI1 on decreasing viability,
migration, invasion, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR in GC cells, and NMT1 knockdown reversed the efects of
SPI1 overexpression on increasing viability, migration, invasion, p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. SPI1
upregulated NMT1 to facilitate the malignant behaviors of GC cells through the PI3K/AKT/mTOR pathway.

1. Introduction

According to the statistics, China had over 679,000 new
gastric cancer (GC) cases and 498,000 deaths caused by the
disease in 2015, whose incidence and fatality have still been
elevated in recent years, enabling GC to be one of the most
diagnosed malignant tumors and the 2nd leading cause of
cancer-associated death in China [1]. Helicobacter pylori
infection, age, family history, smoking, drinking, and diet
were the risk factors for GC [2–4]. What is worse, GC lacks
obvious symptoms at the early stage, and most of the pa-
tients with GC have already developed into themiddle or late
stage at the time of diagnosis, leading to a short survival
time, poor prognosis, and high morbidity [5, 6]. At present,
the primary treatment method for GC is surgery with
chemotherapy and radiotherapy serving as adjuvant therapy.
However, the results remain unsatisfactory due to the
limited efcacy performed in advanced GC [6–8]. Increasing

studies have been conducted on the molecular mechanism of
cancer; for example, it has been reported that the TNF-
α-308G/A polymorphism may contribute to susceptibility
to GC [9]. As the understanding of molecular mechanisms
implicated in multiple cancers deepens, an emerging mo-
lecular targeted therapy attracts more and more attention, in
which molecules connecting with cell growth, apoptosis,
metastasis, invasion, and angiogenesis are regarded as
a promising treatment approach for cancers because mo-
lecularly targeted agents can afect the biological behavior of
tumor cells through regulating molecules intimately related
to tumor onset and development, with the therapeutic ef-
fectiveness of that therapy also validated in GC [10, 11].
Hence, the identifcation of innovative biomarkers for GC
diagnosis and prognosis may contribute to the early de-
tection and treatment of GC.

N-myristoyltransferase 1 (NMT1) is an enzyme cata-
lyzing the co/posttranslational myristoylation of more than
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100 proteins coded by human genes, through which myr-
istate is transferred to the N-terminal glycine of a series of
substrate proteins [12–14]. Previous research studies have
demonstrated that NMT1 plays an important part in a great
number of diseases, including malignancies, which is mainly
attributed to the participation of its substrates in cell
transformation, signal cascade, and tumorigenesis [14, 15]. It
has been reported that the suppression of NMT1 abolishes
the function of Src on facilitating prostate cancer ad-
vancement, and NMT1 knockdown restrained breast cancer
progression via JNK pathway triggered by stress [16, 17]. In
addition, the use of NMT inhibitors brings about endo-
plasmic reticulum (ER) stress, cell cycle arrest, and apoptosis
in HeLa cells, with the similar results determined in breast
cancer and colon cancer [18]. Nevertheless, few works have
expounded the efects of NMT1 on GC.

In this paper, we probed into the role and mechanisms of
NMT1 in modulating GC cell viability, migration, and in-
vasion, intending to investigate the feasibility of NMT1 as
a target for GC treatment.

2. Materials and Methods

2.1. Bioinformatics. Te diferential expressed NMT1 of GC
(n� 408) and normal tissues (n� 211) as well as the re-
lationship between NMT1 high (n� 605) or low (n� 270)
expression and overall survival in GC was analyzed by gene
expression profling interactive analysis (GEPIA; http://gepia.
cancer-pku.cn/). Te binding sites between NMT1 and SPI1
were analyzed by JASPAR (https://jaspar.genereg.net/).

2.2. Cell Culture. Human normal gastric mucosal cell line
GES-1 and GC cell line AGS, HGC27, SNU-5, and MKN-45
were bought from Procell (CL-0563, CL-0022, CL-0107, CL-
0444, andCL-0292,Wuhan, China). GES-1 andMKN-45 cells
were cultured in RPMI-1640 medium (PM150110, Procell,
China) enriched with 10% fetal bovine serum (FBS; 164210,
Procell, China) and 1% penicillin-streptomycin solution (P/S;
PB180120, Procell, China). AGS cells were incubated in
Ham’s F-12 Nutrient Mixture (PM150810, Procell, China)
with 10% FBS and 1% P/S; HGC27 cells were cultured in
RPMI-1640 medium enriched with 20% FBS and 1% P/S;
SNU-5 cells were incubated in Iscove’s modifed Dulbecco
medium (IMDM; PM150510, Procell, China) containing 20%
FBS and 1% P/S. All cells were cultured at 37°C with 5% CO2.

2.3. Cell Transfection. NMT1 or SPI1 overexpression plas-
mid based on pcDNA3.1/+vector (V79020, Termo Fisher,
Waltham, MA, USA) and the empty vector that served as
a negative control (NC), short hairpin RNA against NMT1
(shNMT1, GAGCCAAAAAGAAGAAAAAGAAA) or SPI1
(shSPI1, GCCCTATGACACGGATCTATACC), and their
negative control (shNC) that ordered from Genepharma
(China) were transfected into AGS and SNU-5 cells using
Lipofectamine 2000 (11668500, Termo Fisher, USA). In
short, cells (1× 105/well) that were seeded in 24-well plates
were incubated until 80% confuence. Subsequently, NMT1/
SPI1 overexpression plasmid (0.8 μg) or shNMT1/shSPI1

(20 pmol) was diluted in IMDM (50 μL), and another 50 μL
of IMDM was applied to dilute 2.0 μL (for NMT1/SPI1
overexpression plasmid) or 1 μL (for shNMT1/shSPI1)
Lipofectamine 2000 for 5min at room temperature. After
a mixture of diluted NMT1/SPI1 overexpression plasmid or
shNMT1/shSPI1 and the respective diluted Lipofectamine
2000 at room temperature for 20min, complexes (100 μL per
well) were added, followed by cell culture at 37°C for 24 or
48 h [19].

2.4.Dual-LuciferaseReporterAssay. HEK293 cells (CL-0001,
Procell Life, China) were incubated in minimum essential
medium (MEM; PM150467, Procell, China) containing 1%
P/S and 10% FBS. A reporter vector (E1330, Promega
Corporation, Madison, WI, USA) with human NMT1 3′-
untranslational region (UTR) sequences was constructed to
obtain wild-type NMT1 (NMT1-WT; AAAACAGAGGAA
ATAACACG), whereas the other reporter vector with
mutative NMT1 (NMT1-MUT; CCCCCCACAACCCTC
CCCCG) 3′-UTR sequences in the SPI1 promoter region
was considered as the NC. NMT1-WT or NMT1-MUT and
SPI1 overexpression plasmid were transfected into
HEK293 cells for 24 h.Te luciferase activity was accessed by
a dual-luciferase reporter assay system (E1910, Promega,
USA) [20].

2.5. Chromatin Immunoprecipitation (ChIP). ChIP assay
was performed with the ChIP kit (P2078, Beyotime, China)
according to the producer’s directions [21]. AGS cells seeded
in 10 cm dishes (1× 106 cells) were crosslinked with 1%
methanal and then incubated for 10min. Subsequently,
125mM of glycine solution was added and stood at 25°C for
5min. Following solution removal with PBS, the cells were
lysed by SDS lysis bufer on ice. Sonication was performed to
shear genomic DNAwith a sonicator (S4000, Misonix, USA)
at 4°C so that most of the DNA was fragmented to
400–800 bp in size. After the centrifugation (12,000 g, 4°C,
5min), the supernatants (0.2mL) were diluted with 1.8mL
of ChIP dilution bufer. Te SPI1 (ab227835, Abcam, UK)
and IgG (ab171870, Abcam, UK) antibodies were added and
incubated at 4°C overnight. Tereafter, 60 μL of protein
A+G Agarose/Salmon Sperm DNA was added and mixed
for 60min at 4°C to precipitate proteins recognized by the
primary antibodies. Next, 250 μL of elution bufer was added
to elute DNA, followed by incubation with 4.8 µL of NaCl
(5M) and 2 μL of RNase A (10mg/mL) at 65°C overnight.
After the samples were purifed with phenol/chloroform, the
NMT1 expression level was examined by quantitative real-
time PCR (qRT-PCR).

2.6. MTT Assay. MTT assay was applied in the detection of
cell viability through a MTT kit (abs50010, Absin, China)
[22]. AGS or SNU-5 cells (5×103 per well) were added into
each well of 96-well plates and cultured for 24, 48, or 72 h.
Later, 10 μL/well MTT solution was supplemented into each
well. After the 4 h culture at 37°C, 100 μL formazan dis-
solving solution was added for another 4 h incubation, and
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the absorbance was tested at 450 nm via the microplate
reader (SpectraMax 190, Molecular Devices, China).

2.7.WoundHealing Assay. AGS or SNU-5 cells were seeded
in a 6-well plate at a density of 5×105 cells per well and
cultured overnight until the cell confuence reached about
80%. Next, two parallel lines spaced at a distance of 1 cm
were scratched with the tip of the pipette. After discarding of
cell debris with PBS, cells were cultured at 37°C for 48 h and
viewed under the microscope (magnifcation: ×100) with
images recorded [23].

2.8. Transwell Assay. Transwell chamber (8 μm pore size;
Corning, USA) precoated with Matrigel (356234, Corning,
USA) was applied to detect the cell invasion [17]. Simply put,
AGS or SNU-5 cells (1× 105 cells/well) were suspended in
the upper chamber with 200mL serum-free medium, and
500mL medium with 10% FBS was added into the lower
chamber as an attractant. After 48 h culture, the invading
cells in the lower chamber were fxed with paraformaldehyde
(BL-G002, SenBeiJia, Nanjing, China) and stained with 0.1%
crystal violet (BP-DL134, SenBeiJia, China). Te number of
invaded cells was counted with the microscope (×250).

2.9. qRT-PCR. Total RNA in cells was extracted by Trizol
(KGA1202, KeyGENBiotech, China), and then the synthesis of
cDNA was operated through reverse transcription by the
BeyoRT III cDNA Synthesis Kit (D7178, Beyotime, China).
Next, cDNA and primers for detectingmRNA, as well as SYBR
Green Supermix (A46113, Applied Biosystems, USA) for la-
beling, were added to a Fast7500 real-time PCR system (ABI,
USA) to conduct the qPCR, and the thermal cycling program
included predenaturation at 95°C for 2min, 40 cycles of 95°C
for 5 s and 60°C for 30 s. Following these, the internal reference
gene GAPDH was utilized to calculate the mRNA level of the
genes listed in Table 1 according to the 2−ΔΔCt formula [24].

2.10.WesternBlot. Western blot was performed as described
previously [17]. RIPA bufer (R0278, Sigma–Aldrich, USA)
was applied to lyse and extract the total protein from cells.
After the protein concentration was measured by BCA
protein quantitation kit (55R-1544, Fitzgerald, USA), so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) gels were exploited to separate the protein
(45 μg) and marker (5 μL; G2086, Servicebio, China), which
was then moved to polyvinylidene fuoride membranes
(24937, Sigma-Aldrich, China). Te membranes were sealed
by defatted milk and subsequently incubated with primary
antibodies (Table 2) at 4°C overnight. Next, the membranes
were incubated with the goat anti-rabbit (ab97051, 1 : 5000,
Abcam) or rabbit-anti-mouse secondary antibody (ab6709,
1 : 2000, Abcam) for 2 h. An excellent chemiluminescent
substrate detection kit (E-BC-R347, Elabscience, China) was
used to measure the protein bands, and an eZwest Lite auto
western blotting system (Genscript, Piscataway, NJ, USA)
was employed to scan the bands.

2.11. StatisticalAnalysis. GraphPad 8.0 (GraphPad Software,
USA) was adopted to analyze statistics. All results were
expressed as mean± standard deviation from at least trip-
licate experiments; paired sample t test was used to compare
the paired data between the two groups while independent
samples t test was utilized to compare the two groups of
independent sample data. A one-way ANOVA was used to
evaluate the signifcance among multiple groups followed by
the Bonferroni post hoc test. p< 0.05 implicated a statisti-
cally signifcant diference.

3. Results

3.1. NMT1 Was Upregulated in GC Tissues and Intimately
Associatedwith the Prognosis of GCPatients. GEPIA analysis
exhibited that NMT1 was highly expressed in GC tissue
samples relative to normal tissue samples (Figure 1(a); p

< 0.05). In addition, the survival time of GC patients with
NMT1 high expression was shorter than those with NMT1
low expression (Figure 1(e); p � 1.1e− 05). Taken all above
together, it was suggested that NMT1 was markedly upre-
gulated in humanGC tissues, and the elevated level of NMT1
was related to a poor prognosis.

3.2. NMT1 Was Upregulated in GC Cells and Modulated GC
Cell Viability,Migration, and Invasion. Similar to the results
of NMT1 expression in GC tissues, NMT1 mRNA and
protein levels in GC cell lines (AGS, HGC27, SNU-5, and
MKN-45) were evidently increased in comparison with the
normal cell line GES-1 (Figures 2(a) and 2(b); p< 0.001). In
order to explore the role of NMT1 in GC cells, we established
a NMT1 overexpression model in AGS cells that expressed
relatively low expression of NMT1 as well as the NMT1
silence model in SNU-5 cells that expressed relatively high
expression of NMT1. Te results of qRT-PCR validated the
successful establishment of models, which was evidenced by
the fact that the NMT1 mRNA level was dramatically ele-
vated in AGS cells transfected with an NMT1 overexpression
plasmid while markedly decreased in SNU-5 cells trans-
fected with shNMT1 in contrast with their respective neg-
ative controls (Figures 2(c) and 2(d); p< 0.001). During the
MTTassay, the OD value at 24, 48, or 72 h of AGS cells in the
NMT1 group was evidently higher than that in the NC group
(Figure 2(e); p< 0.05), whereas that of SNU-5 cells in

Table 1: Primer sequences used for quantitative reverse
transcription-polymerase chain reaction (qRT-PCR).

Target gene Primers, 5′-3′
NMT1
(Forward) CGATTTGATTATTCCCCGGAGTT
(Reverse) GACTTGAGACCACTCGAACCC
SPI1
(Forward) AAAATCAGGAACTTGTGCTGGC
(Reverse) TTGCACGCCTGTAACATCCA
GAPDH
(Forward) CTGGGCTACACTGAGCACC
(Reverse) AAGTGGTCGTTGAGGGCAATG
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shNMT1 group was appreciably lower than that in the shNC
group (Figure 2(f ); p< 0.05). In addition, the NMT1
overexpression plasmid raised the migration and invasion
rates of AGS cells, whereas shNMT1 declined the mi-
gration and invasion rates of SNU-5 cells (Figures 3(a)–
3(d); p< 0.01). Tese data indicated that overexpressed
NMT1 promoted, but its knockdown restrained GC cell
viability, migration, and invasion.

3.3. SPI1 Could Bind to NMT1. Based on the analysis of
JASPAR, there are binding sites between NMT1 and SPI1
(Figures 4(a) and 4(b)). Next, the results of the ChIP assay
evidenced that the enrichment of NMT1 was largely increased
in the anti-SPI1 group (Figures 4(c) and 4(d); p< 0.001).
Besides, the dual-luciferase reporter assay presented that the

co-transfection of SPI1 overexpression plasmid and NMT1-
WT reduced the luciferase activity of HEK293 cells in com-
parison with co-transfection of NC and NMT1-WT
(Figure 4(e); p< 0.001), while no obvious diference was
performed in the luciferase activity of the NMT1-MUTgroups
(Figure 4(e)). Terefore, the above data implicated that SPI1
could bind to NMT1.

SPI1 regulates NMT1 to mediate viability, migration,
and invasion in GC cells through the PI3K/AKT/mTOR
pathway.

To verify whether SPI1 participated in the functions of
NMT1 on GC, AGS cells were transfected with NMT1
overexpression plasmid and shSPI1 while shNMT1 and SPI1
overexpression plasmid was transfected into SNU-5 cells. As
a result, SPI1 overexpression plasmid upregulated SPI1 and
NMT1 expression, whereas SPI1 knockdown had the

Table 2: Primary antibodies in western blot.

Name Item number Molecular weight
(kDa) Dilution Host Manufacturer

NMT1 ab186123 57 1/2000 Rabbit Abcam, UK
PI3K #4292 85 1/1000 Rabbit CST, USA
p-PI3K ab278545 84 1/2000 Rabbit Abcam, UK
AKT ab8805 60 1/500 Rabbit Abcam, UK
p-AKT ab38449 56 1/1000 Rabbit Abcam, UK
mTOR ab134903 289 1/10000 Rabbit Abcam, UK
p-mTOR ab109268 289 1/10000 Rabbit Abcam, UK
GAPDH ab8245 36 1/1000 Mouse Abcam, UK
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Figure 1: NMT1 was upregulated in GC tissues and might be a potential biomarker of GC diagnosis. (a) Te diferentially expressed NMT1
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opposite efects (Figures 5(a)–5(d); p< 0.01); NMT1 over-
expression plasmid increased NMT1 level and shNMT1
restrained NMT1 level (Figures 5(a)–5(d); p< 0.01), but
both of NMT1 overexpression plasmid and shNMT1 had
no infuence on SPI1 expression. Contrasted with the
NC + shNC group, the NMT1+shNC group elevated the
OD value of AGS cells while NC + shSPI1 group decreased
that, with the OD value of AGS cells in the NMT1+shSPI1
group was higher than the NC + shSPI1 group and lower
than NMT1+shNC group (Figure 5(e); P< 0.05). Con-
versely, SNU-5 cells exhibited a lower OD value in the
shNMT1+NC group and a higher OD value in
shNC + SPI1 group relative to the NC + shNC group, with
the OD value of SNU-5 cells in the shNMT1+SPI1 group
was lower than that in the shNC + SPI1 group and higher
than that in the shNMT1+NC group (Figure 5(f ); p

< 0.05). Te similar consequences were also acquired in
the detection of migration and invasion in AGS and SNU-
5 cells (Figures 6(a)–6(d); p< 0.05). Moreover, with no
notable diference observed in PI3K, AKT, and mTOR
levels among groups, the NMT1+shNC group increased p-
PI3K, p-AKT, and p-mTOR levels of AGS cells and
NC + shSPI1 group decreased them in comparison with
NC + shNC group, and p-PI3K, p-AKT, and p-mTOR
levels of AGS cells in the NMT1+shSPI1 group were

higher than those in the NC + shSPI1 group and lower
than those in the NMT1+shNC group, leading to a similar
results of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/
mTOR (Figures 7(a) and 7(b); p< 0.05), whereas the
contrary consequences were performed in the SNU-5 cells
transfected with shNMT1 and SPI1 overexpression plas-
mid (Figures 7(c) and 7(d); p< 0.001).

4. Discussion

NMT1 has been reported to be associated with many cancers
[14, 15], including breast cancer, bladder cancer, nonsmall-
cell lung cancer, and so on [17, 25, 26]. In this study, the efect
of NMT1 in the GC was explored, and we found that NMT1
was signifcantly upregulated in GC. It is similar to the ex-
pression of NMT1 in certain human malignancies such as
colorectal cancer, prostate cancer, and breast cancer [15–18].
Moreover, the NMT1 expression level was positively corre-
lated with the poor survival of GC patients. Tus, it could be
seen that NMT1 might become a potential biomarker for GC
diagnosis and prognosis. A former work has demonstrated
that the knockdown of NMT1 could suppress the initiation,
growth, and metastasis of breast cancer [17]. During our
experiments, overexpression of NMT1 promoted GC cell
viability, migration, and invasion while NMT1 knockdown
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Figure 2: NMT1 was upregulated in GC cells and modulated GC cell viability. (a) NMT1 mRNA expression between human GC cell lines
(AGS, HGC27, SNU-5, and MKN-45) and normal cell line GES-1 was detected through qRT-PCR. GAPDH was the loading control.
(b) NMT1 protein expression between human GC cell lines (AGS, HGC27, SNU-5, and MKN-45) and normal cell line GES-1 was tested by
western blot. GAPDH was the loading control. (c) NMT1 mRNA expression of AGS cells was detected through qRT-PCR after transfection
of NMT1 overexpression plasmid. GAPDHwas the loading control. (d) NMT1mRNA expression of SNU-5 cells was detected through qRT-
PCR after transfection of shNMT1. GAPDH was the loading control. (e) OD value of AGS cells at 24, 48, or 72 h was assessed by MTTassay
after transfection of NMT1 overexpression plasmid. (f ) OD value of SNU-5 cells at 24, 48, or 72 h was assessed by MTT assay after
transfection of shNMT1. ∗∗∗p< 0.001 vs. GES-1 cells;∧p< 0.05, ∧∧∧p< 0.001 vs. NC group; #p< 0.05, ##p< 0.01, ###p< 0.001 vs. shNC group.
All experiments were repeated independently at least three times. Data were performed as the means± standard deviation. NMT1, N-
myristoyltransferase 1; GC, gastric cancer; qRT-PCR, quantitative reverse transcription-polymerase chain reaction; GAPDH, glyceral-
dehyde-3-phosphate dehydrogenase; shNMT1, short hairpin RNA against NMT1; OD, optical density; NC, negative control.
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Figure 3: NMT1 modulated GC cell migration and invasion. (a) Migration rate of AGS cells at 48 h was evaluated through wound healing
assay after transfection of NMT1 overexpression plasmid. (b) Migration rate of SNU-5 cells at 48 h was evaluated through wound healing
assay after transfection of shNMT1. (c) Invasion rate of AGS cells at 48 h was determined by transwell assay after transfection of NMT1
overexpression plasmid. (d) Invasion rate of SNU-5 cells at 48 h was determined by Transwell assay after transfection of shNMT1. ∗∗p< 0.01,
∗∗∗p< 0.001 vs. NC group; ∧∧p< 0.01, ∧∧∧p< 0.001 vs. shNC group. All experiments were repeated independently at least three times. Data
were performed as the means± standard deviation. NMT1, N-myristoyltransferase 1; GC, gastric cancer; shNMT1, short hairpin RNA
against NMT1; NC, negative control.
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repressed these cell behaviors, consistent with the functions of
NOX4, MFN2, as well as Rac1 on GC [27–29], which de-
termines the oncogenic role of NMT1 in GC.

To further gain insight into the regulation of NMT1 in
GC, we predicted the transcription factors that may target
NMT1 and found that there are two transcription factors in
the stomach, KLF5 and SPI1. Current studies on KLF5 in
gastric cancer have been extensive [30, 31], but the role of SPI1
is still unknown. SPI1, also known as the transcription factor
PU. 1, belongs to the ETS transcription factor family [32].
SPI1 has been reported to be related to the progression of
glioma, cervical cancer, breast cancer, and so on [33–35]. SPI1
plays a critical role in regulating the signal communication of
the immune system and determining the prognosis of GC
patients [36]. In this study, the results showed that SPI1 could
bind to NMT1, and SPI1 expression positively afected NMT1

expression in GC cells while NMT1 had no impact on the level
of SPI1, which confrmed that the binding relationship be-
tween SPI1 and NMT1 in GCcells.

As an oncogenic factor that mediates cell carcinogenesis,
SPI1 plays a crucial role in the occurrence and deterioration
of cancer [37, 38]. When the SPI1 proto-oncogene is
overactivated, a large number of transcription factors SPI1
will be expressed. Tese SPI1 bind to the promoters of
proliferation-related genes, resulting in the overexpression
of proliferation proteins, followed by abnormal and un-
controllable activation of cell proliferation mechanisms, and
eventually lead to the malignant proliferation of cells
[37, 38]. SPI1-induced upregulation of lncRNA SNHG6
promotes nonsmall-cell lung cancer via miR-485-3p/VPS45
axis [39]. Similar to previous studies, our results displayed
that the upregulation of SPI1 facilitated cell proliferative,
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migration, and invasion abilities in GC, whereas the
downregulated SPI1 had the opposite efects, with NMT1
partly reversed the efects of SPI1 on the GC cells. Tese
results indicated that SPI1 enhanced the malignant phe-
notype of GC cells by upregulating NMT1.

Te PI3K/AKT/mTOR pathway is considered as a sig-
nifcant immune pathway and has been found to be com-
monly activated in human cancer [40], such as gastric,
prostate, liver, breast, and colorectal cancer, thereby in-
hibition of this pathway becoming a potential candidate of
molecular targeted therapy for malignancies [11, 41–43]. In
this study, we found that NMT1 activated the PI3K/AKT/

mTOR pathway in GC cells and silencing NMT1 inhibited
the PI3K/AKT/mTOR pathway. NMT1 is necessary for ly-
sosomal degradation and mTORC1 activation in cancer
cells, and compounds targeting NMT1 may have therapeutic
beneft in cancer by preventing mTORC1 activation and
simultaneously blocking lysosomal degradation, leading to
cancer cell death [44]. Tus, silencing NMT1 may have
a therapeutic beneft in GC. In addition, the PI3K/AKT/
mTOR pathway regulates cell proliferation, growth, cell size,
metabolism, and motility. It has been reported that gene
therapy targeting HER-2 promotes tumor cell apoptosis and
restrains tumor cell invasion as well as tumor angiogenesis
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Figure 5: SPI1 regulated NMT1 to mediate GC cell viability. (a, b) SPI1 expression (a) and NMT1 mRNA expression (b) of AGS cells were
detected through qRT-PCR after transfection of NMT1 overexpression plasmid and shSPI1. GAPDH was the loading control. (c, d) Te
mRNA expressions of SPI1 (c) and NMT1 (d) of SNU-5 cells were detected through qRT-PCR after transfection of shNMT1 and SPI1
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transfection of NMT1 overexpression plasmid and shSPI1. (f ) OD value of SNU-5 cells at 48 h was assessed through MTT assay after
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negative control; shNC, shRNA negative control.
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Figure 6: SPI1 regulated NMT1 to mediate GC cell migration and invasion. (a) Migration rate of AGS cells at 48 h was evaluated through
wound healing assay after transfection of NMT1 overexpression plasmid and shSPI1. (b) Migration rate of SNU-5 cells at 48 h was evaluated
through wound healing assay after transfection of shNMT1 and SPI1 overexpression plasmid. (c) Invasion rate of AGS cells at 48 h was
determined by Transwell assay after transfection of NMT1 overexpression plasmid and shSPI1. (d) Invasion rate of SNU-5 cells at 48 h was
determined by Transwell assay after transfection of shNMT1 and SPI1 overexpression plasmid. ∗p< 0.05, ∗∗∗p< 0.001 vs. NC+ shNC group;
∧∧∧p< 0.001 vs. NMT1+shNC group; ##p< 0.01, ###p< 0.001 vs. NC+ shSPI1 group; +++p< 0.001 vs. shNMT1+NC group; △△△p< 0.001 vs.
shNC+ SPI1 group. All experiments were repeated independently at least three times. Data were performed as the means± standard
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via blocking the PI3K/AKT/mTOR pathway [45]. And
another work has revealed that pectolinarigenin inhibits cell
cycle progression in GC and induces GC cell autophagy and
apoptosis via PI3K/AKT/mTOR pathway [41]. Besides, the
PI3K/AKT/mTOR pathway has been proved to be activated
in GC and it may have an immunomodulatory potential
[46]. In our study, it was found that the NMT1 activated the
PI3K/AKT/mTOR pathway in GC cells and partially
counteracted the inhibitory functions of silenced SPI1 on the
PI3K/AKT/mTOR pathway, implying that the activated
signaling pathway was implicated in the regulatory efects of
NMT1 on GC. However, the immunomodulatory potential
of NMT1 in GC remains obscure and needs more explo-
ration in the future.

5. Conclusion

In summary, this research identifed NMT1 as a tumor
promoter in GC and revealed that SPI1 mediated NMT1 to
facilitate GC cell viability, migration, and invasion by acti-
vating the PI3K/AKT/mTOR pathway. Our fndings im-
plicated the feasibility of NMT1 as a therapeutic target
for GC.

Data Availability

Te analyzed data sets generated during the study are
available from the corresponding author on reasonable
request.
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Figure 7: SPI1 regulated NMT1 via PI3K/AKT/mTOR pathway in GC cells. (a)Te protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR,
and p-mTOR in AGS cells were tested by western blot after transfection of NMT1 overexpression plasmid and shSPI1. GAPDH was the
loading control. (b) Te levels of p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR in AGS cells were tested by western blot after
transfection of NMT1 overexpression plasmid and shSPI1. GAPDH was the loading control. (c)Te protein levels of PI3K, p-PI3K, AKT,
p-AKT, mTOR, and p-mTOR in SNU-5 cells were tested by western blot after transfection of shNMT1 and SPI1 overexpression
plasmid. GAPDH was the loading control. (d) Te levels of p-PI3K/PI3K, p-AKT/AKT and p-mTOR/mTOR in SNU-5 cells were tested
by western blot after transfection of shNMT1 and SPI1 overexpression plasmid. GAPDH was the loading control. ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001 vs. NC+ shNC group; ∧p< 0.05, ∧∧∧p< 0.001 vs. NMT1+shNC group; #p< 0.05, ##p< 0.01, ###p< 0.001 vs. NC+ shSPI1
group; ++p< 0.01, +++p< 0.001 vs. shNMT1+NC group; △△p< 0.01, △△△p< 0.001 vs. shNC+ SPI1 group. All experiments were repeated
independently at least three times. Data were performed as the means ± standard deviation. NMT1, N-myristoyltransferase 1; GC, gastric
cancer; p-, phosphorylation; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; shNMT1, short hairpin RNA against NMT1; NC,
negative control; shNC, shRNA negative control.
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