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Background. H2.0-like homeobox (HLX) is highly expressed in several hematopoietic malignancies. However, the role of HLX in
the carcinogenesis and progression of colorectal cancer (CRC) patients has rarely been reported.Methods. In this study, the data
were collected from Te Cancer Genome Atlas and Gene Expression Omnibus databases. Te diagnostic value of HLX was
analyzed by the R package “pROC.” Te overall survival was estimated using the “survival” and “survminer” packages. A
nomogram was established to predict 1-, 3-, and 5-year overall survival of CRC patients. Te CIBERSORTsoftware was employed
to calculate the relative proportions of 22 immune cells. Results.HLX expression was downregulated in CRC patients. Remarkably,
HLX expression was increased with stage (stage I–stage III) of CRC, and the CRC patients with high HLX expression exhibited
a poor prognosis.Te promoter methylation level ofHLXwas prominently increased in CRC samples compared to paracancerous
samples. We also found that the six miRNAs targetHLX genes, leading to its downregulation, andHLX expression had a negative
correlation with its downstream target gene BRI3BP in both CRC and normal samples. Finally, we found that the 12 immune
infltrating cells were observably diferent between high and low HLX expression groups. Te HLX had a signifcant positive
correlation with 8 immune checkpoints (PD-1 (PDCD1), CTLA4, PDL-1 (CD274), PDL-2 (PDCD1LG2), CD80, CD86, LAG3,
and TIGIT) expressions. Conclusion. HLX probably played a carcinostasis role in the early stages of CRC but exhibited a cancer-
promoting efect in the advanced stages. Meanwhile, HLX could serve as a reliable prognostic indicator for CRC.

1. Introduction

Colorectal cancer (CRC) is one of the leading causes of
tumor-related death in the world, and its mortality accounts
for 9.4% of cancer deaths worldwide [1, 2]. In 2020, ap-
proximately 1.9 million new cases of CRC were diagnosed,
and about 900,000 deaths occurred in the world [2]. Te
morbidity of CRC has been continually rising in many
medium or high human development index countries, such
as South Eastern Europe, South America, and Eastern
Europe[3]. In addition, about 25% of CRC patients have
developed metastatic disease at initial diagnosis, and almost
30% of CRC patients with early-stage disease eventually
develop metastatic disease [1, 4, 5]. Te most common

metastatic site of CRC was the liver, followed by the lung,
distant lymph nodes, and peritoneum [6]. It has been
documented that aberrant expression of genes is involved in
the development and progress of CRC. Wang et al. have
revealed that TUG1 knockdown could inhibit the pro-
liferation, invasion, and migration of CRC cells in vitro [7].
Te mutations of KRAS, p53, SMAD4, and BRAF increase
the risk of distant metastasis of CRC [8]. Accordingly,
further exploration of the molecular mechanisms of CRC
may contribute to diagnosis and treatment of CRC at an
early stage.

H2.0-like homeobox (HLX) belongs to the family of NKL
homeobox genes. NKL homeobox genes are key regulators
of essential processes, such as diferentiation, proliferation,
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and apoptosis, and their expression is cell type-specifc [9].
HLX is highly expressed in hematopoietic progenitors and
lowly expressed in activated lymphocytes [10], and it is
a downstream mediator of hepatocyte growth factor (HGF)/
c-met induction of cell survival, cell proliferation, and
trophoblast migration [11]. Murthi et al. have found that the
low HLX1 expression is associated with abnormal placental
development in idiopathic fetal growth restriction [12].
Previous studies have shown that HLX is correlated with the
initiation and progression of tumor. In gastric cancer, the
low HLX expression is tightly associated with the expression
of T-bet and RUNX3 [13]. Liu et al. have indicated that the
level of HLX1 mRNA is remarkably decreased in hepato-
cellular carcinoma tissues compared to adjacent non-
tumorous tissues and downregulation of HLX1 could
promote the invasion, migration, and proliferation of HCC
cells [14]. In addition, HLX is highly expressed in acute
myeloid leukemia (AML) [15, 16]. In zebrafsh and human
hematopoietic stem progenitor cells (HSPCs), HLX over-
expression could block myeloid diferentiation by regulating
metabolic pathways in hematopoietic cells [17]. However, to
our knowledge, the potential role of HLX in CRC has rarely
been reported.

Tus, in this study, we explored the role of HLX ex-
pression in carcinogenesis and the progression of CRC
through the methods of bioinformatics research. Our study
could provide valuable information for researchers re-
garding diagnosis and treatment of CRC at an early stage.

2. Methods

2.1.DataCollection. TemRNA expression profling data of
623 CRC patients (colon adenocarcinoma (COAD) and
rectum adenocarcinoma (READ)) along with the corre-
sponding clinical information were collected from Te
Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/
tcga/) database. Tese 632 patients included a total of 638
CRC samples and 51 paracancerous samples, and 590 pa-
tients contained complete survival information. Te meth-
ylation 450K chip data of 408 CRC samples
(COAD+READ) were downloaded.

Te GSE41258 and GSE17538 datasets were downloaded
from the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) database. GSE41258 included 186
CRC and 54 normal samples, while GSE17538 contained 244
CRC samples (232 with complete survival information).

2.2. Analysis of the Diagnostic Value of HLX. Te TCGA
cohort was employed to make a receiver operating char-
acteristic (ROC) curve through the R language (Version
4.2.1, the same below) function package pROC to analyze the
diagnostic value of the HLX gene.

2.3. Survival Analysis. Te R language survival package and
survminer package were used to estimate the overall survival
of diferent groups based on the Kaplan–Meier method,
and the log-rank test was used to test the signifcance
of diferences in survival between diferent groups.

Te multivariate Cox regression model was used to analyze
whether the target genes could predict the survival of CRC
patients.

2.4. Gene Set Enrichment Analysis (GSEA). In the TCGA
cohort, the samples were split into HLX high and low ex-
pression groups according to the median expression of HLX
using the R language limma function package. Ten, the
diferentially expressed genes (DEGs) between the two
groups were screened based on the |log2FC|> 0.5 and p.
adjust <0.05. Te DEGs were subjected to GSEA using the R
language function package ReactomePA and ClusterProfler
[18, 19].

2.5. Establishment of the Nomogram Prediction Model. To
predict 1-, 3-, and 5-year overall survival of CRC patients,
the R language rms (https://CRAN.R-project.org/package=
rms) package was used to establish the nomogram for all
independent prognostic factors identifed by multivariate
Cox regression analysis. Te calibration curve of the no-
mogram was plotted, and the relationship between the
nomogram predicted probability and actual incidence was
observed. For each patient, three lines were drawn upward to
determine the points obtained from each factor in the no-
mogram.Te sums of these points were located on the “Total
Points” axis, and a line was then drawn from the total points
axis to determine the probability of a 1-, 3-, and 5-year
survival rate for CRC patients.

2.6. Immune Cell Infltration. Te software CIBERSORT
[20] was employed to calculate the relative proportions of 22
immune cells in the samples. CIBERSORT software char-
acterizes the composition of immune infltrating cells
according to gene expressionmatrices using a deconvolution
algorithm based on a preset set of 547 barcode genes. Te
immune scores of the samples were calculated using the
“estimate” function package.

2.7. Statistical Analysis. Te Wilcoxon rank sum test was
used to compare gene expression diferences and infltration
diferences of immune cells among diferent groups using
the UALCAN online database [21]. p < 0.05 was considered
statistically signifcant. All the above statistical analyses were
performed using the R software.

3. Results

3.1. HLX Expression Was Closely Correlated with Carcino-
genesis and Progression of CRC. First, in the TCGA cohort,
we analyzed the expression of 11 genes (DBX1, DBX2, BSX,
BARX1, BARX2, BARHL1, BARHL2, LBX1, LBX2,HLX, and
HHEX) which belong to the subfamily in which HLX is
located within the NKL family. As shown in Figure 1(a), the
HLX expression was prominently downregulated in CRC
samples. In the GSE41258 dataset, HLX expression was also
decreased in CRC samples (Figure 1(b)). In addition, we
analyzed the expression ofHLX in CRC and normal samples
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in the CELL cell line database. Te results unequivocally
demonstrated a remarkable and substantial downregulation
of HLX expression in CRC cell lines, which was visually
represented in Figure 1(c).

ROC curves showed that HLXmight serve as a potential
diagnostic marker for CRC in the TCGA cohort
(AUC� 0.832, Figure 1(d)). Te CRC patients with high
HLX expression exhibited poor prognosis in both the TCGA
and GSE17538 cohorts (Figures 1(e) and 1(f)). Moreover, we
found that the HLX expression increased as the stage in-
creased from stage I to stage III (Figures 1(g) and 1(h)).
Tese results indicated that the HLX expression was closely
correlated with carcinogenesis and progression of CRC.

3.2. NomogramModel Could Efectively Predict the Prognosis
of CRC Patients. Multivariate Cox regression analysis in-
cluding gender, age, stage, race, BRAF mutation, and KRAS
mutation showed that HLX genes could be used as prog-
nostic factors in CRC (Figure 2(a)). In addition, three in-
dependent prognostic factors, HLX, age, and TNMstage,
were used to construct the nomogram model (Figure 2(b)).
In the TCGA cohort, the AUC of 1-, 3-, and 5-year overall
survival was 0.58, 0.62, and 0.54, respectively (Figure 2(c)).
Te results suggested that the nomogram model could ef-
fectively predict the prognosis of CRC patients. Meanwhile,
the corrected curve in the calibration plot was relatively close
to the ideal curve (a 45-degree line passing through the
origin of the coordinate axis and with a slope of 1), in-
dicating that the prediction agreed well with the real out-
come (Figures 2(d)–2(f )).

3.3. Increased PromoterMethylation Repressed the Expression
of HLX in CRC Patients. Furthermore, we analyzed the
promoter methylation level of HLX in TCGA-COAD and
TCGA-READ using the online analysis tool UALCAN
(http://ualcan.path.uab.edu/) [21]. As shown in Figures 3(a)
and 3(b), the promoter methylation level of HLX was
prominently increased in cancer tissues compared to par-
acancerous tissues in COAD and READ patients. Re-
markably, compared to paracancerous tissues, the promoter
methylation level of HLX was also prominently increased in
diferent cancer development stages and diferent lymph
node metastases of COAD and READ (Figures 3(c)–3(f)).

Te TCGA CRC methylation data were used to explore
which sites in the promoter region of HLX that increased
methylation level would afect the silencing of theHLX gene.
Te 18 cg sites with high methylation levels were screened by
methylation level mean >0.5 and median >0.5. Further
screening was performed according to the diferent sites
methylation levels and HLX expression correlation absolute
values >0.3 and p < 0.05. Te results showed that eight
methylation sites were associated with the downregulation
of HLX expression (Figures 3(g)–3(n), Table 1).

3.4. Prediction of the Upstream miRNA and Downstream
Target Gene of HLX. Te TargetScan (https://www.
targetscan.org/vert_80/) database was used to predict the

miRNAs targeting HLX, and 11 miRNAs were found to
specifcally bind to the 3′UTR end of HLX. Te mirDIP
(https://ophid.utoronto.ca/mirDIP/) database was employed
to screen miRNAs potentially interacting with HLX, and 23
miRNAs were found according to the top 5% screening. A
total of six miRNAs (hsa-mir-30b-5p, hsa-mir-30d-5p, hsa-
mir-30c-5p, hsa-mir-30a-5p, hsa-mir-30e-5p, and hsa-mir-
27a-3p) were found to potentially target HLX, leading to
HLX downregulation (Figure 4(a), Table 2).

Subsequently, the GRNdb (https://www.grndb.com/)
database was used to inquire HLX’s target genes, and results
were visualized by Cytoscape (Figure 4(b)). We found
a possible binding site for the transcription factor HLX
around 20 bp upstream of the BRI3BP promoter (Table S1)
via FIMO (https://meme-suite.org/meme/tools/fmo). We
also found that the HLX expression had a negative corre-
lation with BRI3BP in both CRC samples and normal
samples (Figures 4(c) and 4(d)). Te results suggested that
the HLX negatively regulated the BRI3BP in CRC.

3.5. Te Result of GSEA. Te GSEA showed that 138 path-
ways were prominently activated, such as the PI3K-Akt
signaling pathway, Rap1 signaling pathway, pathways in
cancer, JAK-STAT signaling pathway, and toll-like receptor
signaling pathway (Figures 5(a)–5(e)), and 8 pathways were
inhibited in theHLX high expression group compared to the
HLX low expression group (Table S2). Te top 10 signif-
cantly enriched pathways are displayed in Figure 5(f).

3.6. HLX Involved in the Immune Cell Infltration in CRC
Patients. Te relative proportions of 22 immune infltrating
cells in CRC samples in the TCGA cohort were calculated by
the CIBERSORT algorithm (Figure 6(a), Table S3). Te 12
immune infltrating cells (B.cells.naive, Plasma.cells,
T.cells.CD8, T.cells.CD4.naive, T.cells.CD4.memory.activated,
T.cells.follicular.helper, Macrophages.M0, Macrophages.M1,
Macrophages.M2, Dendritic.cells.activated, Mast.cells.resting,
and Mast.cells.activated) were signifcantly diferential be-
tweenHLX high and low expression groups (Figure 6(b)). To
avoid possible errors, we additionally recalculated the
content of immune infltrating cells in CRC samples from
the TCGA cohort using the Xcell method. Te results
showed that the contents of B.cells.naive (Figure 6(c)) and
T.cells.CD8 (Figure 6(d)) were signifcantly diferent be-
tween the high and low HLX expression groups, and the
trend was consistent with that found using the CIBERSORT
algorithm.

Next, we used the results of CIBERSORT to further
analyze the Spearman correlation between the HLX and the
12 signifcantly diferent immune infltrating cells. Te re-
sults showed that HLX expression exhibited a negative
correlation with Plasma.cells, T.cells.CD8, T.cells.CD4.-
naive, T.cells.CD4.memory.activated, T.cells.follicu-
lar.helper, Dendritic.cells.activated, Mast.cells.resting, and
Mast.cells.activated and had a positive association with
B.cells.naive, Macrophages.M0, Macrophages.M1, and
Macrophages.M2 (Figure 6(e)). Finally, we analyzed the
correlation between HLX expression and immune
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checkpoints. Te HLX expression had a signifcant positive
correlation with the expression of 8 immune checkpoints
(PD-1 (PDCD1), CTLA4, PDL-1 (CD274), PDL-2
(PDCD1LG2), CD80, CD86, LAG3, and TIGIT)
(Figure 6(f)).

4. Discussion

In this study, we explore the association between HLX and
carcinogenesis and progression of CRC by systematically
collecting and analyzing the clinical and genomic data of

CRC patients. We found that HLX was downregulated in
CRC samples compared to paracancerous samples, andHLX
expression increased as stage increased from stage I totage
III. Te CRC patients with high HLX expression exhibited
a worse prognosis. We also found that the downregulation of
HLX was regulated by six miRNAs, and the HLX negatively
regulated its downstream target gene BRI3BP in CRC.

Previous studies have demonstrated that HLX is ab-
normally expressed in multiple cancers. For example, in
anaplastic large cell lymphoma and difuse large B-cell
lymphoma, the HLX was overexpressed in cancer tissues
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[22, 23]. In this study, we found that HLX expression was
prominently downregulated in CRC samples. Kawahara
et al. have reported that the HLX was highly expressed in
87% of acute myeloid leukemia patients, and patients with
high HLX expression had an inferior prognosis [24]. In
addition, the inhibition of HLX expression could reduce the
proliferation and clonogenicity of leukemia cells and pro-
long the survival rate [24]. Zhu et al. have indicated that low

HLX expression could reduce the proliferation of acute
myelogenous leukemia cells by regulating the JAK/STAT
signaling pathway [25]. Tis evidence suggested that HLX
downregulation might be involved in the progression of
some tumors. In this study, we also found that the HLX
expression was increased with tumor stage (stage I–stage III)
in CRC, and the high expression ofHLX was correlated with
poor prognosis of the CRC patients. Tese results showed
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Table 1: Correlation of HLX and methylation in the TCGA cohort.

Rho Spearman p value
cg07584855 −0.5467062 4.26E− 33
cg04436994 −0.470507377 8.23E− 24
cg14166284 −0.467110527 1.89E− 23
cg09255910 −0.393466138 1.60E− 16
cg22698272 −0.377589256 3.07E− 15
cg15450098 −0.36694579 2.03E− 14
cg08655206 −0.34967184 3.78E− 13
cg02455346 −0.309801879 1.67E− 10

p−value = 2e−05
R = −0.56

p−value = 0.013
R = −0.13
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that HLX might play diferent roles, as a cancer-suppressor
gene or a cancer-promoting gene, depending on the stage of
CRC, and clinicians might potentially useHLX expression as
a biomarker to predict patient outcomes and tailor treatment
plans accordingly.

Promoter DNA methylation generally represses the
transcription expression by regulating the binding of
transcription factors [26], and DNA methylation is a critical
epigenetic process that contributes to the progression of
CRC [27]. Since HLX was downregulated in CRC samples,
we analyzed whether the promoter methylation level ofHLX
was responsible for HLX gene silencing. We found that the
promoter methylation level of HLX was prominently in-
creased in cancer tissues compared to paracancerous tissues
in CRC patients. Tese results suggested that the down-
regulation of HLX in CRC was associated with its promoter
methylation level. Moreover, miRNAs could lead to deg-
radation or translational repression of the mRNA by tar-
geting the form of complementary mRNAs [28]. In difuse
large B-cell lymphoma, the expression of HLX was regulated
by EBV-mediated STAT3 activation [29], and STAT3 was
also confrmed to regulate the expression ofHLX in Hodgkin
lymphoma [30]. In this study, we found that the down-
regulation of HLX was regulated by six miRNAs, and the
HLX negatively regulated its downstream target gene
BRI3BP in CRC. BRI3BP was mapped to chromosome
12q24.2-qter in humans, and it was highly expressed in the
brain, liver, and kidney, and BRI3BP might be involved in
apoptosis [31]. BRI3BP overexpression promoted apoptosis
in 293T cells (human embryonic kidney) challenged with
etoposide (an anticancer agent). In addition, it has been
reported that BRI3BP expression is decreased in cancer
samples [32]. Tus, we infer that HLX might regulate the

expression of BRI3BP to be involved in the carcinogenesis
and progression of CRC.

GSEA showed immune-related signaling pathways were
signifcantly activated in the HLX high expression group
compared to the HLX low expression group, such as the
PI3K-Akt signaling pathway and the Rap1 signaling path-
way. Tese fndings might inform the development of tar-
geted therapies that could improve CRC patient outcomes.
Subsequently, we investigated the efect of HLX on immune
cell infltration in CRC. We found that the HLX expression
exhibited a negative correlation with Plasma.cells,
T.cells.CD8, T.cells.CD4.naive, T.cells.CD4.memor-
y.activated, and T.cells.follicular.helper and had a positive
association with B.cells.naive. It has been reported that the
HLX expression is involved in the activation and growth of
T cells [33]. Te HLX overexpression could disturb the
development of B cells and Tcells inmurine lymphocyte [34]
and inhibit CD4+T cells development and disrupt thymic
involution in transgenic mice [35]. Te above commenda-
tions indicated that the HLX probably regulates the in-
fltration of B cells and T cells, thereby infuencing the
prognosis of CRC patients.

Finally, we discovered that the HLX expression had
a signifcant positive correlation with the expression of PD-
1, CTLA4, PDL-1, PDL-2, and LAG3. Te interaction be-
tween PD-1 and its ligand PD-L1 suppresses T cell pro-
liferation and cytokine release. As a result, PD-1 modulates
immunological responses in reverse, allowing tumor cells
to evade immune surveillance [36]. Previous studies
showed that PD-L1 expression was higher in metastatic
CRC than in primary tumors [37]. Wang et al. have
demonstrated that the combination of fruquintinib and
antiPD-1 could synergistically inhibit the progression of
CRC and alter the tumor microenvironment in favor of
anti-tumor immune responses [38]. Regorafenib combined
with antiPD-1 could enhance M1 macrophage diferenti-
ation and activation and continuously inhibit Treg cell
infltration to improve antitumor activity [39]. CTLA-4 was
an inhibitory immune checkpoint that was overexpressed
in the CRC tissues and the CRC cell line SW480, and
capecitabine treatment resulted in a signifcant down-
regulation of CTLA-4 expression in SW480 cells [40].
LAG3 was also found to be overexpressed in microsatellite
instability (MSI) tumors compared to microsatellite sta-
bility (MSS), making it an excellent target for immuno-
therapy in MSI CRC [41, 42]. It has been reported that the
favezelimab (LAG-3 antibody) in combination with
pembrolizumab has promising antitumor activity in CRC
patients [43]. Considering the positive correlation between
HLX expression and PD-1, CTLA4, PDL-1, and LAG3
expressions in CRC patients, HLX might play a role in
regulating immune checkpoints and infuencing the re-
sponse to immunotherapy. Terefore, combining chemo-
therapy with immunotherapy approaches, such as PD-1
and CTLA-4 inhibitors, might be a promising strategy for
improving the treatment of CRC.

Despite the fact that we researched and merged data
from several sources, the current study has numerous
limitations. Firstly, while bioinformatics analysis provided

Table 2: miRNA in TargetScan and mirDIP database.

TargetScan mirDIP
hsa-miR-27b-3p hsa-miR-30b-5p
hsa-miR-27a-3p hsa-miR-30d-5p
hsa-miR-128-3p hsa-miR-30c-5p
hsa-miR-3681-3p hsa-miR-30a-5p
hsa-miR-216a-3p hsa-miR-30e-5p
hsa-miR-30c-5p hsa-miR-27a-3p
hsa-miR-30b-5p hsa-miR-515-3p
hsa-miR-30d-5p hsa-miR-519e-3p
hsa-miR-30a-5p hsa-miR-92a-1-5p
hsa-miR-30e-5p hsa-miR-127-3p
hsa-miR-760 hsa-miR-1537-3p

hsa-miR-1538
hsa-miR-676-3p
hsa-miR-3157-3p
hsa-miR-33b-3p
hsa-miR-1470

hsa-miR-4649-5p
hsa-miR-937-3p
hsa-miR-6729-5p
hsa-miR-371a-3p
hsa-miR-8055

hsa-miR-6853-5p
hsa-miR-4315
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us with some valuable insights regardingHLX in CRC, all the
samples enrolled in this research were retrospective, the
study did not include experimental validation of the fnd-
ings, and a prospective study should be applied to validate
the results. In addition, the study focused primarily on
mRNA expression profling and methylation data for HLX
and did not consider other genetic or epigenetic factors that
might play a role in CRC development and progression.Tis
might limit the ability to fully understand the molecular
mechanisms ofHLX in CRC and develop efective treatment
strategies for CRC. Tus, studies with large clinical sample

size, such as electronic medical records or hospital databases,
are warranted in the near future.

5. Conclusion

Our study demonstrated that HLX probably exhibits dual
roles at diferent stages of CRC; HLX might play a carci-
nostasis role in the early stage of CRC, but exhibit cancer-
promoting efects in the advanced-stage. Moreover, the
downregulation of HLX was regulated by six miRNAs and
the HLX negatively regulated its downstream target gene
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BRI3BP in CRC. Our fndings provide valuable insights into
the molecular mechanisms underlying CRC development
and progression and could potentially inform the devel-
opment of more efective treatment strategies for CRC
patients.

Data Availability

Te data that support the fndings of this study are available
in TCGA (https://tcga-data.nci.nih.gov/tcga/) database,
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) database, UALCAN online database
(https://ualcan.path.uab.edu/), the TargetScan (https://www.
targetscan.org/vert_80/) database, the mirDIP (https://
ophid.utoronto.ca/mirDIP/) database and the GRNdb
(https://www.grndb.com/) database.

Additional Points

(1) HLX might play a carcinostasis role in the early stage of
CRC, but exhibit a cancer-promoting efect in advanced
stage. (2) Promoter methylation of HLX represses the ex-
pression ofHLX in CRC patients. (3)Te downregulation of
HLX was regulated by six miRNAs and the HLX negatively
regulated its downstream target gene BRI3BP in CRC.
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