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Background. A comprehensive understanding of the commensal microflora and its relation to health is essential for preventing
and combating diseases. +e aim of this study was to examine the structure of the oral microbiome by using different sequencing
technologies. Material and Methods. Five preschool children with no symptoms of oral and systemic diseases were recruited.
Samples of saliva were collected. A 468 bp insert size library was constructed on the MiSeq platform and then subjected to 300 bp
paired-end sequencing. Libraries with longer insert sizes, including a full-length 16S rDNA gene, were sequenced on the PacBio
RS II platform. Results. A total of 122.6Mb of raw data, including 244,967 high-quality sequences, were generated by the MiSeq
platform, while 134.6Mb of raw data, including 70,030 high-quality reads, were generated by the PacBio RS II platform. Clustering
of the unique sequences into OTUs at 3% dissimilarity resulted in an average of 225 OTUs on the MiSeq platform; however, the
number of OTUs generated on the PacBio RS II platform was 449, far greater than the number of OTUs generated on the MiSeq
platform. A total of 437 species belonging to 10 phyla and 60 genera were detected by the PacBio RS II platform, while 163 species
belonging to 12 phyla and 72 genera were detected by the MiSeq platform. Conclusions. +e oral microflora of healthy Chinese
children were analyzed. Compared with traditional 16S rRNA sequencing technology, the PacBio system, despite providing a
lower amount of clean data, surpassed the resolution of the MiSeq platform by improving the read length and annotating the
nucleotide sequences at the species or strain level. +is trial is registered with NCT02341352.

1. Introduction

+e human oral microbiome comprises over 700 prevalent
taxa at the species level, including a large number of op-
portunistic pathogens involved in periodontal, respiratory,
cardiovascular, and systemic diseases [1–5]. Identification
of oral microorganisms at the species level is the basis and
prerequisite for analyzing microbial communities of the
oral cavity. +e 16S rRNA gene is considered the gold
standard for phylogenetic studies of microbial communi-
ties and high-throughput sequencing of the 16S rRNA gene
could provide snapshots of microbial communities, re-
vealing phylogeny and the abundances of microbial pop-
ulations across diverse ecosystems [6, 7]. For this reason,
the sequencing techniques had become an important tool

for understanding the biology and functional character-
ization of oral microorganisms.

+e emergence of the next-generation sequencers (NGS)
and their sequencing by synthesis have drastically trans-
formed the way scientists delve into the relationship between
microbiome and related diseases [8]. Since then, many
studies have used the NGS technologies, such as Roche/454
[9], ABI/Solid, Illumina [10], and its upgrade platforms
including Illumina/HiSeq and MiSeq for microbial ecosys-
tem analysis [9–15]. When it comes to the resolution and
accuracy of the sequencing results, lengths and quantity of
reads are very important factors [16–18]. Unfortunately, the
NGS came with this drawback. Compared with the previous
methods (e.g., Sanger sequencing), the reads generated are
short. +is became a major challenge for the assembly,
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especially in the case of large repetitive genomes [19]. +us,
in spite of the low cost and extremely high-throughput, the
NGS platform is sometimes less accurate as a result of short
read lengths and long repeats present in multiple copies [17].
Besides, although the explosion of sequence data brought
about by high-throughput sequencing technologies is
highlighting a richness of microbes not previously antici-
pated, not all of the novel organisms discovered by the NGS
can be named by taxonomists because the existing tools are
not sufficient to provide species names or phylogenetic
information for the millions of short reads [20]. Operational
taxonomic units (OTUs) at the 97% similarity is recognized
as providing differentiation of bacterial organisms below the
genus level [12]; however, it was still inaccurate for the
reason that this level of clustering defines either microbial
species or strains.

+ird-generation sequencing (TGS), PacBio single
molecule, real-time (SMRT) sequencing technology cir-
cumvented this problem by greatly increasing read lengths
that have the ability to sequence the full length of the 16S
rRNA gene [16, 18]. It involves a DNA fragment sequenced
by a single DNA polymerase molecule connected to the
bottom of a zero-mode waveguide [18]. During DNA
synthesis, each of the nucleotides is illuminated upon in-
corporation, which can enable for identification. +e PacBio
RS II can yield average sequence reads of greater than
2500 bp; however, some research data show that circular
consensus sequencing (CCS) of shorter fragments
(<1500 bp) can decrease the sequencing errors [21]. Some
studies have shown that the longer reads generated from
sequencing the entire 16S rRNA gene provide a higher
resolution of organisms and higher estimates of richness
[17]. A previous study has shown that PacBio outperformed
the other sequencers such as Roche 454 and MiSeq in terms
of the length of contigs and reconstructed the greatest
portion of the genome when sequencing the genome of
Vibrio parahaemolyticus [22]. However, there have been few
studies that aim at comparing the next-generation se-
quencing technology with PacBio RS II in oral microbiome.
In this study, we explore the microbiota of oral cavity using
sequences amplified V3-V4 and the V1-V9 small subunit
ribosomal RNA (16S) hypervariable regions by two different
platforms. +e aim of this study was to evaluate the per-
formance of TGS technology PacBio RS II in comparison
with NGS technology Illumina/MiSeq for the structure of
oral microbiome in 5 healthy preschool children in China.

2. Materials and Methods

2.1.Patient Information. Five preschool children aged 63–74
months, lacking evidence of oral and systematic diseases
were recruited based on a list of exclusion criteria on Nov 26,
2014. +e subjects with a history of chronic antibiotic used
within 8 weeks before enrollment were excluded from the
study. All subjects’ legally authorized representatives pro-
vided written informed consent upon enrollment. +e study
was approved by the Institutional Review Board of the
Affiliated Stomatology Hospital of Zhejiang University in
accordance with the Declaration of Helsinki principles.

2.2. Saliva Sampling and Isolation of Bacterial DNAs. +e
subjects were instructed neither to eat and drink nor to
perform any oral hygiene procedure two hours before
sampling. Saliva samples were collected from all subjects in
the morning between 9 : 00 am and 11 : 00 am.

Unstimulated saliva samples were collected according to
a protocol, modified from a previous study. +e children
were initially asked to rinse their mouth thoroughly with
deionized water prior to sampling, followed by collection of
at least 5mL unstimulated saliva in a plastic cup. Finally, the
samples were transferred into sterile cryogenic vials. +en,
the samples were placed into liquid nitrogen and stored at
−80°C until use.

Bacterial DNAs were extracted using the E.Z.N.A.™ Soil
DNA Kit (Qiagen, Omega, USA), according to the in-
structions of the manufacturer. +e enriched microbial
DNAs were purified by ethanol precipitation. DNA con-
centration wasmeasured using NanoDrop, and its molecular
size was estimated by agarose gel electrophoresis. DNAs
were stored at −20°C until use.

2.3. PCR Amplification of the 16S rRNA Gene. PCR ampli-
fication of the 16S rRNA gene hypervariable V3-V4 regions
was performed with universal bacterial primers 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGAC-
TACHVGGGTWTCTAAT-3′). +e V1-V9 hypervariable
region was performed with primers 27F (5′-AGAGTTT-
GATCCTGGCTCAG-3′) and 1492R (5′-
GGTTACCTTGTTACGACTT-3′). +e products were
extracted with the AxyPrep DNAGel Extraction kit (Qiagen,
USA) and were then examined by agarose gel electropho-
resis. According to the electrophoretic results, the PCR
products were quantified by Quantifluo™-ST (Promega,
USA). +en, the products from different samples were then
mixed at equal ratios for pyrosequencing on the two dif-
ferent platforms.

2.4. DNA Library Construction and Sequencing.
Construction of DNA library was carried out by following
the manufacturer’s instructions (Illumina and PacBio). A
468 bp insert size library was constructed on the MiSeq
platform and then applied to 300 bp paired-end sequencing.
Libraries with longer insert size (1540 bp) were performed
on the PacBio RS II platform, including full length of 16S
rDNA gene. Barcoded 16S rRNA amplicons (V3-V4 and V1-
V9 hypervariable regions) of the five Chinese children were
sequenced on MiSeq and PacBio RS II platforms, respec-
tively. Raw data were generated, and low-quality reads were
then removed by quality control (Figure 1).

2.5. Bioinformatic Analysis. We used QIIME software to
cluster filtered reads into operational taxonomic units
(OTUs) from PacBio and MiSeq platforms [23] by applying
a 97% identity threshold relative to a centroid sequence. +e
generated OTUs were used for alpha-diversity (Shannon and
Simpson), richness (Chao, ACE), coverage, and rarefaction
curves using Mothur software (version v.1.30.1) [24]. We

2 Canadian Journal of Infectious Diseases and Medical Microbiology



then assigned the resulting OTUs using a BLAST-based
method implemented in QIIME, employing the SILVA
(version 119) database as the reference for taxonomic
analysis [25, 26]. +e species-level operational taxonomic
units (OTUs) and relative richness of phylum, class, order,
family, genus, and species for each sample between the two
platforms were compared. Statistical analysis was performed
using SPSS for Windows (version 19.0; SPSS Inc., Chicago,
IL, USA).

3. Results

3.1. Increased Diversity of OralMicrobiota Sequenced by TGS.
By high-throughput pyrosequencing of 5 samples syn-
chronously on two different platforms, a total of 122.6Mb
raw data including 244,967 high-quality sequences were
generated by the MiSeq platform, while 134.6Mb raw data
including 70,030 high-quality reads were generated by the
PacBio RS II platform. For the MiSeq platform, 99.99% of
the clean reads distribution ranged from 401 to 500 bp, and
for the PacBio RS II platform, 94.24% of the clean reads were
distributed from 1401 to 1600 bp.

+e average lengths of quality reads were 446 bp and
1471 bp on MiSeq and PacBio RS II platforms, respectively.
With accurate read lengths of 1471 base pairs, the PacBio
system opens up the possibility of identifying microor-
ganisms to the species level in oral cavity (Figure 1).

A slightly higher coverage was observed in the PacBio RS
II platform, and the level of coverage indicated that the 16S
rRNA gene sequences identified by the two sequencing
platforms represented the majority of bacterial sequences
present in the oral saliva samples.+e rarefaction curves and
richness indices (Chao and ACE) that estimated the richness
of the total oral microbiota also show that enough se-
quencing data were generated by the two platforms (Fig-
ures 2 and 3).

Clustering the unique sequences into OTUs at 3% dis-
similarity resulted in an average of 225 OTUs on the MiSeq
platform; however, the number of OTUs generated on the

PacBio RS II platform was 449, almost twice as that of the
MiSeq platform (Figure 3). Other indices (Chao estimate
and Ace index) revealed that the PacBio RS II platform
detected more species. +e comparisons of alpha-diversity
indices (Shannon and Simpson) of the oral microbiota were
significantly different between the two platforms. +e
Shannon index of the MiSeq group was lower than that of
the PacBio RS II group, and the Simpson index of the MiSeq
group was higher than that of the PacBio RS II group. It was
demonstrated that the PacBio RS II platform exhibited a
significant higher level of α-diversity when compared with
theMiSeq platform (Figure 4). In spite of less clean reads, the
PacBio RS II system discovered more species than the MiSeq
sequencing platform (Figures 2 and 3).

3.2. Taxonomic Analysis of Different Platforms. 437 species
derived from 10 phyla, 17 classes, 24 orders, 31 families, and
60 genera were detected by the PacBio RS II platform, while
163 species derived from 12 phyla, 21 classes, 29 orders, 42
families, and 72 genera were detected by theMiSeq platform.

At the phylum level, Firmicutes, Bacteroidetes, Proteo-
bacteria, Actinobacteria, Fusobacteria, and TM7 shared
95.7% of oral microbiome and 1.17% of oral bacteria cannot
be classified by the MiSeq platform. However, on the Pac-
BioRS II platform, Firmicutes, Proteobacteria, Bacteroidetes,
Fusobacteria, Actinobacteria, and TM7 comprised 99.96% of
the community and all of the bacteria were annotation to
phylum (Figure 5(a)).

+e overall structure of oral microbiota for each plat-
form at the phylum level is shown in Figure 6(a). Ten phyla
were shared by the two platforms, and Candidate_divi-
sion_SR1 were found only on the MiSeq platform.

At the class level, the majority of the sequences of MiSeq
belonged to Betaproteobacteria, Bacteroidia, Negativicutes,
Actinobacteria, and Bacilli, which contributed 93.3% of the
whole community. +e unknown and unclassified class
proportion accounted for 0.79%. For the PacBio platform,
Betaproteobacteria, Bacilli, Negativicutes, Gammaproteo-
bacteria, and Epsilonproteobacteria shared 92.9% of oral
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Figure 1: Sequencing results from 5 oral samples. Partial 16S amplicons (V3-V4) were sequenced on the Illumina/MiSeq; and full-length
16S amplicons (V1-V9) were sequenced on PacBio.
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microbiome and a minuscule proportion (0.25%) of un-
known classes was generated (Figure 5(b)). +e overall
structure of oral microbiota for each platform at the class
level was shown in Figure 6(b). Betaproteobacteria
accounted for the largest proportion of the total community
in both of the two groups, while the abundance of the
abundance of Bacilli and Bacteroidia were different between
the two platforms.

At the order level, Neisseriales, Bacteroidales, Seleno-
monadales, Lactobacillales, Fusobacteriales, Pasteurellales,
and Clostridiales dominated the community in both groups
(Figure 5(c)). +e overall structure and portion of oral
microbiota for each platform were shown in Figure 6(c). +e
unknown and unclassified order proportion sequencing by
MiSeq was 0.79%; however, only 0.25% order was unclas-
sified by the PacBio platform (Figure 6(c)).

At the family level, Neisseriaceae, Prevotellaceaes, Veil-
lonellaceae, Streptococcaceae, Pasteurellaceae, and Fuso-
bacteriaceae shared 82.4% and 88.0% of oral microbiome by
the MiSeq and PacBio platforms, respectively (Figure 5(d)).
0.39% and 0.25% of oral bacteria were unknown or cannot

be classified by the MiSeq and PacBio platform, respectively
(Figure 6(d)).

At the genus level, the majority of the sequences of the
two platforms belonged to Neisseria, Prevotella, Veillonella,
Streptococcus, Haemophilus, and Fusobacterium, which
contributed 79.4% and 86.8% of the MiSeq and PacBio
community. +e unknown and unclassified genera of the
MiSeq platform accounted for 0.68% (Figure 5(e)). +e
overall structure and portion of oral microbiota for each
platform were shown in Figure 6(e).

At the species level, 68 species were shared by the two
platforms and 368 species were detected only by the PacBio
RS II platform. Forty-two genera cannot be classified into
special strains on the MiSeq platform, which accounted for
nearly half of the whole community (Figure 6(f )); however,
only 0.03% of microorganisms were unidentified when using
the PacBio RS II platform.

Figure 5(f ) shows the top 15 species generated by the
two platforms. As is shown in the figure, unlike the other
levels, there was a distinction between the most abundant
bacteria sequenced by the two platforms. Speculation was
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Figure 3: Richness of oral saliva. (a) OTU distribution of the 5 samples sequenced byMiSeq and PacBio platforms. (b) Comparison of OTU
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Figure 2: Rarefaction curves for (a) PacBio and (b) MiSeq platforms. +e average number of OTUs in each sample was calculated. Samples
from the two platforms displayed similar phylogenetic diversity at a 97% identity level.
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Figure 5: Continued.
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that a large proportion of the total bacteria was unclas-
sified by the MiSeq platform. +e structure and compo-
sition of saliva microbiota shown in Figure 7 lists
comparison of some species sequenced by the two plat-
forms. As is shown in Figure 7, unclassified species ac-
counts for a considerable proportion on the MiSeq
platform. +e PacBio RS II platform, by contrast, had
higher resolution and could provide more information at
the species level.

For species of Actinomyces, 16.2% of the bacteria was
unclassified by the MiSeq platform. Actinomyces odontoly-
ticus and Actinomyces uncultured bacterium were shared by
the two platforms, and 7 unique species were generated only
by the PacBio RS II platform (Figure 7(a)).

As to the species of Campylobacter, 2.2% of the bacteria
was unclassified by the MiSeq platform. Campylobacter
concisus and Campylobacter showae were shared by the two
platforms, and 8 species were unique to the PacBio RS II
platform (Figure 7(b)).

For species of Rothia, 10.1% of the bacteria was un-
classified by the MiSeq platform. Rothia uncultured bacte-
rium was the only species shared by the two platforms, and 8
unique species were generated only by the PacBio RS II
platform (Figure 7(c)).

When it comes toHaemophilus, 5.7% of the bacteria was
unclassified by the MiSeq platform. Haemophilus para-
haemolyticus, Haemophilus parainfluenzae T3T1, and Hae-
mophilus uncultured bacterium were shared by the two
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Figure 5:+e relative abundance of top 10 phyla, classes, orders, families, and genera and top 15 species. (a) Top 10 phyla. (b) Top 10 classes.
(c) Top 10 orders. (d) Top 10 families. (e) Top 10 genera. (f ) Top 15 species.
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Figure 6: Community structures sequenced by PacBio and MiSeq platforms. represents the number of organisms shared by the two
platforms and the detail taxonomy information was shown on the right bar chart. +e star of the same color represents the names of the
shared organism. represents the number of organisms generated only by MiSeq platforms and the detail taxonomy information was
shown on the right bar chart. +e star of the same color represents the names of the organism only generated by MiSeq. represents the
number of unclassified organism and the detail taxonomy information was shown on the right bar chart. +e star of the same color
represents the names of the unclassified organism. represents the number of unknown organism and the detail taxonomy information
was shown on the right bar chart. +e star of the same color represents the names of the unknown organism. represents the number of
organisms generated only by PacBio platforms and the detail taxonomy information was shown on the right bar chart. +e star of the same
color represents the names of the organism only generated by PacBio. (a–f) represents phylum, class, order, family, genus and species level,
respectively.
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Figure 7: Continued.
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Figure 7: Structure and composition of some particular species sequenced by PacBio and MiSeq platforms. +e outer ring of the chart
represents the number of species sequenced by the PacBio platform. +e inner ring, on the opposite, represents the number of species
sequenced by the MiSeq platform. represents the number of species shared by the two platforms, and the detail information was shown
on the right bar chart. +e star of the same color represents the name of the shared species. represents the number of species generated
only by the MiSeq platform, and the detail information was shown on the right bar chart. +e star of the same color represents the name of
the species only generated by MiSeq. represents the number of unclassified species, and the detail information was marked on the right
bar chart. +e star of the same color represents the name of the unclassified species. represents the number of species generated only by
the PacBio platform, and the detail information was shown on the right bar chart. +e star of the same color represents the name of the
species only generated by PacBio. (a–k) represents the species of Actinomyces, Campylobacter, Rothia, Haemophilus, Fusobacterium,
Gemella, Selenomonas, Veillonella, Prevotella, Neisseria, and Streptococcus, respectively.
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platforms, and 17 unique species were generated only by the
PacBio RS II platform (Figure 7(d)).

For species of Fusobacterium, which are among the most
abundant bacteria in healthy oral cavity, 10.8% of the
bacteria was unclassified by the MiSeq platform. Fuso-
bacterium periodonticum and Fusobacterium uncultured
bacterium were shared by the two platforms, and 12 unique
species were generated only by the PacBio RS II platform
(Figure 7(e)).

Figure 7(f ) shows the composition ofGemella sequenced
by different platforms.+e comparison of sequencing results
between MiSeq and PacBio RS II indicates that Gemella
haemolysans was the only species shared by both the plat-
forms and up to 98.8% species were unclassified by the
MiSeq platform. Nine unique species were generated only by
the PacBio RS II platform.

For species of Selenomonas, 8.6% of the bacteria was
unclassified by the MiSeq platform. Five species including
Selenomonas uncultured organism, Selenomonas flueggei,
Selenomonas artemidis, Selenomonas noxia, and Selenomo-
nas sputigena ATCC 35185were shared by the two platforms,
and 7 unique species were generated only by the PacBio RS II
platform (Figure 7(g)).

As to species of Veillonella, 78.1% of the bacteria was
unclassified by the MiSeq platform. Veillonella atypica and
Veillonella sp. oral taxon 780 were shared by the two
platforms, and 21 unique species were generated only by the
PacBio RS II platform (Figure 7(h)).

For species of Prevotella, 10.5% of the bacteria was
unclassified by the MiSeq platform. 11 species including
Prevotella loescheii, Prevotella salivae, Prevotella sp. oral
clone FW035, Prevotella sp. oral taxon 306 str. F0472,
Prevotella melaninogenica ATCC 25845, Prevotella histi-
cola, Prevotella shahii, Prevotella nanceiensis, Prevotella
aurantiaca, Prevotella pallens, and Prevotella uncultured
prevotella sp. were shared by the two platforms. +e
number of unique species generated by the MiSeq and
PacBio RS II platform were 15 and 11, respectively
(Figure 7(i)).

For species of Neisseria, which are the most abundant
species of the community in this study, 71.7% of the bacteria
was unclassified by the MiSeq platform. Five species in-
cluding Neisseria sp. oral strain B33KA, Neisseria oralis,
Neisseria subflava, Neisseria elongata, and Neisseria fla-
vescens were shared by the two platforms. +e number of
unique species generated by PacBio RS II platform was up to
35 (Figure 7(j)).

Streptococcus is a gram-positive bacterium belonging
to the phylum Firmicutes, which is found to be associated
with many kinds of oral diseases, such as caries [18, 27],
pneumonia, bacteremia, and meningitis [28, 29]. In this
study, 73.4% of Streptococcus was unclassified by the
MiSeq platform. Only the two species Streptococcus
intermedius and Streptococcus sanguinis were shared by
the two platforms. +e number of unique species gen-
erated by the PacBio RS II platform was up to 77
(Figure 7(k)).

4. Discussion

A number of research studies have presented evidence for
using childhood oral microbiome to predict future oral and
systemic diseases [30]. +erefore, it is very important for us
to find a suitable sequencing method to study oral micro-
biome. In this study, the oral saliva microbiome of five
healthy Chinese children was evaluated using the NGS and
TGS. +e oral microbiome composition sequenced by the
two platforms was basically identical from phylum to genus
level. +e structure of oral microbiome at the species level,
however, showed a significant difference between the two
platforms. +e possible reason we speculate is that a large
amount of short reads generated by the MiSeq platform
cannot be resolved in spite of the development of the as-
semblers, such as the Celera Assembler, SOAPdenovo, and
Allpath-LG. As a result, a very large proportion of bacteria
was unclassified by the MiSeq sequencing technology. +e
longer reads sequenced on the PacBio platform gave more
phylogenetic resolution than 400–500 bp fragments that
contain fewer hypervariable regions.

Compared with our previous study on the structure of
oral microbiome in healthy children, the top 10 phyla,
genera, and species are consistent [18]. However, when
compared with other studies, there are some differences with
our results [31]. In this respect, we speculated that oral
microbiome is linked to age, race, and region at the species
level. Some studies have also demonstrated that the oral
microbiota are better defined based on age, gender, oral
niches, and even the body size [32, 33]. Recent findings
indicate that the oral ecosystem of healthy children is highly
heterogeneous and dynamic with substantial changes in
microbial composition over time and only few taxa per-
sisting across the age [34]. PacBio RS II sequencing, one
platform of TGS, has the ability to provide longer sequences
and reads generated from sequencing the entire 16S rRNA
gene. Compared with the previous NGS, this platform can
establish a higher estimate of richness and provide the ability
to identify organisms at a higher taxonomic and phyloge-
netic resolution [17, 18, 35]. At the same time, some studies
have shown that the PacBio sequencing error rate is in the
same range of the previously widely used Roche 454 se-
quencing platform and the current MiSeq platform [36, 37].
More importantly, a recent study presented a high-
throughput amplicon sequencing methodology based on
PacBio CCS that measures the full-length 16S rRNA gene
with a near-zero error rate [38].

Compared with the traditional 16S rDNA sequencing of
the MiSeq platform, the PacBio RS II technology improved
its read length and annotated the nucleotide sequence of oral
bacteria to the species level. PacBio RS II may be optimal for
oral microbiome sequencing due to its long reads and high
performance, while platforms such as Illumina MiSeq will
provide cost-efficient methods for sequencing projects.

Previous research studies had compared the TGS PacBio
platform with the NGS Roche 454 pyrosequencing platform.
Amplicons of the 16S rRNA gene from the environmental
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samples from streambed habitats, rocks, sediments, and a
riparian zone soil were analyzed [16, 17]. In this study, we
focus on the oral microbiome of healthy Chinese children
and compare the amplicons of the 16S rRNA gene between
PacBio and MiSeq platforms. As the exact composition of
the microbiome from the five Chinese children were un-
known, it is still difficult to assess the accuracy of the PacBio
RS II platform at the species level. Next, we would enroll a
known isolate as a positive control in high-throughput se-
quencing, which can provide the quality assurance of
quantifying error rates when analyzing environmental
communities.

5. Conclusions

In our study, oral microbiome of healthy Chinese children
was explored. For oral microbiome studies, if the goal is
identifying all species in a sample, PacBio appears to have
superior performance to MiSeq. However, if the goal is to
simply quantify relative differences in diversity, either
platform would be appropriate. In this article, we have
compared the difference between the two platforms, how-
ever, with the limited sample size, the study does not provide
a statistic conclusion, and more in-depth studies with larger
group sizes are needed to validate these results.
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