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Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of
illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water.
Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed
multiple strategies to invade and establish a systemic infection in the host. Di�erent cell types, including epithelial cells,
macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the
body and colonization of remote organs are hallmarks of Salmonella infection. �ere are several routes for the dissemination of
Salmonella typhimurium. �is review summarizes the current understanding of the infection mechanisms of Salmonella.
Additionally, di�erent routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to
establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful
colonization of Salmonella enterica may enable the rational design of e�ective therapeutic strategies.

1. Introduction

Salmonella is a Gram-negative, intracellular pathogen.�ere
are more than 2,600 serovars of Salmonella characterized to
date that are di�erentiated on the basis of the lipopoly-
saccharide (LPS) O antigen and the �agellar H antigen [1].
�ere are just two species of Salmonella: S. enterica and
S. bongori [2]. Salmonella typhi and Salmonella typhimu-
rium are well-known members of the S. enterica species. S.
typhimurium and S. enteritidis are predominantly associated
with gastroenteritis in humans [3]. Each year, there are
about 155,000 deaths due to nontyphoidal Salmonella (NTS)
infections. Salmonella enterica serovar typhi infections cause
a staggering 20 million infections and 200,000 deaths an-
nually [4]. Gastroenteritis induced by Salmonella infections
is a major cause of morbidity and mortality in children
under 5 years of age [5]. Diarrhea caused by Salmonella
species causes a global human health burden that contrib-
utes to signi�cant annual morbidity and mortality and re-
quires new therapeutic strategies for e�ective management.
Almost 60% of Salmonella strains have developed resistance
to �rst-line antibiotics [6]. Most patients recover from in-
fections after treatment. However, 3–5% of patients become

chronic carriers, with chronic infection in the gall bladder
[7]. Chronic carriers can intermittently shed the bacteria
through their feces and urine throughout the rest of their
lives [8]. �e liver is also a reservoir for chronic infections
with Salmonella Typhi; from the liver, the bacteria can be
intermittently shed into the gallbladder [9].

Salmonella typhi infections can cause fever, hepato-
megaly, splenomegaly, and bacteremia. In the disease pro-
cess, the bacteria disseminate into the gall bladder, liver, and
spleen [10]. Approximately 90% of chronic Salmonella
carriers have gallstones [10–12], and are at signi�cantly
increased risk for gallbladder cancer (GC) [12, 13]. Del-
Giorno et al. reported that persistent Salmonella infections
can cause pancreatitis in a murine model of infection [14].
Some Salmonella carriers are asymptomatic. Roughly 2–5%
of Salmonella-infected patients fail to clear the bacteria
within one year [12]. Such chronic infections, especially
asymptomatic infections, pose a huge socioeconomic bur-
den, especially in South Asian and African countries, by
unknowingly spreading infections to others, who may ex-
perience symptomatic infections and su�er economic costs
as a result. Understanding the cellular routes of Salmonella
invasion and dissemination in the host and the mechanisms
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of Salmonella persistent infection may facilitate the explo-
ration of novel treatment strategies for patients with chronic
infections. Ultimately, this may help eliminate the asymp-
tomatic carriage of Salmonella as a concern for public health.

Salmonella infections can result from the ingestion of
contaminated foods because they can survive the low pH of
the stomach [15]. Although bile in the small intestine poses a
challenge for S. typhimurium, the PhoQ/PhoP two-com-
ponent regulatory system mediates resistance to bile [16].
Salmonella predominantly causes inflammation of the ter-
minal ileum and colon [17]. S. typhimurium can spread
systemically in mice, and S. typhimurium infections in mice
are used as an animal model for typhoid fever in humans
[18]. Pretreatment of mice with streptomycin prior toSal-
monella infection disturbs the healthy microbiota and fa-
cilitates infection of the intestinal lumen with Salmonella
typhimurium [19]. Streptomycin-treated mice are therefore
often used as animal models of S. Typhimurium-induced
gastroenteritis [19]. Before the oral infection of S. typhi-
murium and S. enteritidis, approximately 20mg of strep-
tomycin treatment by intragastric administration in themice
will allow a high colonization level in the cecum and colon of
the mice [20]. Acute microbiota depletion will reduce the
colonization resistance and facilitate the infection of the
bacteria. Microbiota can limit Salmonella colonization, and
diet can affect microbiota composition. Low-fiber or high-fat
diets will increase S. typhimurium colonization in mice [21].
Fat can promote S. typhimurium infection in mice by
eliciting bile salts, which help fat digestion [21]. A high-fat
diet will cause microbiota perturbation [21]. E. colimay limit
S. typhimurium infections during diet shifts [21].

Mice with amutation in the natural resistance-associated
macrophage protein 1 gene (Nramp+), such as CL57/BL6 or
BALB/C mice, are susceptible to Salmonella infection [22].
Nramp1 is a macrophage-specific exporter, and the Nramp1
gene codes for an ion transporter that pumps ions out of
Salmonella-containing vacuoles (SCV) [22]. (e SCV is the
intracellular vacuolar niche in which Salmonella can repli-
cate and achieve dormant infection. wild type 129×1/Sv
mice, which possess the Nramp+/+ allele, are used as an
animal model for chronic S. typhimurium infection [23].
Mice with a mutation in the natural resistance-associated
macrophage protein 1 gene (Nramp1), such as CL57/BL6 or
BALB/C mice, are susceptible to Salmonella infection [22].
Nramp1 is a macrophage-specific exporter, and the Nramp1
gene codes for an ion transporter that pumps ions out of
SCV [22]. (e SCV is the intracellular vacuolar niche in
which Salmonella can replicate and achieve dormant in-
fection. Wild type 129×1/Sv mice, which possess the
Nramp1+/+ genotype, are used as an animal model for
chronic S. typhimurium [23].

2. M Cells

Enteropathogenic infections start in the intestinal lumen.
Dissemination through microfold or membranous (M) cells
is one of the best-understood routes of Salmonella dis-
semination [24]. M cells are specialized follicle-associated
epithelial (FAE) enterocytes on the surface of mucosa-

associated lymphoid tissues [25, 26]. Salmonella typhimu-
rium initiates infection in mice by infecting and destroying
the specialized epithelial M cells and then traveling to the
mesenteric lymph nodes [24]. See Figure 1.

Salmonella directly invades M cells but can also trans-
form follicle-associated epithelial cells into M cells to pro-
vide additional routes for intestinal invasion [27]. Indeed,
Tahoun et al. found that S. Typhimurium can induce an
epithelial-mesenchymal transition (EMT) of FAE entero-
cytes and transition the FAE to M cells [27]. (ese processes
rely on the bacterial type III effector protein SopB [27].
(rough the activation of NF-κB and Wnt/b-Catenin sig-
naling pathways, Salmonella induces host cell trans-
differentiation through receptor activator of NF-kB ligand
(RANKL) [27]. (is finding was the first report that S.
typhimurium can transform epithelial cells into M cells
using a single virulence factor.

Intestinal immunity is the first defense barrier that
enteropathogens encounter during infection. Lymphotoxin
signaling is important for maintaining intestinal immune
balance. LTβR can also be activated by lymphotoxin (LTαβ)
[28]. Lymphotoxin signaling promotes the differentiation of
M cells from intestinal epithelial cells [29]. (is signaling is
involved in the regulation of intestinal inflammation, as
shown by the DSS-induced colitis model [30]. Mice with
knocked-out lymphotoxin signaling molecules (LTα3,
LTα2β1, and LTα1β2) have abnormal lymphoid development
[31]. Lymphotoxin β-receptor knockout mice lack all lymph
nodes and gut-associated lymphatic tissues, including
Peyer’s patches (PPs) [32].(ese lymph node-defective mice
are a good model for the systemic dissemination of S.
typhimurium. Infection of Salmonella in LTβR−/− mice
demonstrates that organized lymph tissues are dispensable
for the systemic infection of the host [20]. As shown by a
study from Barthel et al., without Peyer’s patches (PPs),
bacteria can still reach remote organs [20]. (is phenom-
enon indicates the importance of dendritic cell-mediated
transportation in the dissemination of S. typhimurium [33].
Salmonella exploited dendritic cells as vesicles for dissem-
ination. Cheminay et al. showed that after infection by
Salmonella, dendritic cells could upregulate the CCR7 re-
ceptor and migrate via the CCR7 ligands CCL19 and
CCL211 [13, 33–35].

A study by Wroblewska et al. showed that lymphotoxin
signaling is essential for the clearance of Salmonella from the
intestinal lumen [36]. A lack of LTβR signaling did not
impact the initiation of inflammation induced by Salmo-
nella. However, the resolution of Salmonella infection was
impaired [36].(e infectious processes in S. typhimurium in
WT and LTβR−/− mice lacking Peyer’s patches (PPs) and
MLN are highly similar [20].

3. Epithelial Cell

S. typhimurium can invade polarized gallbladder epithelial
cells and replicate inside the epithelial cells [37]. Gallbladder
epithelial cells are a reservoir for Salmonella colonization
[37]. Long-term colonization of Salmonella in the
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gallbladder cells can drive the premalignant transformations
of the cells. Salmonella can invade the polarized gallbladder
cells. Salmonella can induce the extrusion of epithelial cells,
which is accompanied by caspase-1 activation-related cell
death. Epithelial cells can provide a shelter for the bacteria to
survive and replicate in the cytosol of the epithelial cells
[38, 39]. (e type III secretion system is involved in the
priming of the bacteria for invasion. Cytosolic bacteria can
induce the extrusion of epithelial cells and be released into
the intestinal lumen [38, 39].

Unlike M cells, Salmonella’s invasion of epithelial cells
does not rely on phagocytosis. (e type III secretion system
(T3SS) is the most important virulence factor for Salmonella
species, and one is encoded on Salmonella pathogenicity
island 1 (SPI1) and the other is encoded on Salmonella
pathogenicity island 2 (SPI2) [40]. (e type III secretion
system is a molecular syringe that can translocate the effector
proteins directly from the bacteria into the cytosol of cells.
Effector proteins are injected into the cytoplasm of the host
by a T3SS gene cluster. SPI1 is involved in the invasion
process of Salmonella [41]. After invading host cells, Sal-
monella survives in SCVs by using elements encoded on
SPI2 [42–45]. Approximately 4–6 h after the cellular inva-
sion, bacterial replication is initiated [46].

Salmonella can induce membrane ruffling in intestinal
cells to cause them to engulf the bacteria [47]. Various S.
Typhimurium fimbrial operons contribute to bacterial at-
tachment and invasion of epithelial cells [48].(e zipper and
trigger mechanisms are two well-studied mechanisms of
Salmonella entry into epithelial cells [49, 50]. (e trigger
mechanism is activated by the type III secretory system [49].
SipB/C in Salmonella type III secretory system assembles a
pore in the epithelial cell, bacteria and epithelial cells can
contact through the continuum created by the SipB/C [49].
Cytoskeletal reorganizations known as “membrane ruffles”

and “internalization” are two key elements of the trigger
mechanism [51]. Bacteria are internalized in SCV following
a trigger mechanism [49].

In contrast, there are only minor cytoskeletal protein
rearrangements involved in the zipper mechanism [50].
Instead, the zipper mechanism is mainly mediated by in-
teractions between bacterial ligands such as Rck and host cell
surface receptors [52]. (ere are many outer membrane
proteins that participate in the invasion process of Salmo-
nella typhimurium [53]. Rck is a 17 kDa outer membrane
protein (OMP), which are membrane proteins found in the
outer membranes of Gram-negative bacteria. Rck is encoded
by the rck gene on the large virulence plasmid [54]. (ey are
a family of highly conserved OMPs within the Enter-
obacteriaceae family. (is receptor binding leads to
downstream signal activation mediated by the phosphory-
lation of tyrosine kinase. (e zipper mechanism is activated
by the binding of host cell receptors by the bacterial ligands.
Actin polymerization and membrane extension are initiated
by the activated downstream signaling.

PagN is another OMP [54] and is widely conserved in
the Salmonella genus [55]. (e PagN protein interacts
with cell surface heparin sulfate proteoglycans to invade
cells [53]. Binding between OmpV and the extracellular
matrix components fibronectin and α1β1 integrin leads to
the adhesion of Salmonella typhimurium to intestinal
epithelial cells and ultimately activates actin modulation
[56]. PAMPs of Salmonella can be recognized by the
innate immune response receptors through MyD88-de-
pendent TLR signaling [57]. Infection with SPI1 T3SS
disrupted Salmonella can still induce colitis in C57BL/6
mice through a mechanism that is dependent on MyD88
signaling [58]. (e effectors of type III secretion systems
in the invasion and dissemination of Salmonella are
summarized in Table 1.

Macrophage

Dendritic cell

Epithelial cell

M cell

Peyer's patches MLN

Systemic 
dissemination 

(Persistent) 

(Persistent) 

(Persistent) 

Figure 1: (e multiple routes of Salmonella dissemination. Salmonella can be phagocytized by macrophages or dendritic cells and
disseminate to the Peyer’s patches (PP), mesenteric lymph nodes, and eventually the liver and spleen. Salmonella can also reach the
circulation by the transportation of dendritic cells, e.g., CD18-expressing phagocytes. Salmonella can also invade the intestinal epithelial cells
directly by way of a zipper or trigger mechanism. Salmonella can achieve persistent infection in epithelial cells and phagocytic cells. (e
dormant persisters can be released and induce the recurrence of the infection.
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(e binding of pattern recognition receptors (PRRs)
with pathogen-associated molecular patterns (PAMPs),
including peptidoglycan, lipopolysaccharide, flagellin, can
mediate Salmonella invasion [64, 65]. TLR4 and TLR5 play a
role in the host response to Salmonella [66]. In human
macrophages, Salmonella can activate NAIP/NLRC4 and
canonical NLRP3 Inflammasomes by its flagellin [67].
Caspase-1 will be activated after binding with NLRC4 and
NLRP3 inflammasomes in response to Salmonella. Salmo-
nella colonization was much higher in caspase 11 deficient
mice than in wild-type mice [68]. Casp1−/− and Casp1/11−/−

monolayers showed significantly increased intracellular
bacteria, accompanied by low intestinal epithelial cells
(IECs) shedding and death [68]. Caspase activation is im-
portant for limiting the intracellular replication of Salmo-
nella [68].

4. Dendritic Cells

Intestinal dendritic cells are found in Peyer’s patches [69], in
the lamina propria [70], in the subepithelial dome [71], and
under the follicle epithelium [72, 73]. (e phagocytosis of
Salmonella by dendritic cells and macrophages is mediated
by the interactions between specific pathogen-associated
molecular patterns (PAMP) and cellular receptors on the
phagocyte surface, such as pattern recognition receptors
(PRRs), which include Toll-like receptors (TLRs), NOD-like
receptors (NLRs), and C-type Lectin receptors [74]. NOD-
like receptors (NLRs), nucleotide-binding leucine-rich re-
peat-containing proteins, are intracellular innate immune
receptors that belong to the pattern recognition receptors
(PRRs) [75]. NLR is short for nucleotide-binding domain
leucine-rich repeat. MyD88-and TRIF-dependent pathways
can be regulated by NLRs [75].

Dendritic cells are exploited by Salmonella typhimurium
as “Trojan horses” to enable systemic dissemination [76].
(is strategy of manipulating host cell migration to facilitate
broader dissemination is common among other pathogens
such as Mycobacterium tuberculosis, HIV, and a range of
other Gram-negative bacteria [77–80]. For example, after
phagocytes are infected by HIV, the gp120 protein on the
virus binds with the C-type Lectin receptor DC-Sign, ini-
tiating phagocytosis by dendritic cells that then migrate to
lymph nodes and release viral particles that proceed to infect
CD4+ lymphocytes [77–79]. Several Gram-negative bacteria
also disseminate through antigen-presenting cells, as

demonstrated by Yang et al. [76, 81–88]. After binding to
C-type lectin receptors with core LPS, bacteria are trans-
ported throughout the host by antigen-presenting cells
[76, 81–88].

By exploiting migratory dendritic cells, the Salmonella
can thus traffic from the intestinal lumen to systemic organs
[34]. During active infection, the dendritic cells’ expression
of CCR7, a receptor for the chemokines CCL19 and CCL21,
is increased [34]. (is allows dendritic cells to migrate along
chemotactic gradients to remote sites like the lymph nodes
and spleen [34]. Salmonella survives inside the dendritic
cells, subverts the function of dendritic cells, impairs the
activation of adaptive immune responses, prevents fusion
and lyso-endosomal degradation, and achieves systemic
dissemination [45]. Cheminay et al. published the first ex-
ample that Salmonella can inhibit antigen presentation by
dendritic cells by altering MHC-II-dependent antigen pre-
sentation in an SPI2-dependent manner [89]. (rough
subversion of the antigen presentation of dendritic cells, the
bacteria reduce the activation of the active immune re-
sponse. Lapaque et al. demonstrated that Salmonella can
inhibit the surface expression of MHC class II antigens on
dendritic cells through ubiquitination [90].

CD103+CD11b+ DCs have been reported to transport
Salmonella typhimurium to the mesenteric lymph nodes
(MLN) after oral infection [91]. CD103+ dendritic cells
(DCs) typically phagocytose bacteria from the small intes-
tine and present antigens to T cells [91]. Another group of
dendritic cells that can facilitate the dissemination of Sal-
monella is intestinal CD11c+ lamina propria cells (LPCs),
which do so in a TLR5−dependent manner [92]; the mi-
gration of Salmonella typhimurium from the intestinal tract
to MLN is impaired in TLR5−/− mice. In TLR5−/−mice,
migration of bacteria by CD11c + LPCs is impaired [92, 93].

Distinct populations of dendritic cells participate in the
processing and immune sampling of Salmonella. Specialized
DC subsets in Peyer’s patches (PPs), CCR6 (+) DCs, are
recruited to the dome regions of Peyer’s patches (PPs) to
sample the bacteria and present to CD4+ T cells [94, 95].
CX3CR1-positive lamina propria DCs take up S. typhi-
murium by transepithelial processes [96]. Indeed, CX3CR1
deficiency leads to reduced bacterial sampling in the in-
testinal lumen by lamina propria DCs [96]. Further, these
CX3CR1-positive DCs lacked CCR6 expression, which is
different from the Peyer’s patches (PPs) associated-dendritic
cells [96].

Table 1: Effectors of Type III secretion systems in the invasion and dissemination of Salmonella.

Type III secretion System Function References
SPI-1 Invasion of nonphagocytic cells, including epithelial cells [40]
SPI-2 Survive in the phagocytic cells [59]
SseI Inhibition of macrophages and DCs migration [60]
SipA Promotion of cytoskeletal rearrangements, invasion of epithelial cells [61, 62]
SopA Invasion of epithelial cells [63]
SopB Invasion of epithelial cells [63]
SopD Invasion of epithelial cells [63]
SopE2 Invasion of epithelial cells [63]
SipB/C Translocator to deliver the effectors into the cell [49]
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S. typhimurium can be taken up by sub-epithelial DCs and
can survive within murine PP dendritic cells [97]. (e S.
typhimurium strain PhoPc has a point mutation in the phoP/
Q locus [98] that attenuates its capacity to survive in
macrophages but was able to persist for several weeks in vivo
[97]. Salmonella can persist in the dendritic cells in the
Peyer’s patch. (ey can also be directly sampled by dendritic
cells that express tight junction proteins, such as the
interepithelial dendritic cells in the intestinal villi that
penetrate gut epithelial monolayers by opening tight junc-
tions and directly sampling bacteria from the mucus [99].

Infection of CD11c–CD18+ dendritic cells can lead to
rapid entry into the systemic circulation. It has been re-
ported by Vazquez-Torres et al. that Salmonella can achieve
systemic dissemination through CD18-expressing phago-
cytes [100]. One hour after infection, Salmonella can be
detected in the blood. At sites other than M cells and Peyer’s
patches, Salmonella can also disseminate from the gastro-
intestinal tract to the spleen. Downregulation of DC cells in
the lamina propria can limit the invasion of Salmonella
[100].

5. Macrophage

During the intracellular life of Salmonella in the host cells,
Salmonella can interfere with the antigen-presenting process
of the dendritic cells, for example, by interfering with the
antigen presentation of bacteria on dendritic cells and
inhibiting the adaptive immunity, Salmonella can affect the
polarization of macrophages to the M2 phenotype, which
will inhibit the inflammatory process and facilitate the
persistent survival of Salmonella in the host. (e manipu-
lation of the macrophage is a strategy that Salmonella de-
rived during its evolution. Uchiya et al. demonstrated that
Salmonella can interfere with the function of macrophages
to escape immune responses. Uchiya et al. reported that
Salmonella can inhibit cytokine signaling in macrophages
via the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling pathway through SPI2
[101].

In addition to dendritic cells and M cells, S. typhimu-
rium can also disseminate via inflammatory monocytes.
Monocytes are recruited to the inflammatory sites where
they differentiate into macrophages. Macrophages serve as a
reservoir in which Salmonella can survive and replicate
[102]. Inside the macrophage, Salmonella can induce
micropinocytosis [103], and spacious phagosomes (SP) are
formed after Salmonella enters the macrophage and persists
in the cytoplasm [103]. A T3SS encoded by SPI2 allows
survival and avoids the NADPH oxidase-dependent killing
of macrophages [104].

(e PhoQ/PhoP regulatory system is utilized by S.
typhimurium to enable survival in macrophages [105]. (e
PhoQ/PhoP two-component system is one of the most
important regulatory mechanisms for the virulence of Sal-
monella. Inside the SCV, the low PH and low Mg2+envir-
onment activate the two-component PhoQ/PhoP system
[106].(e gene regulating the expression of O antigen, rfb, is
inhibited inside the SCV [107].(us, the length of O antigen

is decreased under the regulation of the two-component
PhoQ/PhoP system. (e protease PgtE in Salmonella
typhimurium, a homologue for Pla in Yersinia Pestis and
OmpT in E. coli, is then expressed [108]. Expression of PgtE
protease dissolves the extracellular matrix and facilitates the
cellular dissemination of Salmonella in vivo. S. typhimu-
rium, when released from the macrophage, can then be
phagocytosed by other cells, including other macrophages
[109].

Salmonella can modify macrophage polarization during
chronic infection. Macrophages can differentiate into two
groups after bacterial infection; the classically activated
macrophages (M1 type) or the alternatively activated
macrophages (M2 type). Cytokines are the primary deter-
minant of macrophage polarization. (e M1 type is
proinflammatory and activates a (1 immune response
[110]. IFNc- and LPS-induced activation of TLR4 signaling
can shift the macrophage to the M1 phenotype. In contrast,
the M2 type is antiinflammatory and activates the (2
immune response [110]. (e cytokine IL-4 shifts macro-
phages to the M2 phenotype. Usually, macrophages will
exhibit M1 polarization after sensing the stimuli from
bacteria or viruses. Salmonella phagocytized by the mac-
rophage can shift the macrophage polarization state. Saliba
et al. reported that macrophages harboring nongrowing
Salmonella are prone to proinflammatory M1 polarization,
but macrophages harboring growing bacteria shifted to an
antiinflammatory M2-like state [111]. S. typhimurium
preferentially lives in M2 macrophages during chronic in-
fections [110]. (us, Salmonella has mechanisms to shift the
differentiation of macrophages into theM2 phenotype [110].
Intracellular glucose levels are higher in M2 macrophages,
contributing to their permissiveness for the intracellular
replication of Salmonella [112].

S. typhimurium persists within splenic granulomas enriched
with CD11b +CD11c+Ly6C+ macrophages [4, 113]. Trung
et al. previously reported that Salmonella can manipulate
granuloma macrophage polarization towards the M2 phe-
notype [4]. As previously discussed, S. typhimurium pref-
erentially persists in M2-reprogrammed macrophages. (e
bacterial effector SteE contributes to the establishment of
persistent infection by downregulating tumor necrosis factor
(TNF) signaling [4]. (e bacteria have to develop strategies
to overcome the immune response and persist chronically. S.
typhimurium can polarize the primary macrophages to M2
polarization through the e SPI2 T3SS effector SteE. Mac-
rophage M2 polarization can contribute to the systemic
persistence of the bacteria [113].

Studies have shown that Salmonella can induce host cell
death during infection [114]. Monack et al. found that
caspase-1 is exploited by Salmonella to colonize the Peyer’s
patches (PPs) [115]. Systemic dissemination after an oral
challenge with Salmonella is impaired in Casp-1−/− mice.
(is indicates that caspase-1 is important for the systemic
dissemination of Salmonella [115]. Caspase-1 (Casp-1), an
interleukin [IL]-1β–converting enzymes, can induce apo-
ptosis in mammalian cells. Caspase 1 can cleave the
proinflammatory cytokines IL-1β and IL-18. Mice lacking
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Casp-1 (Casp-1−/−mice) showed a 1,000-fold higher lethal
dose (LD50) of S. typhimurium in the mice than wide-type
mice [115]. Casp-1-/−mice were colonized by lower intra-
cellular bacteria and did not show systemic dissemination of
the bacteria, reduced colonization of bacteria in the Peyer’s
patches (PP) and spleens [115]. It suggests that Casp-1 is
necessary for the establishment of systematic infection by S.
typhimurium in mice [38, 67, 68, 115, 116]. Salmonella
colonization was much higher in Caspase 11 deficient mice
than in wild-type mice [68]. Casp1−/− and Casp1/11−/−

monolayers showed significantly increased intracellular
bacteria, accompanied by low intestinal epithelial cells
(IECs) shedding and death [68]. Caspase activation is im-
portant for limiting the intracellular replication of
Salmonella.

Inflammasome activation is one important pathway
during the infection of Salmonella in the intestinal epithelial
cells [38]. (e infection of Salmonella typhimurium can also
lead to the activation of Caspase 4, and Caspase 4 can limit
the replication of S. typhimurium in the cells [117]. Acti-
vation of caspase 4 can lead to the noncanonical activation of
the inflammasome pathway [117].

Salmonella can activate apoptosis of Salmonella-infected
macrophages using effectors encoded in pathogenicity is-
land-1 through both intrinsic and extrinsic pathways [118].
Cell death induced by the infected cells gives the bacteria an
opportunity to be released and infect further cells. Salmo-
nella can induce cell death in macrophages through several
mechanisms. Immediate cell death can be induced by the
type III secretion system (T3SS) of Salmonella. Or, the
macrophages harboring Salmonella can be further phago-
cytosed by neighboring macrophages. Bacteria are released
from dead cells and phagocytized by local macrophages,
enabling another cycle of intracellular replication and cell-
to-cell spread [114]. Ultimately, this cycle helps ensure the
intracellular survival and persistent infection of phagocyte
populations with Salmonella.

6. Chronic and Systemic Infection of
Salmonella Typhimurium

Supershedders are the hosts responsible for the host-to-host
transmission and reoccurrence of S. typhimurium since
supershedders shed the bacteria in their feces. Foxp3þ
Regulatory T cells play a role in the persistent infection of
Salmonella [119]. Foxp3+ Treg ablation early after infection
will accelerate bacterial eradication [119].(is indicated that
immune regulatory T cells function in the early stages of
infection to establish a persistent Salmonella infection [119].

Monack et al. demonstrated that Salmonella can persist
in the MLNs of mice for up to one year. Macrophages in the
MLNs can be the reservoirs of the bacteria. Voedisch et al.
suggested that the MLN represents a restrictive site for the
growth and dissemination of Salmonella [33]. In mice whose
mesenteric lymph nodes have been surgically excised, the
colonization of Salmonella in the liver and spleen is in-
creased [33]. In such mice, Salmonella forms nonreplicating
“persisters” in macrophages [120]. Persisters are in a state of
dormant infection that is tolerant to drug treatment [121].

Indeed, they have resistance to antibiotics and can eventually
reactivate and begin to replicate once more [122]. Persister
cells are one important reason for relapsed infections.
Persisters facilitate the chronic infection with S. typhimu-
rium. Persisters can undermine the host immune response
[123]. (ese persisters can reprogram the macrophages they
dominate [123]. After exposure to ciprofloxacin, a fluo-
roquinolone antibiotic, Salmonella enterica persisters form
unstable small colony variants. (ese phenotypes help the
bacteria survive in the face of environmental stress or an-
tibiotic treatments.

Salmonella persister cells are important components of
biofilms [124]. Biofilm formation is an important strategy for
persistent bacterial infections [125]. Forming biofilm can
confer the bacteria survival advantages. Biofilm formation
on gallstones is important for the chronic carriage of Sal-
monella. Antibiotic therapy efficiency is compromised in
patients with a biofilm in the gall bladder. Salmonella in-
fection in the gall bladder can induce the destruction of the
epithelial cell integrity.

Biofilms are just one strategy for the bacteria to survive
harsh environments. Even without animal reservoirs, bio-
films can help Salmonella spp. to survive in the environment
until uptake into a new host. However, the Salmonella
Typhimurium ST313 strain which can cause blood stream
infections and is typically seen in Sub Saharan Africa [126],
has poor biofilm-forming ability and cannot survive long
outside a host [127].

Except in antigen-presenting cells, Salmonella achieves a
persistent infection in epithelial cells [128] by remaining in a
dormant state. Luk et al. found that Salmonella can live in a
dormant state in the vesicular compartment, different from
the Salmonella-containing vacuoles (SCV). Contrary to
macrophages, Salmonella in epithelial cells can express
Salmonella Pathogenicity Island 2 (SPI-2) virulence factors.
(is report is the first to describe another persistent infection
state and mechanism for S. typhimurium [128].

(e Salmonella SPI2 effector SseI (also called SrfH) binds
with host factor IQ motifs containing GTPase activating
protein 1 (IQGAP1). SseI has been reported to mediate long-
term systemic infections [60]. Pseudogenization of SseI leads
to rapid systemic dissemination of Salmonella typhimurium
through migratory dendritic cells [129]. In the sub-Saharan
African Salmonella typhimurium strain ST313 lineage II,
sseI is lost by pseudogenization. ST313 can disseminate from
the gut to mesenteric lymph nodes (MLNs) via
CD11b +migratory dendritic cells (DCs) [129]. However,
recovery of the gene function by expressing functional SseI
in ST313 isolates reduces the dissemination of the bacteria
[129].

(e interplay between the host immune system and
pathogens is a complex process during chronic infections.
Dendritic cells and macrophages are important reservoirs
for the bacteria that enable long-term survival. Helicobacter
pylori, Mycobacterium tuberculosis, and Salmonella enterica
all survive inside antigen-presenting cells (APCs). (e gall
bladder, bone marrow [130], and mesenteric lymph nodes
are sites that can support persistent infection with Salmo-
nella. Persistent infection with Salmonella can cause disease
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in multiple organs, from gallbladder cancer to pancreatitis.
Pancreatitis can be caused by persistent infection of mice
with Salmonella [14]. Inflammatory, fibrotic, and epithelial
responses can be detected in the pancreases of mice per-
sistently infected with S. typhimurium [14]. Pancreatic ac-
inar cells can be invaded by S. typhimurium.

Salmonella infections are associated with the develop-
ment of IBD (inflammatory bowel diseases) and colon
cancer [131, 132]. One study by Katrin et al. reported that
mice with chronic infections with S. typhimurium develop
severe and persistent intestinal fibrosis and have upregu-
lation of several matrix metalloproteinases (MMPs) [133].
Transforming growth factor–β1, insulin-like growth factor-
I, and type I collagen deposition levels are increased during
persistent infection of S. typhimurium [134, 135].

As shown in mouse models, chronic infection with S.
typhimurium increases the susceptibility to intestinal in-
flammation [136]. (e dDextran sulfate sodium (DSS)-in-
duced colitis and interleukin (IL)-10−/− spontaneous
inflammation mice models were used in this particular study
[137]. Because of persistent infection of S. typhimurium in
the liver and spleen, these mice are more susceptible to
intestinal inflammation. (is indicated S. typhimurium
persistent infection might be related to the accelerated onset
of IBD (inflammatory bowel diseases) of the host [137].

Various studies support the mesenteric lymph nodes as a
site that harbors Salmonella to sustain a chronic infection
[138]. Salmonella can persist in the hemophagocytic mac-
rophages of MLN. Removal of MLN increases the bacterial
burdens in mice, however, indicating that another reservoir
of Salmonella exists other than MLN [138]. Bacteria can be
cultured from the liver tissue of chronically infected mice
[139]. Liver macrophages are shifted to the M2 phenotype
during persistent infection. An immune response balance
exists during chronic infection with Salmonella, for example,
the proinflammatory IFNc and antiinflammatory signals IL-
10. (is balance allows the bacteria to survive in the per-
sistent infection sites [139].

(e cytokine Interleukin-22 (IL-22) can help the colo-
nization of Salmonella by suppressing other commensal
bacteria [140]. IL-22 can function in tissue repair and host
defense; it is induced during pathogen infection. Behnsen
et al. reported that IL-22 can suppress the intestinal
microbiota [140]. IL-22 suppresses commensal Enter-
obacteriaceae and boosts the colonization of Salmonella.
Binding of bacteria with APCs will induce the release of
cytokine IL-23; IL-23 induces IL-17 and IL-22 release
[141, 142]. In IL-22−/− mice has higher E. coli burden and
reduced Salmonella colonization in the intestine than wide
type mice. IL-22 can induce the antimicrobial proteins
lipocalin-2 and calprotectin release to inhibit the growth of
commensal microbiota. (is mechanism is exploited by
Salmonella to outcompete intestinal microbiota [140].

7. Concluding Remarks

Achieving a better understanding of the pathogenesis of
Salmonella will provide further insights into key host-
pathogen interactions that affect persistent bacterial

infections. Understanding the detailed mechanisms and the
specific host cell types involved in Salmonella infections may
help guide the future development of therapeutic inter-
ventions. Understanding the mechanisms of Salmonella
persistent infection will enable researchers to improve upon
current treatment strategies, especially for asymptomatically
infected patients. Treating chronically infected patients will
help reduce the reservoirs for the bacteria and limit the
transmission of the disease.
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