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Infections caused by antibiotic-resistant bacteria are a major public health threat. e emergence and spread of antibiotic
resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide.
Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in
vivo environments. ere is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most
drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-
mediated conjugation transfer is the most common and e�ective way for the spread of multidrug resistance. Experimental studies
of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro
protocols might not correctly re�ect the HGTof antibiotic resistance genes in realistic conditions. is calls for better models of
how resistance genes transfer and disseminate in vivo. e in vivo model can better mimic the situation that occurs in patients,
helping study the situation in more detail. is is crucial to develop innovative strategies to curtail the spread of antibiotic
resistance genes in the future. is review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes
and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in
controlling the spread of antibiotic resistance genes and their potential solutions.

1. Introduction

e spread of bacterial drug resistance and pathogenicity of
bacteria impose substantial health and economic burden [1],
and its wider implications present us with a growing healthcare
crisis [2]. Antibiotic resistance genes (ARGs) can be vertically
transferred and spread via horizontal gene transfer (HGT)
through mobile genetic elements (MGEs) among bacteria [3].
Mechanisms mediating the horizontal transfer of ARGs in-
clude transformation, conjugation transfer, and transduction,
membrane vesicles (MVs), and DNA packaged into virus-like
particles [4]. Bacterial mobile genetic elements (MGEs), such as
conjugative plasmids and integrative and conjugative elements
(ICEs), have been highlighted as important vehicles for the
dissemination of pathogenesis and antimicrobial resistance
determinants [5]. Conjugative plasmids exhibit a wide host
range and thus can shuttle ARGs between di�erent genera,

orders, and even phyla [6]. e sharing of genes through HGT
contributes importantly to the global dissemination of anti-
biotic resistance genes (ARGs) [7]. HGT can occur in any
environment, particularly when bacterial loads are high, for
example, in soil, in wastewater treatment plants [8, 9], and in
the gut microbiome of humans and animals based on the
transfer-related genes carried on plasmids [10]. Most of the
current knowledge of the spread of antibiotic resistance was
obtained by in vitro or observational studies [11]. However,
there remains limited knowledge in vitro to predict the hor-
izontal transfer of antibiotic resistance genes, and the in vitro
models may not correctly re�ect the HGT of the resistance
genes in vivo. us, further studies are needed to understand
the horizontal transfer of antibiotic resistance genes in vivo
[12].

In this review, we provided a brief overview of the
dissemination modes and main transmission mechanisms of
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horizontal gene transfer of antibiotic resistance genes, in-
troduced the spread of antibiotic resistance genes in vivo
model, elaborated some current methods to control bacterial
resistance, and described the future perspectives for anti-
microbial resistance gene removal, thereby presenting a
certain reference for the control of the spread of antibiotic
resistance genes.

2. Dissemination Modes of Antibiotic
Resistance Genes

e dissemination modes of drug resistance genes in
pathogens can be performed by both vertical gene transfer
(VGT) and horizontal gene transfer (HGT) [13]. VGT is
transmitted in the generations. During the process of bac-
terial division, the drug resistance gene is transmitted from
parent to o�spring [14]. HGT breaks the boundaries of
relatedness compared to VGT, enabling the exchange of
genes between di�erent species [15]. It has been shown that
the HGTof bacterial drug resistance plays an important role
in the evolution and spread of multidrug resistance [16].
HGTcan be performed by transformation, transduction, and
conjugation, of which conjugation is the most important
mode, and this mechanism is widely found in bacteria [17].
Mobile genetic elements (MGEs) shared their genetic ele-
ments of resistance with other nonresistant bacterial species
via HGT, which promoted the accumulation and dissemi-
nation of ARGs in Gram-negative and Gram-positive bac-
teria [18, 19]. When the drug resistance genes in bacteria
accumulate to a certain extent, it is possible to form highly
pathogenic super-bacteria resistant to most antimicrobial
drugs, thus posing a serious threat to human health.

3. Mechanisms of the Horizontal Gene Transfer

Antibiotic resistance spreads among bacteria mainly
through the horizontal transfer of antibiotic resistance genes
(ARGs) [20]. Horizontal gene transfer (HGT) plays an
important role in bacterial evolution and greatly facilitates
the rapid spread of resistance genes [21]. e mechanisms of
horizontal gene transfer mainly include conjugation,
transformation, and transduction [22]. In addition, the role
of membrane vesicles (MVs) has also been veri¢ed in HGT.
See Figure 1.

3.1. Conjugation. Conjugation is the transfer of genetic
material (such as plasmid DNA) from donor bacteria to
recipient bacteria through direct physical cell-to-cell contact
[23]. Conjugation is the most important way of horizontal
transfer, and this mechanism is widely present in bacteria
[24]. Conjugation is a contact-dependent process where
mobile genetic elements, such as plasmids and integrating
and conjugation elements (ICEs), are transported through a
pilus or pore between bacteria close to each other [25].
Resistance genes can be transmitted through the conjugation
between the same genus or di�erent species. e spread of
mobile genetic elements has been observed in commensal
and opportunistic pathogens while colonizing the human

gut [26]. Conjugation of plasmid-mediated antimicrobial
resistance genes and the transmission of drug resistance pose
a serious threat to human health [27]. e plasmids carrying
carbapenemase resistance genes (such as blaKPC, blaNDM,
and blaOXA-48) in Gram-negative bacteria can be rapidly
transmitted to other susceptible bacteria by conjugation,
which has become a major global health threat [28]. It has
been reported that the plasmid encoding OXA-48 (carba-
penem resistance) from Enterobacter cloacae may be con-
jugally transferred to other members of the
Enterobacteriaceae family in the gastrointestinal tract [29].
Studies have demonstrated that the ICE-mediated drug
resistance transmission mechanisms can also be found in
Gram-positive bacteria, such as Streptococcus spp. [30].

3.2. Transformation. Transformation means that extracel-
lular DNA from lysed donor bacteria is taken up by the
recipient bacteria and integrated into their genomes so that
the recipient bacteria can acquire new traits [31]. Extra-
cellular DNA is mostly plasmid DNA and fragmented DNA
released during active secretion or lysis by bacteria, often
carrying ARG [32]. Acquired resistance through natural
transformation is thought to occur frequently in many
clinical bacterial species [33]. For example, Neisseria gon-
orrhoeae, Vibrio cholerae, and Streptococcus pneumoniae can
acquire antibiotic resistance through transformation [34].
Studies have shown that E. coli can be transformed by
plasmid DNA under natural conditions, indicating that
E. coli can absorb DNA in the gut, and therefore, it can be
considered that transformation can contribute to the
transmission of ARGs [21, 35]. Fondi et al. [36] reported that
the sequenced Acinetobacter plasmids lack the genes re-
quired for conjugative transfer, indicating that some drug-
resistant plasmids of Acinetobacter baumannii are not dis-
seminated by conjugation but possibly through the natural
transformation pathway.

Out membrane
vesicles fusion

Transformation pilus

Transduction

Conjugation

Figure 1: General ways of horizontal gene transfer. Conjugation,
Transformation, Transduction, and Out membrane vesicles fusion.
Yellow represents DNA fragments; blue represents conjugation
elements (ICEs); orange represents membrane vesicles (MV).
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3.3. Transduction. Transduction uses mild bacteriophage as
a carrier to transfer chromosomal and extrachromosomal
DNA from the donor bacteria to the recipient bacteria so
that the recipient bacteria can acquire new traits [37]. Phages
can coexist with ARGs in the same ecological environment
and the same bacteria, indirectly suggesting that phages may
play a role in the spread of drug resistance genes [38, 39].
Resistance transduction is more common in Staphylococcus
aureus [40]. Methicillin-resistant Staphylococcus aureus
(MRSA) acquires resistance from other bacterial species
conferring the mecA gene by phage-mediated transduction
[41]. ,e Phageφ80α can not only mediate the transmission
of penicillin and tetracycline resistance genes to the mul-
tidrug-resistant S. aureus strain USA300 but alsomediate the
transfer of resistance genes to the phage-unsusceptible
S. aureus spp. [42, 43]. Transduction may occur in nature
anytime, anywhere, and its role in the transmission of drug
resistance is far beyond our imagination [44]. Experiments
in mouse models have demonstrated that transduction is a
driving force behind genetic diversity in gut-colonizing
E. coli strains [45] and can promote the emergence of drug
resistance in gut bacteria [46].

3.4. Other Mechanisms of the Horizontal Gene Transfer.
Horizontal gene transfer can also be carried out through
lysogenic conversion, transposition, and protoplast fusion
[17]. Recently, the roles of membrane vesicles (MVs) in HGT
have also been recognized [47].

Bacterial outer membrane vesicles (MVs) are secreted by
Gram-negative bacteria with particle sizes ranging from 20 to
400nm that participate in diverse biological processes, including
horizontal gene transfer, the export of cellularmetabolites, and cell-
to-cell communication [48].MVs can serve as a delivery system for
antibiotic resistance genes. Studies [49] have shown that Acine-
tobacter baumannii can deliver drug resistance genes through
MVs, and recent reports also demonstrated that the beta-lactamase
gene can transfer to Escherichia coli (E. coli) by MVs [50].

Bacterial drug resistance is mainly transmitted by hori-
zontal gene transfer, leading to the spread of bacterial drug
resistance [51]. Little is known about the spread of the resis-
tance gene HGT in vivo. Horizontal gene transfer of antibiotic
resistance genes has mainly focused on in vitro experiments. In
addition, the delivery of antibiotic resistance genes to the re-
cipient bacterium may be much more complicated, and the
results of in vitro tests may differ from the real situation in vivo.
Research [52] indicates that in vivo models might help to
investigate the dissemination of clinically relevant antibiotic
resistance genes under more realistic conditions than those
currently used within in vitro models. Recently, an increasing
number of researchers have paid more attention to the in vivo
models to study antibiotic resistance gene transfer.

4. In Vivo Horizontal Gene Transfer of
Bacterial Resistance

4.1. Horizontal Transfer of Antibiotic Resistance Genes in the
Human Gut Microbiome. HGT frequently occurs among
human intestinal flora, and opportunistic pathogens can

obtain ARG through HGT, causing major harm to human
health [53]. ,e “human gut microbiome” describes the
microorganisms, their genomes, and the environmental
conditions of the human intestinal tract. As an important
repository of ARGs [54, 55], the human gut microbiota
facilitates the HGT of ARGs. ,ere are many types of
ARGs in the human gut, and a large number of bacteria
and dense mucus layer in the gut also provide a conve-
nient environment for the spread of ARGs [56]. ARGs
from opportunistic pathogens can also be found in the
genomes of Gram-positive commensal bacteria, sug-
gesting that the HGT of ARGs is ubiquitous in the gut,
especially in Firmicutes [57]. Much of the microbiota’s
genome plasticity is thought to be attributable to hori-
zontal gene transfer (HGT), and the most effective
mechanism of which is conjugation, the exchange of
plasmids [58].

In the human gut, antibiotic resistance plasmids and
integrative and conjugative elements (ICEs) can also be
widely transmitted between commensals and opportu-
nistic pathogens [56]. Under normal conditions, HGT
was blocked by the commensal microbiota inhibiting
contact-dependent conjugation between Enter-
obacteriaceae [59]. ,e mammalian gut is mainly colo-
nized by obligate anaerobic bacteria within the phyla
Firmicutes and Bacteroidetes [60]. In the normal gut,
Enterobacteriaceae are usually present at very low
densities (far less than 108 cfu/g), and the low density of
Enterobacteriaceae results in a low frequency of efficient
binding plasmid transfer or HGT [61].

Research indicated that inflammation of the host and
the production of membrane-destabilizing agents have
been proposed to promote HGT in the gut [62]. Inflam-
matory host responses triggered by the gut immune system
(in inflammatory bowel disease patients) or by pathogens
can suppress the anaerobic microbiota and boost entero-
bacterial colonization densities [63, 64]. ,e increasing
prevalence of carbapenemases and extended-spectrum
beta-lactamase in the opportunistic pathogenic bacteria
E. coli and K. pneumoniae is readily transmitted in Pro-
teobacteria in the gut [65]. In a streptomycin-treated
mouse model of Salmonella infection, mouse intestinal
inflammation promotes the coproliferation of donor and
recipient bacteria in the gut [66, 67]. Stecher et al. [59] have
reported the highly efficient HGTof a natural S.Tm plasmid
to resident commensal E. coli in vivo by using a mouse
colitis model and have shown that gut inflammation can
boost horizontal gene transfer between pathogenic and
commensal Enterobacteriaceae. Research by Crémet et al.
[68] revealed that, during a nosocomial outbreak of
Enterobacter cloacae, there was a possible conjugal transfer
of an OXA-48 encoding plasmid from E. cloacae to other
members of the Enterobacteriaceae in patient’s intestines,
and then it can spread to other patients. Another study [69]
reported the presumable transfer of a multidrug resistance
plasmid from Klebsiella pneumoniae to E. coli in the gas-
trointestinal tract of a patient. ,e transfer of resistance
genes has been shown in the gastrointestinal tracts,
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including strains of Enterococcus faecium in the gastro-
intestinal tracts of streptomycin-treated mice and gnoto-
biotic mice [70].

4.2. Horizontal Transfer of Antibiotic Resistance Genes in
Animal Models. Many investigations studying HGT are
mostly in vitro conditions, but these studies may not rep-
resent the real natural environment present in the patients.
Several in vivo animal models have been used to study the
horizontal dissemination of drug resistance genes in vivo,
such as insects, mice, and aquatic organisms. Animal models
may mimic more closely the situation in humans than the
standard in vitro assays. Insects (Galleria mellonella) and
mammals (mice) have become the ideal surrogate organism
for studying virulence and in vivo evaluation of antibiotic
efficacy [71, 72]. ,e new wax moth larva model is a useful
preliminary model for assessing the in vivo efficacy of
horizontal gene transfer between species and genera agents
before proceeding to mammalian studies, which may reduce
the cost of experimentation [73]. And the mammal models
can further evaluate the results of the larval models.

Göttig et al. [74] studied the in vivo horizontal gene
transfer (HGT) employing the Galleria mellonella and low
complexity microbiota mice, which found the intergenic
gene transfer of OXA-48 in vivo higher transmission fre-
quencies versus in vitro liquid mating experiments. In ad-
dition, Price et al. evaluated the effects of clustered regularly
interspaced short palindromic repeats (CRISPR-Cas) on the
spread of antibiotic resistance in the mouse gastrointestinal
model and under different in vitro conditions. And the
results showed that CRISPR-Cas antiplasmid activity in vivo
was much more obvious than that in vitro experiment
conditions [75]. ,ese results demonstrated that in vitro
experiments may not appropriately reflect the HGT of the
antibiotic resistance gene in vivo.

,e research studied that the conjugative transfer of
Salmonella typhi drug resistance plasmid was also easily
transmitted to Escherichia coli in mice [76, 77], which
provided an essential experimental basis for Escherichia coli
existing in the animal intestine as a reservoir of drug re-
sistance genes. Lester et al. [78] showed that in the intestine
of streptomycin-treated mice, aminoglycoside and macro-
lide resistance was transferred via conjugation among En-
terococcus strains.

,e spread of drug-resistant genes has been listed as a
new type of environmental pollutant [79]. Surface water is a
huge reservoir of drug-resistant bacteria and genes [80–82].
,e unique living environments enable aquatic animals to
easily ingest antibiotic-resistant bacteria (ARB) in water
[83]. ,e gut of aquatic animals is an important place for
bacterial growth and reproduction, and at the same time, a
large number of native flora colonizing the gut can serve as
potential recipient bacteria. ,erefore, it may be an im-
portant place for the transfer and spread of drug resistance
genes in aquatic animals [84]. ,e gut of fish, as an im-
portant aquatic animal, would be a suitable environment for
the transfer of antibiotic resistance genes [85]. ,e spread of
ARGs is attributed to horizontal gene transfer such as

conjugation, transformation, and transduction. Conjugation
is likely to be an important mechanism in the gut because of
the surface-contact prevalent in guts [86]. A study [87]
explored the transfer rule of bacterial drug resistance genes
in zebrafish by constructing a transfer model of drug re-
sistance genes in vivo and demonstrated that drug resistance
genes had been transferred and expanded in the zebrafish
gut.

4.3. Horizontal Transfer of Antibiotic Resistance Genes among
Humans,Animals, and theEnvironment. Bacterial resistance
to antimicrobial agents is becoming increasingly common
and serious [88]. Animal pathogens are one of the main
reservoirs of various drug resistance genes, and they can be
continuously transmitted to humans through the food chain,
becoming a major hidden danger to public safety [89]. In
addition, the natural environment provides a natural drug
resistance genes pool for microorganisms, and human ac-
tivities, environmental changes, and animal migration may
all affect the evolution of bacteria and produce new drug
resistance genes [90, 91]. Antibiotics have become one of the
most frequently detected new pollutants in the environment,
and the spread of antibiotics in humans, animals, and the
environment has become a research hotspot at home and
abroad. Tenhagen et al. [92] and Lozano et al. [93] reported
that MRSA can transfer methicillin resistance to humans
through milk and food. Plasmid-mediated colistin-resistant
strains carrying the mcr-1 gene were first isolated in Chinese
animals in 2015, and subsequently, the mcr-1 gene was also
detected in humans and the environment, which suggested
that Enterobacteriaceae bacteria carrying mcr-1 can adapt
well to a variety of hosts and spread between the environ-
ment, animals, and humans [94]. Food animals may be a
pooled reservoir of resistant bacteria and related resistance
genes [95]. With the possibility of antibiotic resistance
spreading from livestock and contaminated meat products
to people, plant-based foods are fundamental to the food
chain of meat-eaters [96]. Recent studies have shown that
environmental bacteria colonized in plant-based foods can
serve as a platform for the horizontal gene transfer of drug
resistance genes. Liao et al. [97] found that fresh lettuce
carries beta-lactam-resistant E. coli may be a reservoir of
resistance genes that could be transmitted to pathogens that
cause human infection. A study by Maeusli et al. [96]
demonstrated that HGT of antibiotic resistance can occur
from Acinetobacter to Escherichia coli (E. coli) resistance on
lettuce. Moreover, transformant E. coli from plant experi-
ments can colonize the mouse gut microbiome.

5. Factors Influencing theTransfer ofAntibiotic
Resistance Genes

5.1. Antibiotics. As a huge reservoir of antibiotic resistance
genes, the human gut microbiome may be involved in the
spread of resistance genes to pathogens [98]. External intake
of antibiotics or resistance genes may affect the resistance
changes of intestinal flora. ,e irrational use of clinical
antibiotics is the main reason for the production of intestinal
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ARGs, and the long-term clinical use of antibiotics makes
the corresponding ARGs in the intestines more abundant
[99]. Jakobsson et al. [100] found that the level of the
macrolide resistance gene ermB in the gut increased by 3 to 5
orders of magnitude after the subjects received antibiotic
treatment. In addition to inducing ARG production, anti-
biotics can also promote ARG transmission. Wu et al. [101]
found that levofloxacin could induce transformation and
promote the spread of drug-resistant E. coli. Misuse of
antibiotics alters gut microbiota homeostasis and promotes
horizontal transfer of resistance genes in vivo [98]. ,e
antimicrobial treatment enhances the selection of resistant
strains and results in an increase in the resistance gene pool,
which ultimately raises the risk of spreading resistance genes
[102].

5.2. 8e Restriction-Modification (RM) System and Anti-
restriction-Modification (Anti-RM) System. Antibiotic re-
sistance gradually increases with the horizontal transfer of
mobile elements encoding resistance genes. ,e RM system
plays an important role in regulating the horizontal gene
transfer of mobile genetic elements. Restriction-modifica-
tion (RM) system is a defense system that exists widely in
bacteria and archaea [103]. In bacteria, the restriction-
modification (RM) system is ubiquitous and is often con-
sidered to be the most primitive immune system of bacteria
to defend against foreign DNA, such as plasmids or bac-
teriophages [104]. See Figure 2(a). Restriction endonuclease
(REase) specifically recognizes foreign DNA and then cuts
and degrades it. Methyltransferase (MTase) methylates
modifies its DNA so that it is free of being degraded [105].
RM systems can be divided into four categories: type I, type
II, and type III REases with no need for specific sequence
methylation for DNA cleavage and type IV REases requiring
exogenous methylation models for DNA cleavage [106].
However, the RM system is a major but incomplete barrier
to HGT, and antirestriction proteins such as ArdA, ArdB,
ArdC, ArdD, and KlcA136 have antirestriction activity and
probably facilitate HGTduring transduction [107–110]. ,e
RM system in the receptor and the antirestriction system in
the mobile genetic element are crucial factors affecting HGT
[111].

5.3. CRISPR-Cas (Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPRs) and CRISPR-Associated
Proteins) System and Anti-CRISPR Protein (ACP).
CRISPR-Cas systems serve as an adaptive immune defense
system that can defend against invading exogenous genetic
material [112]. See Figure 2(b). ,e CRISPR-Cas system has
been found to utilize nucleases programmed with small
RNAs to direct sequence-specific cleavage of nucleic acids,
prevent the spread of plasmids and phages, and therefore
limit horizontal gene transfer mediated by these mobile
genetic elements [113–115]. CRISPR-Cas systems confer
adaptive immunity against mobile genetic elements that are
hypothesized to be a natural impediment to the spread of
antibiotic resistance genes [116].

Horizontal gene transfer (HGT) is the main cause of
bacterial resistance. ,e acquired immune defense of the
bacterial CRISPR system limits the horizontal transfer of
drug resistance genes, thus making bacteria sensitive to
antimicrobial drugs to a certain extent [117]. In the study of
Staphylococcus aureus, it was found that the CRISPR-Cas
system can limit the horizontal transfer of bacterial drug
resistance genes and prevent the spread of drug resistance
genes among staphylococci [118]. A study [119] has shown
that multidrug-resistant enterococci lack CRISPR/Cas sys-
tem elements, suggesting that the CRISPR/Cas system in
bacteria may play an important role in hindering drug re-
sistance transmission. ,e literature suggests an inverse
relationship between the occurrence of the type II CRISPR-
Cas system and antibiotic resistance in Enterococcus faecalis
[120].

,e CRISPR-Cas system, which provides adaptive im-
munity to mobile genetic elements (MGEs) in bacteria, is
considered a barrier to bacterial horizontal gene transfer and
the spread of antibiotic resistance genes [121, 122]. Studies
have shown that the CRISPR-Cas system blocks conjugative
plasmids to disseminate antibiotic resistance genes among
pathogens in vivo. Genetic analysis showed that CRISPR-
Cas is a potent barrier to the horizontal acquisition of an-
tibiotic resistance in E. faecalis. Price et al. [75] demonstrated
that CRISPR-Cas frommammalian intestinal flora can block
the in vivo spread of antibiotic resistance plasmids in the
mouse intestinal colonization model. Another study [113]
showed that the E. faecalis CRISPR3-Cas system interferes
with the conjugative acquisition of pAM714. A study by Wu
and coworkers found that the CRISPR-Cas9 systems target
the tetracycline resistance gene (tetM) and erythromycin
resistance gene (ermB), respectively, successfully reducing
antibiotic resistance to E. faecalis in vitro and in vivo [122].

To combat this immune response generated by CRISPR-
Cas systems, many phages have evolved anti-CRISPR pro-
teins that inhibit CRISPR-Cas targeting [123]. ,e anti-
CRISPR protein (ACP) complex includes proteins encoded
by a variety of mobile genetic elements (MGEs) that inhibit
the function of the CRISPR-Cas system at different stages
[124, 125] and thereby promoting horizontal gene transfer
to a certain degree. However, as pointed out by Stanley et al.,
the phage encoding anti-CRISPRs remain sensitive to
CRISPR-Cas, suggesting that anti-CRISPR action may be an
imperfect process.

6. Discussion

Antibiotic resistance is spreading rapidly around the world
and poses a critical threat to public health [126]. Resistance
genes can be transmitted in humans, animals, and the en-
vironment, increasing the risk of ingesting resistance genes
in humans [127]. ,ere is an urgent need to develop
strategies to control multidrug-resistant (MDR) bacterial
infections and the spread of antimicrobial resistance. Both
horizontal transmissions of bacterial resistance genes and
antimicrobial abuse can cause an increase in the proportion
of resistant bacteria in the environment [128].,erefore, it is
important to control the use of antimicrobial drugs, thereby
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alleviating the formation of bacterial drug resistance and
slowing down the transmission of bacterial drug resistance.

At present, most antimicrobial drugs already have cor-
responding drug-resistant bacteria, but as long as new anti-
biotics are developed faster than the rate of drug resistance
generation, then the threat of bacterial infection will be greatly
reduced. erefore, while adopting other measures to deal
with bacterial drug resistance, new antimicrobial drugs should
also be developed.e study by Ling et al. [129] has developed
a new antimicrobial drug called teixobactin, which inhibits
bacterial cell wall synthesis by binding to a highly conserved
sequence of lipid II and lipid III, and no corresponding re-
sistant bacteria of teixobactin have been found. Furthermore,
there are currently reports of graphene oxide (GO) nano-
composites as an antimicrobial agent used to treat infections
with multidrug-resistant bacteria [130].

In addition, CRISPR-Cas is an e©cient and accurate tool
for genome DNA editing [131]. Currently, CRISPR-Cas has
been developed as a novel antimicrobial agent to induce
bacterial death by speci¢cally targeting and eliminating the
antibiotic resistance genes [132, 133]. CRISPR-Cas systems
act as adaptive immune systems in bacteria and signi¢cantly
a�ect the spread of antibiotic resistance genes and phage
infection [134]. Dong et al. [135] constructed the conjugative
CRISPR/Cas9 system targeting the mobile colistin resistance
gene (mcr-1) in Escherichia coli; this engineered CRISPR/
Cas9 system can not only eliminate drug-resistant plasmids
and resensitize to antibiotics but also make the recipient cell
acquire immunity against mcr-1. e CRISPR-Cas system
can speci¢cally recognize and target the genetic elements
carrying drug resistance genes or their transcripts and limit
the spread of drug resistance genes, which shows great
potential for preventing and controlling bacterial drug re-
sistance [123]. However, antimicrobial therapy based on
CRISPR-Cas technology is still focused on the level of in
vitro research, a few in vivo studies have not reached the
degree of in vitro research e�ect, and they are a�ected by
many factors. e clinical treatment of this technique also
requires more intensive in vivo research, mainly the

application of the complex environment and the host im-
mune response [136].

Even after eliminating the resistance plasmids in the
bacteria, the bacteria can continue to uptake the resistance
genes from the environment. erefore, removing a large
number of drug resistance genes in the environment and
reducing the frequency of drug resistance genes can better
delay the current severe situation of bacterial drug
resistance.

7. Conclusion

e emergence of antibiotic-resistant genes is recognized as
a major global health problem. Genetic material-based
antibiotic resistance genes (ARGs) mainly can be acquired
through gene mutation or horizontal gene transfer and
endow the host with antibiotic resistance, thus seriously
threatening human health [137, 138]. ARG becomes active
due to HGT. HGT of ARGs may lead to the emergence of
multidrug-resistant strains. Plasmid conjugation, phage
transduction, and natural transformation of extracellular
DNA all allow genetic material to jump between strains and
species [16, 139, 140]. Conjugative transfer of plasmids is
regarded as the most essential way of transferring ARGs
between bacteria [141]. e spread of conjugative transfer
studies was mostly conducted in vitro, and it was found that
the antibiotic resistance genes could be transferred between
a variety of bacteria, but it was a�ected by various factors
such as the species and number of bacteria, the size, and
temperature of the plasmid. Also, the new antimicrobial
agent CRISPR-Cas prevents the spread of antibiotic resis-
tance mostly at the level of in vitro research. erefore, it is
signi¢cant to intensively study the spread of antibiotic re-
sistance, investigate the e�ects of CRISPR-Cas systems, and
limit the spread of antibiotic resistance in vivo research.
Studying the spread of clinically relevant antibiotic resis-
tance genes under more realistic conditions for in vivo
models is crucial for future developing innovative strategies
to reduce the spread of bacterial resistance.
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In the present study, we briefly elucidated the dissem-
ination mode of drug resistance genes and the mechanism of
horizontal gene transmission in bacteria, described the
spread of antibiotic resistance genes in in vivo model,
outlined the influencing factors that affect the transmission
of antibiotic resistance genes, and discussed the counter-
measures to bacterial drug resistance, and meanwhile, the
future research direction of antimicrobial resistance gene
removal is proposed to provide some reference for the
control of bacterial drug resistance.
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