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Colistin resistance is a globalized sensible issue because it has been considered a drug of the last-line resort to treat drug-resistant
bacterial infections.Te product of the mobilized colistin resistance (mcr) gene and its variants are the signifcant causes of colistin
resistance, which is emerging due to the frequent colistin use in veterinary, and these genes circulate among the bacterial
community. Apart from mcr genes, some other intrinsic genes and proteins are also involved in colistin resistance. Researchers
focus on the most advanced genomics (whole genome sequencing), proteomics, and bioinformatics approaches to explore the
question of colistin resistance. To combat colistin resistance, researchers developed various strategies such as the development of
newer drugs, the repurposing of existing drugs, combinatorial treatment by colistin with other drugs, a nano-based approach,
photodynamic therapy, a CRISPRi-based strategy, and a phage-based strategy. In this timeline review, we have discussed the
development of colistin resistance and its management in developing countries.

1. Introduction

Antibiotic resistance in Gram-negative pathogens is the
greatest threat, given the limited treatment options available
for patients with these infections. Ceftazidime-avibactam,
meropenem-vaborbactam, and ceftolozane-tazobactam are
some combinations of drugs used to combat multidrug-
resistant strains of Pseudomonas aeruginosa, Acinetobacter
baumannii, and Enterobacteriaceae with metallo-beta-
lactamases (MBLs) such as New Delhi MBL (NDM), which
are the signifcant resistant pathogens [1]. In healthcare
settings, the emergence of multidrug-resistant (MDR)
pathogens such as the so-called “ESKAPEE” group poses
a signifcant challenge that becomes a burning concern due
to the high levels of antibiotic resistance. Enterobacteriaceae
caused an overreliance on last-resort antibiotics, e.g., co-
listin/polymyxins due to the emergence and rapid spread of
particular strains of carbapenemase-producing bacteria [2].

Colistin is an antimicrobial agent extracted from
Paenibacillus polymyxa, which comes under the class
polymyxin group. Class polymyxin antibiotic contains fve
polymyxins: A, B, C, D, and E, of which polymyxin E
(colistin) and polymyxin B are clinically relevant [3]. In
humans, colistin sulfate (CS) is used for oral and topical
administration, while colistin methane sulfonate (CMS)
sodium is used for parenteral treatment. It is one of the last
resorts for antibiotics that are used to treat drug-resistant
bacterial infections [4]. In addition, colistin is a popular
drug for the veterinary, not only to treat infections caused
by Enterobacteriaceae but also as a growth promoter and
a protective agent [5]. In recent years, colistin has been
considered the drug of last resort in the case of infections by
multidrug-resistant Gram-negative bacteria and has begun
to be used in humans, notably by carbapenemase-
producing Enterobacterales, Pseudomonas aeruginosa,
and Acinetobacter baumannii [6–9].
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1.1. Mode of Action. Te outer cell membrane is the major
site of colistin action in Gram-negative bacteria. In the outer
membrane, colistin binds to lipopolysaccharides through
electrostatic interaction between the α, c-di-aminobutyric
acid of colistin and the phosphate groups of the lipid A
region of lipopolysaccharide (LPS). From the phosphate
groups of membrane lipids, divalent cations (Ca2+ and
Mg2+) were displaced by colistin [10, 11]. Te phospholipid
bilayer in Gram-negative bacteria loses its stability due to the
action of colistin, which adds hydrophilic groups to the fatty
acid chains, changing its integrity, failing to maintain cel-
lular content, and leading to cell lysis [9]. Te disruption of
LPS may cause increased permeability of the outer mem-
brane and leakage of intracellular contents, ultimately
leading to cell death [7, 12, 13]. Colistin also exerts anti-
endotoxin activity to prevent endotoxin-mediated
shock [12].

1.2. Use of Colistin in Patients Care. In recent years, there is
a growing interest in deprecating the antibiotic, colistin, with
the scarcity of antimicrobials as the available options. A
guide for colistin therapy and its optimal clinical use is
provided by international consensus recommendations [14].
Colistin is often the last line of defense against multidrug-
resistant Gram-negative bacteria such as carbapenemase
producers in the Enterobacterales [4, 15], Pseudomonas spp.,
and Acinetobacter spp. It is used particularly in critical
clinical conditions such as bacteremia/sepsis and pneu-
monia associated with mechanical ventilation (VAP) in the
intensive care unit. For other clinical conditions, colistin is
seen as an alternative treatment such as urinary tract in-
fections, osteomyelitis, joint infections, meningitis, pneu-
monia, infections of the gastrointestinal tract, pyoderma,
soft tissue infections, eye infections, and ear infections.
Because of its nephrotoxicity, colistin should be adminis-
tered carefully, with dose correction as needed, and tight
surveillance in patients with renal impairment. A synergetic
activity of the combinatorial treatment of colistin with
ceftazidime, rifampicin, and amikacin has been reported in
Pseudomonas, as well as infections caused by MDR Pseu-
domonas aeruginosa [12].

1.3. Frequent Use of Colistin in Veterinary: A Plausible Cause
of Drug Resistance. At present, colistin is still widely used as
an antibiotic in veterinarymedicine,mostly in pigs, for the oral
treatment of intestinal infections caused by Enterobacterales
[16]. Colistin is most frequently used in food-producing an-
imals such as pigs and poultry to control intestinal infections
[17]. Overall, higher proportions of resistant isolates are found
in treated pigs with colistin as compared with untreated [16].
Additionally, to promote the growth of fsh, colistin sulfate has
also been used in the seafood industry. Extensive uses of
colistin in animals create high selective pressure in the vet-
erinary environment [18]. In calves, colistin is also used orally
for the treatment of gastrointestinal diseases, which are ma-
jorly caused by Gram-negative bacteria. Although in oral
treatment, colistin is generally used as monotherapy [5], in the
market, with the sulfate salt form, there are some

pharmaceutical forms that also allow combined therapy.
Association with other antimicrobials like beta-lactams is the
most common and involves mainly amoxicillin [19]. As
a general attitude with all antimicrobials, especially with co-
listin, the veterinary surgeon should ensure that the prescribed
antimicrobial is applied strictly for the treatment of sick an-
imals according to recommended protocols. Frequent use of
colistin could be a signifcant factor to trigger the resistance in
bacteria and responsible for the emergence and circulation of
the mcr1-10 genes among the bacterial communities.

1.4. Colistin Resistance. Several studies showed that the
prevalence of colistin resistance in Enterobacteriaceae has
increased rapidly. Clinicians should be alert due to the
development of colistin resistance through mutation or
adaptation mechanisms among MDR bacteria. Te scientifc
community, experts, government authorities, and public-
private consortia have urged for a reduction in colistin
usage, commending its prescription only for the treatment of
infections as it has been considered a last resort drug.

Colistin usually disrupts the structure of cell membrane
phospholipids and increases cell permeability by a de-
tergent-like action, causing cell death. Colistin resistance
is predominantly achieved through a reduction of the
electrostatic attraction between colistin and the Gram-
negative outer membrane which is due to the addition of
cationic phosphoethanolamine or 4-amino-4-deoxy-L-
arabinose (L-Ara4N) moieties to phosphate groups on the
lipid-A component of LPS and reduces the net anionic
charge of the cell surface. Te mutation leads to the addition
of cationic groups to lipid A which weakens the binding of
polymyxins [20, 21]. Transposable genetic elements (mostly
plasmids with themcr genes) are the major cause of bacterial
colistin resistance in the microbial world. To date, ten
variants of the mobilized colistin resistance genes (mcr),
mcr1-10, have been identifed. Apart from mcr, (major re-
sponsible factor for plasmid-borne colistin resistance) few
other chromosomal genes, mgrB PhoP-PhoQ, PmrA-PmrB
(two-component regulatory systems) mutations, bioflm,
and efux pump have been involved in the colistin resistance
due to the deregulation or loss of function. Colistin re-
sistance mechanisms remain unknown for some bacterial
species, but several molecular mechanisms have been put
forward to explain the mechanisms of colistin resistance, but
still, our knowledge regarding resistance is fragmentary.

1.5. Intrinsic Resistance Mechanisms by Chromosomal Gene.
Naturally occurring resistance to polymyxins is linked to the
constitutive expression of the arnBCADTEF operon and/or
the eptB gene (chromosomal gene), causing the addition of
phosphoethanolamine (pEtN) and/or 4-amino-4-deoxy-L-
arabinose (L-Ara4N) cationic groups to the LPS in
P. mirabilis and S. marcescens. Tis modifcation increases
the charge on LPS (the initial target of the polymyxins),
which decreases polymyxin binding and leads to resistance
[21]. A recent study revealed that colistin exposure enhances
the expression of eptB in colistin-resistant E. coli cohar-
boring mcr-1 [22].
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1.6. Acquired Resistance Mechanisms

1.6.1. Chromosomal Gene-Mediated Resistance. Acquired
resistance to polymyxins has been identifed in several
genera of the Enterobacteriaceae, such as Klebsiella,
Escherichia, Enterobacter, and Salmonella. A single trans-
ferable mechanism of resistance has been identifed so far,
with most of the resistance mechanisms being encoded
chromosomally. Similar to what is observed in strains that
are naturally resistant to colistin, the addition of cationic
groups (L-Ara4N and pEtN) to the LPS is responsible for the
acquisition of colistin resistance in Enterobacteriaceae.
Colistin resistance thus is the result of modifcation of LPS
via chromosomal genes and operons encoding enzymes that
have a direct role in LPS modifcation, such as the pmrC and
pmrE genes and the pmrHFIJKLM operon; regulatory two-
component systems (TCSs) PhoP-PhoQ, PmrA-PmrB, as
well as crrA-crrB, which regulate the PmrA-PmrB system.
Te mgrB gene, a negative regulator of PhoP-PhoQ, while
crrA-crrB regulate PmrA-PmrB, while plasmid-mediated
mcr genes, cpx, and rcs lead to the upregulation of cap-
sule biosynthesis, the activator of the efux pump, and
regulating the PhoP-PhoQ system, respectively [23].

Various PETN-coding genes, such as eptA (pmrC), eptB
(pagC), and eptC (cptA), are able to add PETN to dissimilar
sites of LPS. Alteration of the phoP-phoQ genes has been
recognized in K. pneumoniae and E. coli, leading to attained
colistin resistance [24]. Mutations or disruptions in themgrB
gene have been reported as a potential reason for colistin
resistance; however, mgrB inactivation is the greatest
mechanism for colistin resistance in K. pneumoniae and
K. oxytoca. Amino-acid substitutions of the CrrB protein
result in increased autophosphorylation of this protein,
which consequently leads to colistin resistance [25].

1.7. Plasmid-Mediated Resistance. Transposable genetic el-
ements ormcr genes are the major cause of bacterial colistin
resistance, and to date, ten variants of the mcr1-10, have
been identifed. In 2015, the frst plasmid-mediated colistin
resistance was detected in the E. coli strain of Chinese an-
imals [26]. Generally, low-level colistin resistance with
a minimum inhibitory concentration (MIC) in the range of
2–8mg/l is characterized in E. coli strains with the mcr-1
gene. Te higher mutation rate in the chromosomal poly-
myxin resistance cascade genes produced higher MIC values
(≥64mg/l) caused by the expression of the mcr-1 gene in
E. coli [27]. Another novel plasmid-mediated colistin re-
sistance gene, known as mcr 2, is in E. coli [28]. After this
mcr3 and mcr4 genes were discovered [29, 30]. Finally, in
July, from Salmonella paratyphi B a new gene of the MCR
family was carried in transposons instead of plasmids [17].
In addition, in 2018 three mobile colistin-resistance genes
(mcr6, mcr7, and mcr8) were discovered. In a patient
(Washington State), the mcr-9 gene, a novel mcr homolog
detected in theMDR colistin-susceptible Salmonella enterica
serovar Typhimurium strain, was isolated [31]. According to
the European Committee on Antimicrobial Susceptibility
Testing (EUCAST), this strain was phenotypically sensitive

to colistin with a MIC value of 2mg/l. In vitro expression of
the clonedmcr-9 gene in the E. coli NEB5α strain confrmed
colistin resistance. Recently, Wang et al. [32] isolated mcr10
from a patient in China.

1.8. Bioflm-Mediated Colistin Resistance. Bioflm-mediated
antibiotic resistance is also a well-known phenomenon.
Correlation between the bioflm-forming ability regulated by
genes/proteins and colistin resistance in bacteria has been
shown in several studies, which depicted their inter-
relationships with the resistance phenotype [33–35]. Sev-
eral bacterial species produced bioflms, which promote
tolerance to antimicrobials and hinder their penetration.
Recently, a study was done to establish a possible re-
lationship between bioflm-forming capacity and the
antibiotic-resistant phenotype in clinical Acinetobacter
baumannii [34]. Bioflm formation is positively correlated
with the diferential expression of many relevant virulence
factors, including fagellar, fmbriae, pili, surface proteins,
and the production of poly-β-(1-6)-N-acetylglucosamine
(PNAG) and acyl-homoserine lactone (AHL) signal mole-
cules [35–37]. Bacteria embedded in deeper layers of the
bioflm seldom come into contact with antibiotics, due to the
inability of these drugs to adequately penetrate into its
deeper layers; this results in a 10–1000-fold higher MIC as
compared to planktonic cells [35–37]. Most recently, our
proteomics-based study on colistin-resistant E coli revealed
that a panel of diferentially expressed proteins, which could
be unveiled the mechanism of colistin resistance [33]. Tis
study also suggested that these proteins and their pathways
could be used to develop novel therapeutics against colistin-
resistant infections. An alteration in the mgrB gene (a
negative regulator) in the resistant strains could be poten-
tially due to increased expression of both bioflm-forming
and quorum-sensing genes. Mutations inmgrB could lead to
the dysfunctionality of the phoP-phoQ two-component
system which is further accountable to colistin-induced
resistance by cumulative expression of bioflm-forming
and quorum-sensing genes [38].

1.9. Efux Pumps-Mediated Resistance. Te role of efux in
colistin resistance is not well understood, but studies have
suggested the involvement of efux pumps in colistin re-
sistance [39–41]. Lin et al. [40] suggested that EmrAB efux
pumps contributed to colistin resistance in Acinetobacter
baumannii. Te addition of low doses of the efux pump
inhibitor carbonyl cyanide m-chlorophenylhydrazone
(CCCP) into the medium decreased the MICs for re-
sistant strains (128 to 512-fold reductions) and partially or
completely inhibited the growth of resistant subpopulations
[41]. However, this observation should be considered with
caution owing to the nonspecifc efect of CCCP on efux
systems and its likely wider impact on bacterial metabolism.
Combinatorial use of aMarR inhibitor (enhancer of colistin
binding) and an efux pump inhibitor (reducer of colistin
extrusion) was suggested to restore colistin sensitivity in
colistin-resistant strains of E. coli in vitro and in vivo [39].
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1.10. Strategies to Combat Colistin Resistance. Colistin has
been considered a last-line drug to treat drug-resistant in-
fections. Nowadays, worldwide, the rates of colistin re-
sistance vary between bacterial species such as 3 and 28% for
A. baumannii and 2.8 and 10.5% for K. pneumoniae. Te
emergence of colistin-resistant microbes/bed bugs and their
management are signifcant concerns globally.Worldwide, it
is reported that he rise in consumption of colistin leads to
increased cases of colistin-resistant multidrug-resistant
strains and threatens to return clinicians and patients to
a “preantibiotic era.” Terefore, it creates a therapeutic
challenge to manage the colistin-resistant strains that pro-
duce lactamases. In this context, the development of new
molecules/drugs, repurposing of the existing drugs, com-
bination treatment by colistin with other drugs, and new
promising strategies (nano-based strategy, photodynamic
therapy, and CRISPRi based strategy, Phage based strategy)
are potential to combat the colistin-resistant deadly
bed bugs.

Researchers are continuously trying to develop new
molecules/drugs with a novel mode of action and potentially
efective against the varieties of MDR organisms. Fluopsin C,
a bioactive secondary metabolite (a metal-containing antibi-
otic) extracted from Streptomyces and Pseudomonas species,
showed efective antimicrobial activities against Gram-
positive, Gram-negative, and drug-resistant bacteria
[42, 43], Sharma 2020). Terrein is another purifed metabolite
extracted from the fungus that showed better antimicrobial
activities against S. aureus, A. hydrophila, E. Faecalis, and other
microbes [44]. Terefore, we suggested that after clinical
approval these molecules could be used as potential drugs
against colistin-resistant bacteria.

Classical combinations between colistin and other an-
timicrobial agents have been reported to treat drug-resistant
bacterial infections which are popularly called combinatorial
therapy [45]. Other antibiotics including tigecycline, mer-
openem, gentamicin, or fosfomycin are often used in
combination with colistin [46]. A study has reported that
a patient with ventilator-associated pneumonia (VAP)
caused by colistin-resistant bacteria was successfully man-
aged using a combination therapy of colistin, vancomycin,
and rifampicin [47]. Te efects of this combination therapy
are to be confrmed by a randomized clinical trial that has
been underway [48].

Investigating the new uses of already existing drugs
defned as “repurposing drugs,” has gained attention, as has
using them to manage colistin-resistant strains [49]. Ellip-
ticine, a natural alkaloid, and its analogs were initially re-
ported as an anticancer agent [50]. However later its
antibacterial efectiveness was also accessed against colistin-
resistant E. coli and considered a potent molecule to combat
the deadly bad bugs [51]. Research suggested niclosamide
(an anthelmintic drug) could be repurposed in the combi-
nation with colistin to treat colistin-resistant Gram-negative
bacillary infections [52]. Repurposing of anthelmintic
nonantibiotic molecules with a colistin combination has
been shown to combat colistin-resistant Gram-negative
bacteria [53]. PFK-158, an antitumor drug, has been
repurposed and showed a synergistic efect with colistin

against colistin-resistant Enterobacteriaceae [54]. Figure 1
indicates the probable development of colistin resistance in
developing countries and combating approaches to man-
aging these deadly infections.

In an in vitro study, researchers used the CRISPR/Cas9
approach to remove plasmid (having mcr-1 gene) in
a stepwise manner or simultaneously remove multiple
plasmids in one step. Terefore, this approach could be used
to delete multiple gene copies by using only one sgRNA.
However, caution should be taken to avoid unwanted re-
combination events [55]. Most recently, Khambhati et al.
[56] suggested that CRISPR-assisted phage genome engi-
neering be employed to generate phage variants, which
could combat drug resistance [56].

Te nano-based strategy has been reported to have the
potential to combat drug-resistant infections. Researchers
reported that theMIC of colistin and AgNPs against the pan-
drug-resistant Acinetobacter baumannii was higher as
compared to the combination of colistin and AgNPs (Col-
AgNPs). Terefore, this combination showed a synergistic
efect and led to a reduction in MIC [57]. Col-AgNPs
exhibited higher cell survival than AgNPs and colistin
which could enhance the antimicrobial activity and cell
biocompatibility.

Photodynamic therapy (PDT) based research suggests
that it could be used as an alternative strategy to treat drug-
resistant infections. In an in vitro study, Pourhajibagher
et al. [58] evaluated the efect of PDT along with colistin on
pan-drug-resistant Acinetobacter baumannii.Tey observed
that PDT along with colistin showed a synergistic efect and
eliminated all the pan-drug-resistant Acinetobacter bau-
mannii by decreasing the colistin MIC by more than 11-fold
as compared to PDT alone [58]. Another study has shown
the efect of PDT therapy against the ompA virulence genes
expression in colistin-resistantAcinetobacter baumannii and
found that the overexpression of ompA could assist in more
penetration of the drug [59].

Phase therapy has also re-emerged as a novel strategy
for combating bacterial infections and antibiotic resistance.
By measuring zeta potentials, Hao et al. [60] observed that
at pH7 (neutral) phage particles were negatively charged,
and colistin-resistant bacteria had less negative zeta po-
tentials as compared to the wild type. Terefore, the de-
creased negative surface charge of colistin-resistant cells
leads to a decrease in the electrostatic repulsion between
the bacteria and phage, which promotes phage adherence
followed by subsequent infection [60]. A study suggests
that combinations of phage Phab24 with colistin lead to
changes in envelope architecture that decreased the re-
sistance in colistin-resistant Acinetobacter baumannii [61].
Tis decrease in antibiotic resistance is a direct conse-
quence of the phage-resistance mechanism, and could
potentially be exploited in the clinical setting.

2. Discussion

Te development of carbapenem-resistant Enter-
obacteriaceae (CRE) has become a signifcant challenge
[62–65], which leads to the use of colistin across the globe
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including in South Asian Countries [13, 66]. Te worldwide
spread of carbapenemase-expressing Enterobacteriaceae
needs immediate eforts toward early detection and infection
control measures as it signifes a substantial threat to public
health [66]. In the current therapeutic scenario, colistin is
used as the last alternative antimicrobial against MDR and
PDR (pan-drug-resistant) Gram-negative infections
[11, 13, 67]. Te genetic basis of colistin resistance in Aci-
netobacter baumannii is being explored [68–70], but it still
remains unclear whether similar mechanisms are associated
with colistin resistance in carbapenem-resistant Enter-
obacteriaceae. Diferent bacterial species have developed
resistance due to the inappropriate use of colistin. In-
appropriate dosing of colistin might tip to colistin resistance
among carbapenem-resistant K. pneumoniae strains and
other microbes, while optimal dosing programs have not
been determined for colistin [71]. Prevention strategies play
an important role in the management of the emergence of
colistin-resistant bad bugs (Figure 2).

Colistin resistance is also seen in clinical, food, and food
animal isolates; this resistance is increasing gradually and is
considered a noteworthy problem worldwide. Colistin re-
sistance is due to the use of colistin in animal farms as an
animal food preserver and growth promoter. Te people
working on animal farms and related industries have a se-
rious threat as they may get infections easily from animals.
Such isolates may also spread via water sources as well as act
as a reservoir in the environment. Resistance to this last-line

drug causes enormous difculties in the treatment of pa-
tients infected with MDR and XDR isolates. Colistin re-
sistance dominance among clinical Gram-negative isolates
was beneath 6%. Dalmolin et al. [72] fndings are analogous
to the Gram-negative fnding as the average dominance of
colistin resistance was around 7% among E. coli, Klebsiella
pneumoniae, and Enterobacter species [72]. Many colistin-
resistant clinical isolates were also resistant to a wide variety
of antimicrobial agents, comprising penicillins, cephalo-
sporins, monobactams, carbapenems, aminoglycosides,
quinolones, nitrofurans, and etc. Colistin-resistant
K. pneumoniae from Pakistan was found to be resistant to
twenty-three antimicrobial agents from ten antimicrobial
groups except for tigecycline [68]. Likewise, colistin-
resistant Acinetobacter isolates were not accountable to
imipenem, meropenem, ampicillin-sulbactam, cipro-
foxacin, gentamicin, and amikacin resistance [73]. Te
animal isolates have a higher incidence of colistin resistance
with reference to clinical isolates as up to 69% of E. coli
isolates recovered from milk were resistant to colistin.
Amongst various colistin-resistant bacterial strains obtained
from various animal samples, E. coli was the major isolate.

Mobilized colistin resistance (mcr) gene or mcr-
harboring bacterial isolates have been reported from six
continents (Asia, Europe, Africa, North America, South
America, and Oceania) and over 27 bacterial species since
the frst isolation of mcr-1 in China [26], the numbers of
reports have been increasing due to long term use of colistin/
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polymyxins in veterinary as a medicine. It is worth noting
that before 2005, the mcr-harboring isolates were not
identifed in any reports, but most of the isolates reported in
the last decade weremcr-positive historic isolates. Te major
suggested causes are the importation of food from infested
countries like Japan and Tunisia [74, 75], the over-
prescription of colistin in human medicine to treat ex-
ceedingly resilient clinical pathogens in Argentina [76],
global trade, and travel to countries with high or unknown
prevalence like Canada [77], USA [78], and Japan [79]. To
date, quite a few other mcr gene variants have been

recognized, including mcr-2, -3, -4, -5, -6, -7, and -8, which
share 81%, 32%, 34%, 36%, 83%, 35%, and 31% amino acid
sequence personality, separately, withmcr-1 [80]. Temcr-9
is closely related tomcr-3, as reported [31]. In a recent study,
it was described that the recently found mcr-9 gene in
Salmonella typhimurium, from a clinical isolate in the USA,
was capable of conversing phenotypic resistance to colistin
in Enterobacteriaceae, making it a signifcant concern to the
public health [31]. Andrade et al. [81] summarized the
colistin action and its drug resistance mechanisms [81–83].
Recently a study explored the bunch of proteins has been

PREVENTATION
STRATEGIES

REASON FOR
RESISTANCE

GENOTYPING
AND RAPID
DIAGNOSIS

1

CROSS
CONTAMINATION1

2 SURVILLENCE
CULTURE

2 COMORBIDITIES

INFECTION
CONTROL
MEASURES

3

DURATION OF
TREATMENT3

ANTIMICROBIAL
STEWARDSHIP

PROGAMME
4

SEVERITY OF
ILLNESS4

Figure 2: Prevention strategies and plausible factor for colistin resistance.

6 Canadian Journal of Infectious Diseases and Medical Microbiology



involved in colistin resistance by proteomic and bio-
informatics [33], which could be employed to explore future
research questions in the feld of colistin resistance.

3. Conclusion and Future Prospects

Nowadays, colistin resistance has become the greatest issue
to treat globally. Various studies have proven this resistance
in several bacterial species worldwide. In view of the fact of
its ability to pass on horizontally from one bacterium to
another, between animals and humans; therefore, the mcr1-
10 genes were acknowledged as the major responsible factor
for colistin resistance. Apart from mcr genes, some chro-
mosomal genes, mgrB PhoP-PhoQ, PmrA-PmrB, bioflm
formation, and efux pump have been considered as po-
tential factors for colistin resistance. Most of the resistant
bacteria were also featured as being MDR with or without
colistin resistance. To combat this deadly situation various
strategies have been employed. Researchers have developed
newer molecules/antibiotics, with better efects and more
tolerance than colistin, using antibiotic groupings with
diferent antibiotics, or even with nonantibiotic molecules
which have become a novel substitute for colistin. We
cannot completely rely on the discovery of newer antibiotics
because after the implication of antibiotics bacteria de-
veloped resistance rapidly. Repurposing of the drugs,
combinatorial treatment by colistin with other drugs, other
promising strategies such as nano-based strategy, photo-
dynamic therapy, CRISPRi based strategy, and Phage-based
strategy, etc., potential to combat the colistin resistance. Te
combination of meropenem and colistin has shown a syn-
ergistic efect against antibiotic-resistant Gram-negative
bacteria and has the potential to reduce the development
of resistance. From this focused review, we suggested that
the combination of drugs (like meropenem and colistin) and
other strategies (nano-based strategy, photodynamic ther-
apy, CRISPRi-based strategy, and Phage based strategy)
could be employed to combat drug-resistant bad bugs and
a possible option to manage this greatest issue [83–86].
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