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Limited studies have investigated the microbial colonization of the airways and intestines in preterm neonates. We studied the
composition of intestinal and airway bacterial colonies in several preterm twin pairs and singletons to explore the dominant
bacteria, assess their variability, and predict their phenotypic and metabolic functions. In this descriptive study, we collected
sputum and fetal stool specimens from 10 twin pairs (20 cases) and 20 singleton preterm neonates. Tese specimens were
analyzed using 16S rRNA deep sequencing to study the alpha and beta diversities and community structures of airway and
intestinal bacteria and predict their metabolic functions. Specimens from twins and singleton neonates had distinct ag-
gregations of intestinal and airway bacteria but showed similarities and high microbial diversities during initial colonization.
Te top fve phyla were Proteobacteria, Firmicutes, Actinobacteriota, Bacteroidota, and Cyanobacteria.Te top ten genera were
Streptococcus, Acinetobacter, Ralstonia, Staphylococcus, Comamonas, Enterococcus, Stenotrophomonas, Dechlorosoma,
Sphingopyxis, and Rothia. Potentially pathogenic and highly stress-tolerant Gram-negative bacteria were predominant in the
intestinal fora. A considerable proportion of colonies recovered from the airway and intestines of preterm neonates were
functional bacteria. Te richness of the intestinal and airway fora was not signifcantly diferent between twins and singletons,
and the fora clustered together. Both intestinal and airway bacteria of twins and singletons were similar. Te species involved
in initial colonization were similar but diferent in proportions; therefore, changes in microbial structure and richness may not
be attributed to these species.

1. Introduction

Human microecology refers to the microorganisms colo-
nizing parts of the human body, including the skin, digestive
tract, respiratory tract, and genitourinary tract. Intestinal
microecology is the most complex ecosystem in the human
body, accounting for approximately 78% of the total microbial
load in the body [1]. Te lungs were previously assumed to be
sterile; however, the refnement of group analysis techniques
for 16S ribosomal RNA gene sequencing has revealed that the
lungs harbor bacteria [2, 3]. Although the total number of
bacteria in the lungs is low, the airway microbiome is likely
critical for initiating host immunity, even at low population
densities [4, 5]. Te association between intestinal and airway

bacterial colonization may be crucial in certain pulmonary
and intestinal diseases. Studies have identifed various roles of
intestinal and airway bacteria in immune homeostasis and
related conditions in the respiratory and digestive tracts,
leading to the development of the “gut-lung axis” concept
[6, 7]. Numerous studies have focused on the microbial
colonization of individual body sites, whereas few have ex-
plored the association between the airway and intestinal
bacteria. Understanding interactions between microbial
communities inmultiple organs remains a daunting challenge
[8]. Research on the “gut-lung axis” focuses mainly on the
impact of bacterial colonization on diseases and rarely on
colonization in preterm twin and singleton neonates. Eluci-
dating the colony structures of these microbiomes may

Hindawi
Canadian Journal of Infectious Diseases and Medical Microbiology
Volume 2023, Article ID 2973605, 14 pages
https://doi.org/10.1155/2023/2973605

https://orcid.org/0000-0001-9803-1566
https://orcid.org/0000-0003-3882-3590
https://orcid.org/0000-0001-6598-9014
https://orcid.org/0000-0001-8811-4798
https://orcid.org/0009-0000-4075-1499
https://orcid.org/0009-0006-9927-1629
https://orcid.org/0000-0002-1440-7974
mailto:534167313@qq.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2973605


provide new insights into the pathogenesis and progression of
intestinal and airway diseases.

Our contact with microorganisms begins in utero, and the
limited postnatal bacterial community expands into a dense,
fxed-value, and diverse bacterial ecosystem during the frst
weeks of life [9]. Cases of twin pregnancies have increased
signifcantly because of increased incidences of advanced
maternal age and use of assisted reproductive technologies.
Twins born at the same gestational age as singletons often
have a lower body mass, comprise a higher proportion of
preterm births, and present a higher risk during pregnancy
[10]. Many studies have analyzed the gut and airway
microbiota in full-term neonates, focusing on neonatal
necrotizing small bowel colitis and bronchopulmonary dys-
plasia [11, 12]. However, few have examined the composition
of airway and intestinal bacterial colonies in preterm twin and
singleton neonates. Herein, we aimed to describe the dif-
ferences in colonization between gut and airway bacteria in
preterm singleton and twin neonates to investigate potential
diferences between the bacterial communities and predict
their phenotypic and metabolic functions.

2. Materials and Methods

We collected fetal stool (groups A and B—twins and sin-
gletons, respectively) and sputum (groups C and D—twins
and singletons, respectively) samples from 10 twin pairs and
20 singletons born preterm (gestational age, 32–35weeks) in
the obstetrics and gynecology department of our hospital
from April to July 2021. At enrollment, gestational age, total
leukocyte counts, hemoglobin levels, parents’ ages, and reason
for cesarean section were recorded. Tis study was approved
by the Medical Ethics Committees of ChengduWomen’s and
Children’s Central Hospital (approval number: 2021/123). All
guardians signed the informed consent form.

Upon crying at birth, newborns were suctioned endo-
tracheally. Te sputum was added to 0.5mL sterile saline in
a sterile tube. A stool specimen was taken from the frst fetal
stool and added to 0.5mL sterile saline in a sterile tube.
Tese specimens were sent for analysis.

DNA was extracted using the E.Z.N.A. Bacterial DNA
and E.Z.N.A. Stool DNA kits (Omega Bio-Tek, Norcross,
GA, USA) following the manufacturer’s instructions. PCR
primers were designed to target the variable region of the
16S/ITS2 rDNA gene. Te 16S V3–V4 region was amplifed
using PCR with 341F (5′-CCTACGGGNGGCWGCAG-3′)
and 805R (5′-GACTACHVGGGTATCTAATCC-3′). After
35 cycles, sequencing adapters and barcodes were added for
amplifcation. Amplifcation products were detected using
1.5% agarose gel electrophoresis. Amplifed fragments were
recovered using AxyPrep PCR Cleanup Kit (Beckman
Coulter Genomics, Danvers, MA, USA) and purifed using
the Quant-iT PicoGreen dsDNA assay kit (Invitrogen,
Carlsbad, CA, USA). Amplicon libraries were prepared for
sequencing; their size and number were evaluated using an
Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) and an Illumina library quantifcation kit (Kapa
Biosciences, Woburn, MA, USA), respectively. Tese li-
braries were sequenced using NovaSeq PE250.

Paired-end reads were assigned to the samples using
their unique barcodes and truncated by cutting of the
barcode and primer sequences. Tey were merged using
FLASH (v1.2.8) for 16S rRNA and PEAR (v0.9.6) for ITS2
rDNA. Raw reads were quality fltered to obtain high-quality
clean tags using fqtrim (v0.94). Chimeric sequences were
fltered using VSEARCH software (v2.3.4). After der-
eplication using DADA2, amplicon sequence variants
(ASVs) were employed to build operational taxonomic units
(Supplementary Material 1). Using these OTUs, we obtained
feature tables and sequences. Alpha and beta diversities were
calculated using QIIME2. Te exact numbers of sequences
were extracted randomly, reducing their numbers to the
minimum of the samples. Te relative abundance was cal-
culated (bacterial count/total count). Pictures were drawn in
R (v3.5.2) [13].

2.1. Statistical Analysis. Data were analyzed using SPSS
(v20.0; IBM, Armonk, NY, USA). Continuous variables were
assessed using an independent samples t-test, and cate-
gorical variables were compared using the Fisher exact test.
P< 0.05 was considered signifcant.

Sparse curves were plotted to assess whether sequencing
depth could reveal the microbial community diversity. Alpha-
diversity analyses (Chao1 and Shannon) were performed to
determine the richness and evenness of communities, and
violin plots were constructed to analyze the diferences among
subgroups [14]. Beta-diversity analyses were performed using
analysis of similarity (ANOSIM) and nonmetric multidi-
mensional scaling (NMDS) based on the Jaccard algorithm to
assess species diversity among subgroups. Te unweighted
pair group method with arithmetic mean (UPGMA) was
employed to cluster the samples evaluating diferences in
species diversity [15]. Species richness at phylum, order,
family, genus, and species levels was obtained based on ASV
annotation results and abundance table for each sample
(Supplementary Material 2). Te data were displayed using
a heat map and stacked bar graphs. Species richness was
assessed using the Kruskal–Wallis test based on the abun-
dance of diferent groups. Sankey diagrams demonstrated the
relative abundances of bacterial groups at phylum and genus
levels for diferent grouped samples. Linear discriminant
analysis (LDA) efect size was applied to visualize diferential
species at all levels [16]. Te evolutionary tree of ASV sig-
nature sequences was constructed using multiple sequence
comparison results. Scatter plots showed the evolution of each
sample in the predicted groups, classifed as aerobic, anaer-
obic, facultatively anaerobic, containing mobile elements,
bioflm-forming, and Gram-negative [17, 18]. Functional
genes of the metabolic pathways in gut and airway microbiota
were predicted using PICRUSt2 [19].

3. Results

Forty newborns participated in this study (10 twin pairs and
20 singletons). Teir stool and sputum samples were divided
into four groups based on the source. Te diferences in
gestational age, Apgar score (1min), mode of birth, parents’
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ages, white blood cell and neutrophil counts, and hemo-
globin levels between twins and singletons were not sig-
nifcant (Table 1). Cesarean delivery in twin pregnancies was
caused by preterm labor (three cases), intrauterine distress
(two cases), severe intrahepatic cholestasis during pregnancy
(two cases), premature rupture (one case), and social factors
of fetal membranes (one case). Cesarean delivery in sin-
gleton pregnancies was caused by severe eclampsia (four
cases: B10, B11, B17, and B20), intrauterine distress (four
cases: B5, B6, B14, and B16), scarred uterus (two cases: B13
and B19), premature rupture of fetal membranes (three
cases: B1, B2, and B12), severe intrahepatic cholestasis (two
cases: B4 and B9), and breech (one case: B8).

Te rarefaction curves of groups A–D show that the
samples had sufcient sequencing depth, suggesting
a uniform distribution of samples and high species richness
(Figures 1(a) and 1(b)). Chao1 (Figure 1(c)) and Shannon
(Figure 1(d)) violin plots show that alpha diversities were
not signifcantly diferent between groups A and B and
between groups C and D. Tis result suggests that preterm
twins and singletons of the same gestational age at birth do
not exhibit decreased colonization of intestinal and airway
microbiota.

Based on the Jaccard algorithm, ANOSIM, NMDS, and
UPGMA beta-diversity analyses were performed. ANOSIM
revealed that between-group diferences were higher than
within-group diferences (Figure 2(a)). NMDS used the
ranking method of the sample distance matrix, and di-
mensionality reduction was calculated (Figure 2(b)). Based
on the results of ASV analysis of each sample, the coefcient
of dissimilarity between samples was measured using the
Jaccard index in the UPGMA method of clustering
(Figure 2(c)). Similar clustering patterns were seen within
the airway and intestinal tract samples. In general, there were
similarities between the intestinal fora as well as the airway
fora of twins and singletons.

We created stacked bar plots of groups A–D for
abundance at the phylum, order, family, genus, and species
levels. We constructed heat maps displaying the top 30

compositions for relative abundance. Table 2 presents the
top genera and phyla. Acinetobacter, Comamonas, and
Enterococcus were relatively more abundant in the gut,
whereas Streptococcus, Ralstonia, and Staphylococcus were
more abundant in the airways of both singletons and twins.
Te principal genera were observed in the airways and
intestinal tracts in diferent proportions. Phylum
(Figures 3(a), 3(c) and 3(e)) and genus (Figures 3(b), 3(d)
and 3(f )) level diferences determined using the Krus-
kal–Wallis test are shown in Figure 3 (for class, order,
family, and species level diferences, refer to Supplementary
Material 3).

Figure 4(a) shows the relative abundance of bacterial
groups at the phylum and genus levels. LDA efect size was
used to detect variability among the subgroups using the
rank-sum test and obtain diferential species (biomarkers)
(Figure 4(b)) and their efect sizes. Acidithiobacillus in group
A, Acinetobacter and Stenotrophomonas in group B, Strep-
tococcus, Rothia,Curtobacterium, andDyella in group C, and
Anaerococcus in group D were the ultimate potential species
of diference (Figure 4(c)).

Species evolutionary trees were constructed for Strep-
tococcus and Lactococcus, Acinetobacter and Pseudomonas,
and Ralstonia and Dechlorosoma using signature sequences.
Comamonas and Delftia exhibited a similar evolutionary
relationship (Figure 5).

Preterm twins and singletons have lower abundances of
anaerobic bacteria in their airways and guts. Premature
newborns have a high proportion of Gram-negative bacteria
in the digestive tract (Figures 6(a)–6(i)). Sample gene se-
quences were annotated using the KEGG database on
metabolic pathways based on their metabolic function
prediction using PICRUSt2. Metabolism, genetic and en-
vironmental information processing, cellular processes, and
human diseases were the main processes in level 1. In level 3,
the main pathways were valine, leucine, and isoleucine
degradation and biosynthesis, terpenoid-quinone bio-
synthesis, and vitamin B6 metabolism (Figures 7(a)–7(c),
Supplementary Material 4).

Table 1: Sample characteristics of 10 pairs of twins and 20 singleton newborns.

A (n� 20) B (n� 20) Statistics P

Sex (male/female) 6/14 7/13 — 0.736a

Birth method (vaginal delivery/cesarean section) 2/18 4/16 — 0.661a

Gestational week 34.30± 0.80 33.95± 1.00 1.222 0.229b

Apgar score (1min) 9.05± 0.69 9.00± 0.80 0.213 0.833b

Weight (kg) 2.17± 0.19 2.20± 0.43 −0.304 0.763b

Length (cm) 43.85± 1.63 44.30± 2.13 −0.750 0.458b

Head circumference (cm) 31.43± 1.20 31.38± 1.87 0.091 0.928b

Number of breaths (times/min) 46.90± 5.75 48.70± 6.66 −0.915 0.366b

Blood oxygen saturation (%) 96.50± 1.00 95.10± 2.31 2.483 0.200b

White blood cells (109/L) 10.15± 2.55 11.97± 4.67 −1.525 0.136b

Absolute neutrophil count (109/L) 5.17± 2.23 6.93± 5.05 −1.424 0.163b

Age of the father (years) 32.80± 2.63 29.25± 4.73 2.932 0.060b

Age of the mother (years) 30.40± 3.32 28.35± 4.39 1.666 0.104b

Number of pregnancies (times) 2.00± 1.03 1.90± 0.97 0.317 0.753b

Number of births (times) 1.80± 0.70 1.50± 0.51 1.552 0.129b

Signifcant diferences in continuous and categorical variables were examined using student’ t-test and chi-squared test, respectively (∗P< 0.05). aValues
shown for categorical variables are the number. bValues shown for continuous variables are the mean± SD.
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4. Discussion

Tis study determined the diversity and community
structure in the bacterial microbiome of the airways and
intestines of preterm twin and singleton neonates. Te
patient characteristics between twin and singleton neonates
were not signifcantly diferent. Alpha-diversity analyses
showed that bacterial colonies were more abundant and
homogeneous in the intestine than in the airway, likely

because gut microorganism homeostasis is more stable as
fetal stool samples are expelled less frequently. Te neonates
did not exhibit signifcant diferences in intestinal or airway
bacterial colonies, suggesting that the diversity and richness
of the initially colonized bacteria were similar.Terefore, the
diferences in the fora of adult twins are most likely due to
acquired factors [20]. Beta-diversity analyses demonstrated
that between-group diferences were higher than within-
group diferences.
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Figure 1:Te dilution curve refects the rationality of the amount of sequencing data and the abundance of species in the sample.Te Chao1
(a) and Shannon (b) indices in the alpha-diversity analyses refect the richness and homogeneity of bacterial colonies. Te violin plot
comparing the diferences among the groups through the Kruskal–Wallis test (c, d). Te P value in the upper left corner was obtained via
grouping using the rank-sum test; ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001.
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A consistent fnding of many previous studies is the re-
duced abundance of bifdobacteria, anaphylactic bacteria, and
lactobacilli in infants born by cesarean section compared to
those born vaginally, with their intestinal fora composition
similar to microorganisms in the maternal skin and hospital
environment [21–23]. Diferent birth modes may result in
altered immune functions, with reduced proportions of
regulatory T cells and downregulation of the regulatory
markers Foxp3, Il10, and Ctla4 in cesarean-born mice, which
may suggest that preterm infants born by cesarean section are

more susceptible to allergic diseases [24, 25]. Our study
revealed that the dominant intestinal phylum and genera were
Proteobacteria and Acinetobacter and Comamonas, re-
spectively. Tis fnding difers from that reported by Turunen
that the dominant intestinal phylum and genera in full-term
neonates were Firmicutes and Lactobacillus and Streptococcus,
respectively [26]. Herein, the most abundant phylum and
genera in the airways were Firmicutes and Streptococcus and
Ralstonia, respectively. Streptococcus has previously been
reported to be the single dominant genus [27]. Interestingly,
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Figure 2: Te statistic values between −1 and 1 were evaluated using ANOSIM. Values close to 1 exhibited a greater sample diference
among the groups and among samples within the group (a). In the NMDS plot, the points represent samples, diferent colors represent
diferent groups, and the distance between points represents the degree of diference between samples. Stress was used to measure the merit
of the NMDS results ((b): stress <0.1 indicated a good ranking). In the UPGMA clustering diagram, the branches of diferent colors represent
diferent groups ((c): the shorter the branch, the more the similarities). P< 0.05 is statistically signifcant.
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Table 2: Characterization of major bacterial distributions at phylum and genus levels based on relative taxonomic abundance.

Phyla A (%) B (%) C (%) D (%)
Proteobacteria 76.01 81.98 29.48 34.99
Firmicutes 21.95 16.37 62.07 60.05
Actinobacteriota 1.87 0.25 4.26 2.74
Bacteroidota 0.11 1.25 1.38 0.72
Cyanobacteria 0.01 0.00 2.30 0.71
Genera A (%) B (%) C (%) D (%)
Streptococcus 1.45 1.21 48.76 37.41
Acinetobacter 30.04 34.70 1.44 0.67
Ralstonia 0.02 0.02 20.86 25.29
Staphylococcus 5.54 1.00 9.28 17.57
Comamonas 13.96 15.94 0.89 0.92
Enterococcus 9.12 7.28 0.09 0.14
Stenotrophomonas 7.38 9.12 0.04 0.05
Dechlorosoma 5.99 6.71 0.00 0.00
Sphingopyxis 4.79 5.06 0.00 0.00
Rothia 1.73 0.11 2.88 1.32
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however, it has also been shown that the microbiomes of fetal
feces and airways are infuenced by placental microorganisms
regardless of the mode of delivery [3, 28]. Bacterial species are
similar in the airways and intestines. In this study, the
dominant genus in fecal samples was Acinetobacter, which
Doyle et al. reported as the dominant genus in the placenta
[29]. Although we chose to collect airway specimens asep-
tically, contamination is possible because the airway micro-
biome includes inhaled microbiota. Te impact of various
causes of premature birth on colonization was not evaluated
but will be the focus of our next study.

Te preterm infants in the study were breastfed. Breastmilk
is one of the primary sources of gut bacteria in infants. Infants

consuming approximately 800ml of breastmilk ingest ap-
proximately 1× 105 to 1× 107 bacteria. Newborns receive
colostrum from breastmilk, which results in a more complex
intestinal bacterial colony structure and contributes to a more
complete and stable intestinal immune system [30]. However,
in this study, we did not sequence the microfora of breastmilk;
we plan to investigate this in the future.

Te similarity of the microbiomes of preterm single and
twin births at the genus level may suggest that the initial
neonatal fora colonization occurs more often during and
shortly before delivery. It has been emphasized that evidence
for the presence of the placental microbiome is insufcient in
the case of either physiological delivery or spontaneous preterm
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birth because of the high potential for contamination during
sample collection [31]. Furthermore, during the course of life,
themicrobiome constantly adapts and dynamically responds to
external stressor events to ensure homeostasis in vivo. A follow-
up study on 903 children showed that gut microbial devel-
opment is divided into developmental, transitional, and stable
phases [32]. A study of premature twins reported that the
reduced abundance of Enterococcus and Fusobacterium may
downregulate methionine and cysteine levels, leading to

excessive oxidative stress and low levels of 1-C metabolism
[33]. Dysbiosis of microbial fora may be associated with
bronchopulmonary dysplasia, inadequate colonization of the
intestinal fora in preterm infants with delayed immune de-
velopment, and infammatory diseases (necrotizing small
bowel colitis) [27, 34]. Tis highlights the need for neonatal
microecological correction in preterm infants, both in twins
and singletons. Tere are studies on transplantation of ma-
ternal fecal microorganisms to rapidly restore normal gut
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microorganisms in infants born by cesarean section [35];
however, there have not yet been any reports on the trans-
plantation of airway microorganisms, and related studies may
serve as stepping stones for future early intervention strategies
to place infants on a healthy trajectory.

We observed that most intestinal bacteria were Gram-
negative with potential pathogenicity and a high stress-
tolerance capacity. Predicting intestinal and airway bacte-
rial phenotypes can help clinicians manage infections in
preterm newborns. Te onset of intestinal function after
birth may also impact the intestinal fora.

Te catabolism and synthesis of valine, leucine, and
isoleucine, biosynthesis of terpene quinones, over-
expression of vitamin B6, and metabolism of Vibrio
cholerae pathogenic cycles were the primary pathways in
level 3. Tese fndings suggest the presence of functional
microorganisms in preterm neonates. Intestinal bacteria
catabolized the three amino acids more but synthesized
them less than airway bacteria. Tese amino acids are
critical for regulating protein synthesis and metabolism but
cannot be synthesized endogenously in mammals. Tey are
obtained only through diet, and their defciency is asso-
ciated with sarcopenia, obesity, and insulin and glucose
metabolism [36]. Te biosynthetic pathways in gut mi-
crobes are dominated by the degradation of the three
amino acids in children compared to their synthesis in
adults, suggesting that metabolic pathways change with age
[37]. Vitamin B6 is a water-soluble vitamin involved in
several metabolic reactions, particularly those involving
amino acids. Vitamin B6 and probiotic treatment are
known to alleviate the symptoms of lactose intolerance and
functional gastrointestinal disorders in patients, improving
their intestinal microbiota and metabolism [38]. Tese
fndings suggest that colonized bacteria undergo robust
replication and repair, engage in nutrient exchange with
the host, and play a vital role in maintaining the immune
stability of the microenvironment. Because we did not test
the amniotic fuid or placenta for bacteria or perform
detailed proteomic assays on the samples, changes in
metabolic pathways were projected using sequencing data,
and their accuracy should be verifed.

5. Conclusions

Te richness of the intestinal and airway fora was not
signifcantly diferent between twins and singletons, and the
fora clustered together. Te species involved in initial
colonization of the intestine and airway were similar in twins
and singletons but difered in proportions.Tis may indicate
that colonization of the intestinal and airway bacteria may
occur at the time of delivery or shortly before delivery.
Terefore, changes in microbial structure and richness may
not be attributed to these species. Dysbiosis of microfora
may be associated with bronchopulmonary dysplasia, nec-
rotizing enterocolitis, and allergic diseases, and early cor-
rection of the initial colonizing microorganisms in preterm
infants may prevent the occurrence of adverse outcomes in
preterm infants. Correction regarding airway microecology
remains a challenge at present.
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