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Objective. To establish a prediction model of pneumonia risk in SARS-CoV-2-infected patients to reduce unnecessary chest CT
scans. Materials and Methods. Te model was constructed based on a retrospective cohort study. We selected SARS-CoV-2 test-
positive patients and collected their clinical data and chest CT images from the outpatient and emergency departments of Hunan
Provincial People’s Hospital, China. Univariate and multivariate logistic regression and least absolute shrinkage and selection
operator (LASSO) regression were utilized to identify predictors of pneumonia risk for patients infected with SARS-CoV-2.Tese
predictors were then incorporated into a nomogram to establish the model. To ensure its performance, the model was evaluated
from the aspects of discrimination, calibration, and clinical validity. In addition, a smoothed curve was ftted using a generalized
additive model (GAM) to explore the association between the pneumonia grade and the model’s predicted probability of
pneumonia. Results. We selected 299 SARS-CoV-2 test-positive patients, of whom 205 cases were in the training cohort and 94
cases were in the validation cohort. Age, CRP natural log-transformed value (InCRP), and monocyte percentage (%Mon) were
found to be valid predictors of pneumonia risk. Tis predictive model achieved good discrimination of AUC in the training and
validation cohorts which was 0.7820 (95% CI: 0.7254–0.8439) and 0.8432 (95% CI: 0.7588–0.9151), respectively. At the cut-of
value of 0.5, it had a sensitivity and specifcity of 70.75% and 66.33% in the training cohort and 76.09% and 73.91% in the
validation cohort, respectively. With suitable calibration accuracy shown in calibration curves, decision curve analysis indicated
high clinical value in predicting pneumonia probability in SARS-CoV-2-infected patients. Te probability of pneumonia pre-
dicted by the model was positively correlated with the actual pneumonia classifcation. Conclusion. Tis study has developed
a pneumonia risk prediction model that can be utilized for diagnostic purposes in predicting the probability of pneumonia in
patients infected with SARS-CoV-2.

1. Introduction

SARS-CoV-2 infection has prevailed globally since 2020,
accounting for recurring quarantines in many countries. It
has signifcantly impacted public health and the global
economy [1, 2]. As of 10 February 2023, there have been
755,385,709 confrmed cases of COVID-19 reported to
WHO globally, including 6,833,388 deaths. Omicron, the
mutant strain, entered the community in November 2021
and is far more contagious and escape-resistant than the
previous variants of concern (VOC), like Delta [3–8]. At the

beginning of 2022, the Omicron version quickly surpasses
the Delta variant as the prevalent strain worldwide [9].

During the early period of the COVID-19 pandemic,
SARS-CoV-2 primarily afected the lung and caused
pneumonia [10–13]. As one of the most representative and
accurate diagnostic methods for COVID-19 [14], chest
computed tomography (CT) scans are widely used in
mainland China.

However, recent studies have demonstrated that the
most recent VOC, Omicron is much less likely to cause
pulmonary infections [3–5, 15, 16], suggesting potential
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implications for adapting management strategies for these
infections.

In clinical practice, we found that due to the appre-
hension of contracting severe pneumonia from the SARS-
CoV-2, many people with mild symptoms are choosing to
receive CT scans, causing excessive CT scans and putting
a strain on the availability of healthcare resources, which is
particularly true when SARS-CoV-2 localized epidemic
outbreaks occur. Terefore, a strategy to evaluate the risk of
pneumonia among recently infected people is essential to
ensure the efcient use of medical resources and decrease
unnecessary exposure to electromagnetic radiation.

Tis study is to improve the classifcation of pneumonia
risk in individuals with the most recent VOC of SARS-CoV-
2 infections. In this way, it can not only reduce the overuse of
CT scans and nonessential ionizing radiation in individuals
but also reduce the associated fnancial burden on patients
and optimize the allocation of medical resources. As a result,
we have developed and externally validated a pneumonia
risk prediction model based on general patient data and
blood routine tests, which meets the needs of the new phase
of COVID-19 epidemic control.

2. Material and Methods

2.1. Materials. A retrospective analysis was performed on
the clinical data of SARS-CoV-2 test-positive patients who
visited outpatient and emergency departments and un-
derwent chest CTscans at the Mawangdui Branch of Hunan
Provincial People’s Hospital from 20 December 2022 to 23
December 2022 and at the Tianxinge Branch of Hunan
Provincial People’s Hospital from 1 January 2023 to 4
January 2023. Te inclusion criteria were as follows: (a)
attendance as an outpatient or emergency (not including
inpatients); (b) patients had completed chest CT scans, and
CT imaging data were available; (c) SARS-CoV-2 infection
positive was diagnosed by antigen test or nucleic acid test
within 3 days before the current chest CT; (d) complete
blood routine examination results were obtained. Te ex-
clusion criteria were as follows: (a) infammation of a body
part other than the lungs had been diagnosed at the time of
the current blood routine tests; (2) the patient was already on
antiviral medication at the time of the visit. Te patient
recruitment pathway is detailed in Figure 1.

Te study was conducted in accordance with the Dec-
laration of Helsinki. It was approved by the Medical Ethics
Committee of Hunan Provincial People’s Hospital (Te First
Afliated Hospital of Hunan Normal University), and pa-
tient informed consent was waived for this retrospective
analysis.

2.2. Methods

2.2.1. Device Parameters and Image Analysis. At the
Mawangdui Branch (training cohort) of Hunan Provincial
People’s Hospital, CT scans were performed with a United
Imaging uCT 760GE 128-slice CT using the following pa-
rameters: feld of view (FOV), 230mm× 230mm; layer
thickness, 5mm; and layer spacing, 5mm. At the Tianxinge

Branch (validation cohort) of Hunan Provincial People’s
Hospital, CT scans were performed with a United Imaging
uCT 860 160-slice CT or a United Imaging uCT 960 + 640-
slice CTusing the following parameters: feld of view (FOV),
230mm× 230mm; layer thickness, 5mm; and layer spacing,
5mm. Two attending radiologists conducted image analysis
separately, and the fnal decision in case of a dispute was
determined by consultation between the two physicians. CT
diagnosis of COVID-19 was referred to the report published
by the RSNA [17]. Typical fndings were as follows: pe-
ripheral distribution, ground-glass opacity, fne reticular
opacity, vascular thickening, and reverse halo sign. Patients
with pneumonia were also classifed into grades 0, 1, 2, 3, and
4 according to the extent and distribution of lung in-
volvement (no lung involvement was categorized as grade 0).

2.2.2. Statistical Analysis and Construction and Evaluation of
Predictive Models. Statistical analysis was performed using
Empower Stats, version 5.0 (https://www.empowerstats.
com, X&Y Solutions, Inc., Boston, MA, USA), R statisti-
cal software, version 4.2.0 (https://www.R-project.org,Te R
Foundation), and the SPSS statistical software, version 27.0
(SPSS Inc., Chicago, IL, USA) with continuity variables
expressed as medians (min, max) and categorical variables
expressed as frequencies (percentages). Kruskal–Wallis rank
sum test or Fisher’s exact probability test was used to
compare diferences between groups of continuity variables.
Te Chi-square test was used for comparisons of categorical
variables. After the natural log transformation of some
continuity variables, to reduce irrelevant and redundant
information, the predictor variables of the training cohort
were fltered using both “univariate and then multivariate
logistic regression” and “least absolute shrinkage and se-
lection operator (LASSO)” methods. Te variables selected
by both screening methods were used as the fnal predictor
variables. Te prediction model was constructed based on
multivariate logistic regression and was presented in a no-
mogram. Te ROC curves were used, and 500 in eternal
resamples were performed by Bootstrap to evaluate the
discrimination of the pneumonia risk model between the
training and validation cohorts. DeLong test and integrated
discrimination improvement index (IDI) were used to
compare the AUC of the pneumonia risk model with the
AUCs for predictors incorporated in the model alone.
Calibration curves were plotted to assess the calibration of
themodel.Te clinical validity of themodel was evaluated by
the net beneft of DCA at diferent threshold probabilities. In
addition, a smoothed curve was ftted using a generalized
additive model (GAM) to explore the relationship between
the pneumonia grade and the model’s predicted probability
of pneumonia. A diference of P< 0.05 was considered
statistically signifcant.

3. Results

3.1. General Information. A total of 205 patients were en-
rolled in the training cohort, of which 105 cases (51.22%)
were female and 100 cases (48.78%) were male, 99 cases
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(48.29%) without pneumonia and 106 cases (51.71%) with
pneumonia. Te median age of the training cohort was
47 years old, the youngest being 14 and the oldest being 97;
a total of 94 cases were enrolled in the validation cohort, of
which 60 (63.83%) were female and 34 (36.17%) were male,
47 (50.00%) were without pneumonia, and 47 (50.00%) were
with pneumonia. Te median age of the validation cohort
was 56 years old, the youngest being 2 and the oldest 89; the
distribution of the remaining baseline indicators is shown in
Table 1.

3.2. Predictor Variable Screening Results. Among the base-
line indicators in the training cohort, univariate logistic
regression identifed the following factors as possible pre-
dictors (P< 0.1): age, white blood cells (WBC), red blood
cells (RBC), neutrophils percentage (%Neu), neutrophils
number (#Neu), lymphocytes percentage (%Lymph),
monocytes percentage (%Mon), red cell distribution width-
standard deviation (RDW-SD), platelet distribution width
(PDW), mean platelet volume (MPV), platelet large cell ratio
(P-LCR), CRP natural log-transformed value (InCRP), eo-
sinophils percentage (%Eos), basophils percentage (%Bas),
basophils number (#Bas). Further multivariate logistic re-
gression showed age, CRP natural log-transformed value
(InCRP), neutrophils percentage (%Neu), and monocytes
percentage (%Mon) as independent predictors (P< 0.05)
(Table 2). Lasso regression selected three predictors with
nonzero coefcients: age, InCRP, %Mon (Figure 2)
(screening lambda by 10-fold cross-validation, based on
lambda. 1se, i.e., the maximum lambda corresponding to an
error mean within one standard deviation of the minimum).
To lessen irrelevant and redundant information, the vari-
ables age, InCRP, and %Mon selected by both screening
methods were taken as the fnal predictor variables.

3.3. Construction and Evaluation of theNomogramPrediction
Model. Multivariable logistic regression analysis established
a nomogram model based on the fnal selected predictor
variables (Figure 3(a)). Te AUC of the pneumonia risk
model was 0.7820 (95% CI: 0.7254–0.8439) in the training
cohort and 0.8432 (95% CI: 0.7588–0.9151) in the validation
cohort (Figures 3(b) and 3(c)); at the cut-of value of 0.5, the
sensitivity and specifcity of the pneumonia risk model were
70.75%, 66.33% (training cohort), 76.09%, and 73.91%
(validation cohort), respectively; the calibration curve
showed good agreement between the predicted probability
of pneumonia from the pneumonia risk model and the
actually observed probability. Decision curve analysis
(DCA) showed good clinical validity of the pneumonia risk
model in the training and validation cohort (Figures 3(f) and
3(g)). Other diagnostic parameters of the model are shown
in Table 3. A comparison of the AUC and DCA for the
pneumonia risk model, with predictors incorporated in the
model alone in the whole study cohort, is illustrated in
Figure 4, which shows that the pneumonia risk model
combining multiple predictors has better diagnostic per-
formance than a single predictor.

3.4. Correlation between the Predicted Probability of Pneu-
monia Risk and Pneumonia Grade. We further explored the
correlation between the predictive values of the pneumonia
risk prediction model constructed in this study and the
actual pneumonia severity rating. As mentioned in the
method, patients with pneumonia were also classifed into
grades 0, 1, 2, 3, and 4 according to the extent and distri-
bution of lung involvement (no lung involvement was
categorized as grade 0). Te actual pneumonia rating results
are shown in Table 4. A positive linear correlation was found
between the predicted pneumonia probability of the

Outpatients and emergency patients receiving chest CT
scan at Hunan Provincial People's Hospital Mawangdui

Branch from Dec. 20, 2022, to Dec. 23, 2022.
N=324

Outpatients and emergency patients receiving chest CT
scan at Hunan Provincial People's Hospital Tianxinge

Branch from Jan. 1, 2023, to Jan. 4, 2023.
N=582

Training cohort (N=205)
(Selected cases at Mawangdui Branch from Dec. 20,

2022, to Dec. 23, 2022.)

Validation cohort (N=97)
(Selected cases at Tianxinge Branch from Jan. 1, 2023,

to Jan. 4, 2023.)

Patients excluded due to:
No results of nucleic acid and antigen to 
SARS-CoV-2 detection within 3 days 
before the current chest CT. (n=343)
The results of nucleic acid or antigen to 
SARS-CoV-2 detection were negative within 
3 days before the current chest CT. (n=48)
No blood routine test results or incomplete 
blood routine test results. (n=87)
Inflammation of a body part other than the 
lungs has been diagnosed at the time of the
current chest CT and routine blood 
tests. (n=4)
Patient had already taken antiviral
medication with in 3 days at the time of the
visit. (n=3)

1.

2.

3.

4.

5.

Patients excluded due to:
No results of nucleic acid and antigen to 
SARS-CoV-2 detection within 3 days 
before the current chest CT. (n=69)
The results of nucleic acid or antigen to 
SARS-CoV-2 detection were negative within
3 days before the current chest CT. (n=29)
No blood routine test results or incomplete 
blood routine test results. (n=16)
Inflammation of a body part other than the 
lungs has been diagnosed at the time of the 
current chest CT and routine blood 
tests. (n=3)
Patient had already taken antiviral
medication within 3 days at the time of the
visit. (n=2)

1.

2.

3.

4.

5.

Figure 1: Instructions for enrolling in the training cohort and validation cohort cases.
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pneumonia risk model and actual pneumonia grade using
GAM (Figure 5); see Figure 6 for examples.

4. Discussion

In this study, we constructed a pneumonia risk prediction
model based on common, easily obtainable, and inexpensive
clinical indicators such as “age,” “InCRP,” and “%Mon” to
classify the pneumonia risk of patients infected with SARS-
CoV-2. It provides an appropriate reference for clinicians in
selecting chest CT examinations to reduce unnecessary
medical ionizing radiation and alleviate patients’ economic
burden. Te model performs well in discrimination, cali-
bration, and clinical efectiveness and can be widely applied
for clinical use.

4.1. Analysis of the Rationality of Including “Age” in the
Pneumonia Risk PredictionModel inTis Study. Te severity
and fatality rates of COVID-19 signifcantly vary with age
group, and they rise sharply in older people [18–20].
According to recent studies, the activation of the nucleotide-

binding domain and leucine rich repeat containing family,
pyrin domain containing 3 (NLRP3) infammasome, plays
a role in lung infammation and fbrosis induced by SARS-
CoV-2 infections [21]; the NLRP3 infammasome is ex-
cessively activated in older individuals due to impaired
mitochondrial function, elevated levels of mitochondrial
reactive oxygen species (mtROS), and/or mitochondrial
DNA. Tis results in an exaggerated response from classi-
cally activated macrophages and subsequent increases in IL-
1β [22]. Tis explains, to some extent, why elderly patients
are more likely to have pneumonia after being infected with
SARS-CoV-2 and also provides evidence for the rationality
of including age as a predictive factor in our
prediction model.

4.2. Analysis of the Rationality of Including “InCRP” in the
PneumoniaRiskPredictionModel inTis Study. As a general
indicator of infammation, CRP is associated with the
clinical severity of COVID-19 [20, 23, 24]. CRP is an
infammatory biomarker synthesized by the liver. Our
results show that CRP levels are signifcantly elevated in

Table 1: Baseline indicators in the training cohort and validation cohort.

Characteristic
Training cohort Validation cohort

No pneumonia Incident pneumonia P value No pneumonia Incident pneumonia P value
Participants 99 106 47 47
Age (year) 32.00 (14.00–86.00) 61.50 (17.00–97.00) <0.001 39.00 (17.00–79.00) 69.00 (2.00–89.00) <0.001
Gender 0.718 0.668
Female 52 (52.53%) 53 (50.00%) 29 (61.70%) 31 (65.96%)
Male 47 (47.47%) 53 (50.00%) 18 (38.30%) 16 (34.04%)
CRP (mg/L) 6.82 (0.00–154.30) 18.60 (0.47–359.14) <0.001 1.66 (0.00–115.27) 28.21 (0.00–236.13) <0.001
WBC (109/L) 5.40 (1.41–10.36) 5.53 (2.36–15.56) 0.038 7.35 (2.43–9.42) 6.82 (2.54–14.64) 0.511
RBC (1012/L) 4.86 (3.31–6.44) 4.79 (2.78–6.55) 0.178 4.90 (3.84–6.29) 4.46 (3.30–5.62) <0.001
HGB (g/L) 146.00 (67.00–184.00) 145.00 (93.00–192.00) 0.224 141.00 (116.00–173.00) 132.00 (100.00–171.00) 0.002
PLT (109/L) 185.00 (98.00–361.00) 173.00 (51.00–460.00) 0.090 269.00 (136.00–424.00) 221.00 (59.00–579.00) 0.008
%Neu (%) 69.10 (29.00–89.30) 70.65 (38.80–94.10) 0.019 61.30 (44.70–82.10) 71.40 (44.70–92.60) <0.001
%Lymph (%) 19.70 (4.40–60.60) 20.00 (2.40–53.80) 0.189 30.70 (8.90–47.60) 19.40 (5.80–47.00) <0.001
%Mon (%) 9.40 (3.70–29.50) 7.90 (1.40–20.10) <0.001 7.00 (3.40–14.50) 7.20 (1.50–19.30) 0.295
%Eos (%) 0.60 (0.00–8.00) 0.25 (0.00–5.90) 0.016 1.20 (0.00–11.20) 0.70 (0.00–3.20) 0.017
#Eos (109/L) 0.03 (0.00–0.35) 0.01 (0.00–0.36) 0.057 0.08 (0.00–0.91) 0.04 (0.00–0.23) 0.022
%Bas (%) 0.20 (0.00–7.50) 0.10 (0.00–0.80) 0.002 0.20 (0.00–0.70) 0.10 (0.00–0.40) 0.004
#Bas (109/L) 0.01 (0.00–0.32) 0.01 (0.00–0.03) 0.049 0.01 (0.00–0.04) 0.01 (0.00–0.02) 0.001
#Neu (109/L) 3.45 (0.72–8.25) 3.75 (0.91–14.36) 0.012 4.26 (1.47–6.85) 4.67 (1.46–12.80) 0.188
#Lymph (109/L) 1.05 (0.23–3.56) 1.06 (0.24–5.47) 0.864 2.05 (0.73–3.34) 1.19 (0.55–3.94) <0.001
#Mon (109/L) 0.48 (0.19–1.50) 0.43 (0.08–1.51) 0.216 0.48 (0.17–0.74) 0.52 (0.14–1.14) 0.388
HCT (%) 42.10 (22.40–52.10) 41.15 (26.00–53.30) 0.135 42.50 (36.20–52.00) 39.80 (30.90–49.00) <0.001
MCV (fL) 87.60 (55.30–98.10) 87.55 (62.00–99.40) 0.597 89.30 (66.10–105.00) 89.70 (69.30–102.50) 0.427
MCHC (g/L) 350.00 (301.00–369.00) 352.00 (298.00–376.00) 0.147 331.00 (311.00–352.00) 333.00 (315.00–353.00) 0.198
MCH (Pg) 30.70 (16.70–33.90) 30.90 (20.10–35.20) 0.286 30.10 (21.00–34.40) 30.10 (22.30–35.30) 0.276
RDW-SD (fL) 39.40 (33.30–55.50) 40.15 (33.70–49.60) 0.040 40.50 (36.00–48.50) 40.20 (32.50–49.90) 0.771
RDW-CV (%) 12.20 (11.30–19.90) 12.40 (11.30–17.40) 0.096 12.10 (11.10–15.90) 12.20 (10.90–14.00) 0.803
PDW (%) 16.20 (10.20–17.10) 16.30 (15.40–17.80) 0.014 16.20 (15.60–16.80) 16.30 (15.70–17.40) 0.112
MPV (fL) 9.50 (7.30–11.90) 9.80 (8.00–12.40) 0.020 9.30 (7.70–11.70) 9.50 (7.20–12.30) 0.122
PCT (%) 0.18 (0.10–0.34) 0.17 (0.05–0.41) 0.247 0.25 (0.14–0.36) 0.20 (0.06–0.53) 0.010
P-LCR (%) 23.80 (8.80–41.90) 26.10 (12.40–44.90) 0.033 21.70 (12.60–39.20) 24.20 (10.00–42.60) 0.226
CRP�C reactive protein; WBC�white blood cells; RBC� red blood cells; HGB� hemoglobin; PLT�platelets; %Neu�neutrophils (percentage); %
Lymph� lymphocytes (percentage); %Mon�monocytes (percentage); %Eos� eosinophils (percentage); #Eos� eosinophils (number); %Bas� basophils
(percentage); #Bas� basophils (number); #Neu�neutrophils (number); #Lymph� lymphocytes (number); #Mon�monocytes (number); HCT� hematocrit;
MCV�mean corpuscular volume; MCHC�mean corpuscular hemoglobin concentration; MCH�mean corpuscular hemoglobin; RDW-SD� red cell
distribution width-standard deviation; RDW-CV� red cell distribution width-coefcient of variation; PDW� platelet distribution width; MPV�mean
platelet volume; PCT�plateletcrit; P-LCR� platelet large cell ratio.
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SARS-CoV-2-infected individuals, which is consistent
with previous research [24, 25], and it may indicate
COVID-19 changes earlier than chest CT—CRP was
signifcantly elevated before CT fndings in severe
COVID-19 patients [26].

4.3. Analysis of the Rationality of Including “%Mon” in the
PneumoniaRiskPredictionModel inTisStudy. In our study,
%Mon was partially associated with the risk of pneumonia,
which is in accord with recent studies [27]. Monocytes are
innate immune system cells that participate in several im-
mune function events, including phagocytosis, antigen
presentation, and infammatory responses [28]; circulating
monocytes extravasate into peripheral tissues during sterile
and nonsterile infammation and undergo diferentiation
into macrophages or dendritic cells. A previous review ar-
ticle discussed the buildup of monocyte/macrophage cells in
the lungs. Tese cells are likely sources of the proin-
fammatory cytokines and chemokines linked to deadly

diseases brought on by human coronavirus infections, such
as COVID-19 [29]. It suggests that the migration of
monocytes into lung tissuemay be the cause of themonocyte
reduction in peripheral blood.

In previous relevant studies, additional factors, such as
cardiovascular disease, hypertension, chronic respiratory
disease, diabetes, obesity, and high serum ferritin levels, were
found to be associated with the progression of COVID-19
[30–32]. Angiotensin-converting enzyme 2 (ACE2) has been
found to be a pathway by which SARS-CoV-2 enters cells,
and angiotensin-converting enzyme inhibitor (ACE1) and
angiotensin II receptor antagonist (ARB) are mainly used to
treat cardiovascular disease and hypertension, which may
lead to increased ACE2 expression and promote SARS-CoV-
2 infection in hypertensive patients [33]. Moreover, smokers
and COPD patients have higher levels of ACE2 expression in
their lungs [34, 35]. Tis may go some way towards
explaining why patients with chronic respiratory disease are
more likely to progress after SARS-CoV-2 infection. Di-
abetes patients are more likely to develop COVID-19 at

Table 2: Univariate andmultivariate logistic regression analyses of candidate predictors of pneumonia risk predictionmodels in the training
cohort.

Characteristic
Univariate analysis Multivariate analysis

β (95% CI)/OR (95% CI) P value β (95% CI)/OR (95% CI) P value
Gender 0.7178
Female 1.0
Male 1.11 (0.64, 1.91)
Age (year) 1.03 (1.02, 1.04) <0.0001 1.03 (1.01, 1.05) 0.0095
WBC (109/L) 1.18 (1.04, 1.35) 0.0136 1.38 (0.46, 4.09) 0.5663
RBC (1012/L) 0.70 (0.45, 1.07) 0.0978 2.77 (0.68, 11.32) 0.1549
HGB (g/L) 0.99 (0.98, 1.01) 0.1937
PLT (109/L) 1.00 (0.99, 1.00) 0.1753
%Neu (%) 1.03 (1.01, 1.05) 0.0051 0.76 (0.59, 0.99) 0.0415
%Lymph (%) 0.98 (0.96, 1.00) 0.0769 0.80 (0.61, 1.04) 0.0991
%Mon (%) 0.85 (0.77, 0.93) 0.0005 0.66 (0.50, 0.88) 0.0041
#Neu (109/L) 1.23 (1.06, 1.42) 0.0056 0.98 (0.24, 3.96) 0.9818
#Lymph (109/L) 0.99 (0.65, 1.51) 0.9585
#Mon (109/L) 0.53 (0.17, 1.65) 0.2730
HCT (%) 0.95 (0.90, 1.01) 0.0989 0.88 (0.75, 1.04) 0.1332
MCV (fL) 1.01 (0.97, 1.05) 0.5854
MCHC (g/L) 1.02 (0.99, 1.04) 0.2370
MCH (Pg) 1.05 (0.94, 1.16) 0.3793
RDW-SD (fL) 1.09 (1.00, 1.19) 0.0522 0.95 (0.81, 1.12) 0.5666
RDW-CV (%) 1.18 (0.90, 1.56) 0.2336
PDW (%) 2.35 (1.15, 4.82) 0.0195 1.44 (0.65, 3.16) 0.3659
MPV (fL) 1.53 (1.11, 2.11) 0.0097 18.62 (0.98, 355.15) 0.0519
PCT (%) 0.14 (0.00, 22.97) 0.4483
P-LCR (%) 1.05 (1.01, 1.10) 0.0178 0.70 (0.47, 1.04) 0.0773
InCRP (mg/L) 1.84 (1.46, 2.32) <0.0001 1.89 (1.40, 2.55) <0.0001
%Eos (%) 0.83 (0.68, 1.01) 0.0594 0.71 (0.50, 1.03) 0.0691
#Eos (109/L) 0.09 (0.00, 3.02) 0.1814
%Bas (%) 0.08 (0.01, 0.49) 0.0058 2.95 (0.97, 90.23) 0.5346
#Bas (109/L) 0.00 (0.00, 0.01) 0.0249 0.00 (0.00, inf.) 0.3203
WBC�white blood cells; RBC� red blood cells; HGB� hemoglobin; PLT�platelets; %Neu�neutrophils (percentage); %Lymph� lymphocytes (percentage);
%Mon�monocytes (percentage); #Neu�neutrophils (number); #Lymph� lymphocytes (number); #Mon�monocytes (number); HCT� hematocrit;
MCV�mean corpuscular volume; MCHC�mean corpuscular hemoglobin concentration; MCH�mean corpuscular hemoglobin; RDW-SD� red cell
distribution width-standard deviation; RDW-CV� red cell distribution width-coefcient of variation; PDW� platelet distribution width; MPV�mean
platelet volume; PCT�plateletcrit; P-LCR� platelet large cell ratio; InCRP�natural log-transformed value of CRP; %Eos� eosinophils (percentage);
#Eos� eosinophils (number); %Bas� basophils (percentage); #Bas� basophils (number). Signifcance in bold in Table 2 indicates indicators with p values less
than 0.05 in multivariate analysis.
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a severe stage. Tis might be brought on by hyperglycemic
circumstances that afect neutrophil activity, antioxidant
system function, and humoral immunity, all contributing to
immunological dysfunction [36]. Obesity afects lung
function by infuencing lung volume and compliance, as well
as narrowing peripheral airways [37]. Additionally, due to
the high expression of angiotensin-converting enzyme type 2
in adipose tissue compared to the lungs, there is a hypothesis
that SARS-CoV-2 may be capable of entering adipocytes and
causing infection. Tis could contribute to the spread of the
virus to other organs or serve as a natural reservoir for
prolonged viral clearance [38]. Clinically applicable in-
fammatory marker panels now contain ferritin. In-
fammation can cause the release of ferritin from
macrophages or cells owing to tissue damage. Tis release
explains the abnormal levels of ferritin in infammation.
Since our study is based on a retrospective analysis, it is
limited because of missing information, so some of the

valuable indicators reported by relevant studies are not
included in this study. In addition, some of the indicators
were not included in our study because they were derived
from patients’ complaints rather than standard medical
diagnoses and thus had low credibility.

From the standpoint of model promotion, the more
streamlined a prediction model is, the less expensive, easier
to use, and more suited to wide application it is. However, it
will also result in a decline in prediction performance.

Tis is a matter of balance: whether the model should be
applied mainly for primary screening of high-risk cases or
whether it should prefer higher predictive accuracy. It de-
pends on the application scenario of the constructed model.

In this study, the pneumonia risk prediction model we
constructed was mainly applied to the primary screening of
people at high risk of pneumonia in SARS-CoV-2-infected
individuals, so we chose a more streamlined modeling
strategy.
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Figure 2: (a) LASSO regression coefcient path diagram; (b) LASSO regression cross-validation curve. Tree predictors with nonzero
coefcients were selected by LASSO regression (screening lambda by 10-fold cross-validation, based on lambda. 1se, i.e., the maximum
lambda corresponding to an error mean within one standard deviation of the minimum): age, InCRP, %Mon.

Table 3: Diagnostic parameters of the pneumonia risk model.

Variable
Value

Training cohort Validation cohort
AUC 0.7820 (95% CI: 0.7254, 0.8439) 0.8432 (95% CI: 0.7588, 0.9151)
Cutof value 0.5 0.5
Specifcity 66.33% 73.91%
Sensitivity 70.75% 76.09%
Accuracy 68.63% 75.00%
Positive-LR 2.10 2.92
Negative-LR 0.44 0.32
Diagnose-OR 4.77 9.02
Positive-pv 69.44% 74.47%
Negative-pv 67.71% 75.56%
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Figure 3: Continued.
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Figure 4: Comparison of the models in the whole study cohort. (a) Receiver operator characteristic curves of the models are presented to
compare their discriminatory accuracy for predicting pneumonia risk. P values show the AUC for the pneumonia risk model versus the
AUCs for predictors incorporated in the model alone; the predictive ability of the predictors in the model individually and the overall
predictive power of the pneumonia risk model are contrasted via IDI. (b) Decision curve analyses comparing the net beneft of the
nomogram of the pneumonia risk model versus the other variables incorporated in the nomogram alone are shown. AUC: area under the
curve; CI: confdence interval; IDI: integrated discrimination improvement.
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Figure 3: (a) Nomogram of the pneumonia risk model; (b–g): ROC curves (bootstrap� 500 times), calibration curves, and DCA curves of
the pneumonia riskmodel in the training and validation cohorts.Te ROC curves show good discrimination of the pneumonia riskmodel in
both the training and validation cohorts. Te calibration curves showed that the pneumonia risk model has good calibration accuracy. Te
decision curve analysis showed that the pneumonia risk model has high clinical value in predicting the probability of pneumonia in SARS-
CoV-2-infected patients.
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Figure 5: Correlation between the predicted probability of pneumonia risk and pneumonia grade ((a) training cohort; (b) validation
cohort). A positive linear correlation was found between the predicted pneumonia probability of the pneumonia risk model and pneumonia
grade using GAM.

Table 4: Distribution of actual pneumonia grades in the training cohort and validation cohort.

Actual pneumonia grade
Participants n (%)

Training cohort Validation cohort
0 99 (48.29%) 47 (50.00%)
1 70 (34.15%) 22 (23.40%)
2 23 (11.22%) 18 (19.15%)
3 12 (5.85%) 6 (6.38%)
4 1 (0.49%) 1 (1.06%)

(a) (b)
Figure 6: Continued.
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One unexpected fnding was that the model performed
better in the validation cohort than in the training cohort.
Tis result may be explained by the relatively small sample
size of the validation cohort and a certain degree of ho-
mology with the training cohort.

5. Conclusion

In this study, a pneumonia risk prediction model was de-
veloped and externally validated based on simple clinical and
blood test indicators. Te model was used to diagnostically
predict the likelihood of pneumonia in patients infected with
SARS-CoV-2 and performed well on dimensions of dis-
crimination, calibration, and clinical validity. It can be used

as a reference for the management of pneumonia risk
classifcation in SARS-CoV-19-infected patients.

6. Limitations of This Study

Our study has several limitations. First, despite applying the
inclusion criteria strictly, we could not completely rule out
cases with potential lesions in body parts other than the
lungs from infuencing the predictors at study entry. Tis
caused some confusion in constructing the model and
difculties in evaluating its predictive performance.

Second, even though external validation was carried out,
it was a single-center retrospective study, and the sample size
was somewhat tiny.

(c) (d)

(e) (f )

Figure 6: Examples of the pneumonia risk model applications. (a and b): A 32-year-old male presented with a 1-day history of fever with
a maximum temperature of 39.2°C. At the time of presentation, he was confrmed positive by nucleic acid testing for SARS-CoV-2. His
routine blood test showed a CPR of 14.08 (InCRP� 2.70) and %Mon of 26.50. Considering his age of 32, the patient got a total of 75 points
according to our pneumonia risk prediction model, with a pneumonia risk prediction probability of <0.1. Te patient underwent a CTchest
scan, which showed no abnormal fndings. (c and d): Male, 17 years old, presented 4 days ago with a fever with a maximum temperature of
39.0°C. On presentation, he was confrmed positive by nucleic acid testing for SRRS-CoV-2. His routine blood test showed a CPR of 82.45
(InCRP� 4.41) with a %Mon of 8.30. Considering his age of 17, the patient had total points of 152 according to our pneumonia risk
prediction model, with a pneumonia risk prediction probability of 0.68. Te patient underwent a chest CT, which showed multiple lamellar
ground-glass opacities in the lower lobe of the left lung, with a peripheral distribution and thickened blood vessels within the lesion. (e and
f): A 63-year-old male with a 1-week history of malaise was confrmed to be nucleic acid test positive for SARS-CoV-2 on presentation. His
routine blood test showed a CRP of 259.68 (InCRP� 5.56) with a %Mon of 5.00. Considering his age of 63, this patient had total points of 192
according to our pneumonia risk predictionmodel, with a pneumonia risk prediction probability of >0.9.Te patient underwent a chest CT,
which showed multiple lamellar hyperintensities in multiple lobes of both lungs with solid lesion density, bronchial air sign within, and halo
sign at the edges of some lesions.
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In later research, larger-sample and multicenter studies
would be required to calibrate and validate the model.
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