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Multidrug-resistant pathogens are one of the common causes of death in burn patients and have a high risk of nosocomial
infections, especially pneumonia, urinary tract infections, and cellulitis. Te role of prolonged hospitalization and empirical
antibiotics administration in developingmultidrug-resistant pathogens is undeniable. In the early days of admitting burn patients,
Gram-positive bacteria were the dominant isolates with a more sensitive antibiotic pattern. However, the emergence of Gram-
negative bacteria that aremore resistant later occurs. Trustworthy guideline administration in burn wards is one of the strategies to
prevent multidrug-resistant pathogens. Also, a multidisciplinary therapeutic approach is an efective way to avoid antibiotic
resistance that involves infectious disease specialists, pharmacists, and burn surgeons. However, the emerging resistance to
conventional antimicrobial approaches (such as systemic antibiotic exposure, traditional wound dressing, and topical antibiotic
ointments) among burn patients has challenged the treatment of multidrug-resistant infections, and using nanoparticles is
a suitable alternative. In this review article, we will discuss diferent aspects of multidrug-resistant pathogens in burn wounds,
emphasizing the full role of these pathogens in burn wounds and discussing the application of nanotechnology in dealing with
them. Also, some advances in various types of nanomaterials, including metallic nanoparticles, liposomes, hydrogels, carbon
quantum dots, and solid lipid nanoparticles in burn wound healing, will be explained.

1. Introduction

Te skin is the body’s largest organ and is considered one of
the most signifcant barriers to body protection against
external pathogens [1]. Other functions of this organ include
hormonal balance, maintaining temperature and humidity,
sensory perception, and burn injuries that cause loss of
integrity and destruction of skin tissues [1]. Due to the self-
healing properties of the skin, acute wound healing is quick,
while the process of healing chronic wounds is time-
consuming, infection in the afected area can prolong the
wound for years [2]. Aging, obesity, diabetes, autoimmune
disease, and cardiovascular problems are risk factors for

chronic wounds that increase their incidences [3]. In this
regard, people with diabetes are 20% more likely to develop
chronic abscesses [4]. In addition, some comorbidities, such
as sporotrichosis, malignant tumors, and dermatophytosis,
can provide conditions for chronic wounds in burn patients
[5]. Prolonged exposure to the underlying tissue of chronic
wounds with the external environment and bleeding, os-
teomyelitis, and septicemia increase the chances of mortality
among patients with chronic burn wounds [6]. Moreover,
burn wounds cause other challenges, such as many mental
problems, reduced quality of life, and increased medical
costs in patients [7]. Besides the heavy economic burden of
burn injuries, the prolonged hospitalization and employing
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equipment and labor are other consequences of these
wounds for medical systems [7].

Burn and its resulting infections have been among the
main challenges to the world’s medical systems [8].
According to the reports, almost 38,000 patients were ad-
mitted to the United States burn centers and provided
medical care in 2018 [9]. Despite advances in burn care over
the past 50 years, burn infections are still one of the leading
causes of death nowadays [10]. Over the past decade, several
studies have shown that microbial infections cause death in
42 to 65 percent of burn patients [10]. Furthermore, the
mortality rate in infectious burn patients is almost twice as
high as in noninfectious burns [11]. Te most detrimental
efect of burn is the loss of a healthy skin barrier that causes
the immune system to lose self-control and makes the body
more susceptible to infections [12]. In addition, the more
complex interaction of anti-infammatory signals leads to
the irregularities of innate and adaptive immune systems
[12]. Also, increased risk in burn patients is associated with
urinary and venous catheters, arterial lines, tracheal in-
tubation, and prolonged hospitalization [13]. Antibiotic
resistance emerged immediately after the discovery of the
frst antibiotic, which developed rapidly and is one of the
main challenges for the medical community, especially in
burn units [14]. Tere is a prediction that by 2050,
multidrug-resistant (MDR) organisms will kill almost 2
million people and cost more than $3 million annually [15].

Nanotechnology has heralded a new era characterized by
the development of particles composed of various types of
materials, with sizes ranging from 1 to 100 nanometers [16].
In the past, nanomaterials have been introduced as vehicles
for drug delivery and targeting, but at present, nanoparticles
themselves can exhibit various pharmaceutical potentials
[17]. Nanomedicine can improve treatments for diseases
with poor prognosis, such as infection, cancer, and neu-
rodegenerative diseases [18]. Nanotechnology has in-
troduced innovative medical approaches for wound healing,
and new therapeutic strategies based on nanosystems can be
developed to fght many diseases, especially burn wound
infections [19]. Current treatment modalities in burn wound
infection have signifcant limitations, such as poor perme-
ability, drug side efects, and enzymatic degradation, that
nanotechnology could be an appropriate solution for
overcoming these difculties [20]. In addition to these ad-
vantages, nanotechnology, through the target delivery, can
enhance the therapeutic profle of drugs in infected sites and
reduce the risk of emerging resistant infections [21].
Terefore, the utilization of nanotechnology can lead to
development in the treatment of infected burn wounds in
the post-antibiotic era and faster regeneration of damaged
skin [22].

2. Common Infections and Pathogens in
Burn Patients

Infection is the most signifcant problem in burn wards,
causing numerous treatment challenges in patients [8]. Te
American Burn Association (ABA) analyzed 221,519 pa-
tients in burn units between 2009 and 2018 and reported the

distribution of infections that have occurred in burn patients
[23]. According to the ABA report, the most common
clinically relevant complications for burn patients admitted
to the United States burn centers are pneumonia, urinary
tract infections (UTIs), and cellulitis [23]. Te highest fre-
quency of pneumonia occurred among patients aged
50–60 years and was reported at 4.7%, while in patients over
80 years of age, the most common complication was UTI at
6.3% [23]. Other commonly reported complications in-
cluded respiratory failure, wound infection, septicemia, and
renal failure [23]. Te duration of a mechanical ventilator
can be considered a risk factor for all mentioned compli-
cations except cellulitis, wound infections, and UTIs
[9, 23, 24].

Te trend of nosocomial infections in burn patients is
relatively predictable, and various infections and bacterial
outbreaks are also associated with schedule [24]. Te earliest
infections occur in the skin and soft tissues that usually
appear within the frst week of hospitalization [25]. On the
other hand, complications such as pneumonia, bloodstream
infections, and UTIs typically arise in the following days of
hospitalization [25]. In addition, several studies have shown
that the duration of hospitalization after a burn is related to
the type of bacteria isolated from the patient. A retrospective
study on 125 patients admitted to a burn center confrmed
the relationship between hospitalization time and the dis-
tribution of Gram-negative bacteria isolated from cultures
[26]. According to this study, the signifcant change in the
frequency of Pseudomonas aeruginosa was so rare in the frst
week of hospitalization that it accounted for only 8% of all
Gram-negative isolates and reached 55% after 28 days of
admissions [26]. However, Haemophilus infuenzae rates
decreased signifcantly from the frst to the second week [26].
In addition, the emergence time of Gram-positive bacteria is
much shorter than that of Gram-negative ones [24]. In this
regard, on average, Staphylococcus spp. and Pseudomonas
spp. are isolated from hospitalized patients three and eight
days after admission, respectively [25]. Also, it has been
proven that the most common bacteria causing infections
within the frst fve days of hospitalization are Staphylococcus
aureus, Escherichia coli, H. infuenzae, and Klebsiella
pneumoniae, while P. aeruginosa is the most common
pathogen after fve days of hospitalization [27].

3. Burn Wound and
Multidrug-Resistant Pathogens

Multidrug-resistant pathogens are signifcant life-
threatening agents in burn patients that have raised vari-
ous concerns for healthcare systems [8]. Tese pathogens
mainly include P. aeruginosa, methicillin-resistant S. aureus
(MRSA), Acinetobacter baumannii, vancomycin-resistant
enterococci (VRE), and Stenotrophomonas maltophilia. In
addition, the outbreaks of Carbapenem-resistant Enter-
obacteriaceae (CRE) among burn patients are increasing
[27–29]. In the retrospective study among burn patients
between 2012 and 2017, a signifcant number of MDR
pathogens were isolated from blood cultures, and this rate
was reported between Acinetobacter spp. 97.5%, MRSA
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97.7%, Pseudomonas spp. 92.2%, and CRE 31.1% [29]. In
addition, the antibiogram results of wound swabs in pedi-
atric burn patients showed that about 80% of Gram-negative
isolates were MDR. Also, 100% of E. coli and Klebsiella spp.,
79.2% of P. aeruginosa, and 69.2% of Acinetobacter spp. had
an MDR pattern [30].

Hospitalization time is also one of the main risk factors
for developing MDR infections in burn centers related to
a wide range of clinical features, such as burn size and
inhalation injury [24]. In this regard, 6% of the bacterial
species isolated in the frst week of hospitalization were
MDR, while this rate increased to 44% in the fourth week
[26]. In another study amongmore than 5,000 burn patients,
a sharp increase in the proportion of Gram-negative MDR
bacteria during hospitalization, and the change rate (per
1000 patient-days) of MDR pathogen from the frst week to
the fourth week of hospitalization ranged in the following
order: CRE 0.04–0.82, extended-spectrum β-lactamase-
producing Enterobacteriaceae 0.26–0.46, and
fuoroquinolone-resistant Enterobacteriaceae 0.52–2.61 [25],
as well as the MDR Pseudomonas spp. ranged from 0.04 to
1.85 and showed a similarly drastic change in the same
hospitalization time [25]. Furthermore, the distribution of
CRE on the 7th–22nd days of hospitalization signifcantly
ranged from 16.7% to 45.0% [29].

Also, hospitalization in the intensive care unit (ICU)
signifcantly increases in MDR infection rate [31]. A study
reported that the isolation of MDR respiratory isolates in the
burn intensive care unit (BICU) was about three times
higher than MDR isolates in other ICUs [31]. According to
the results of BICU patients, the MDR rate of A. baumannii,
S. aureus, Pseudomonas spp., and S. maltophilia was 90.8%,
82.0%, 33.8%, and 21.1%, respectively [32]. Also, other risk
factors for developing MDR infections in burn patients
include previous exposure to antibiotics and invasive
medical devices such as urine catheters and endotracheal
tubes [33].

4. Classification of Burn Wound Infections

Delay in the epidermal layer maturation has led to eschar
tissue formation, one of the main problems of burn wound
infection [34]. Microbial invasion of the subcutaneous layers
of injured skin can also lead to bacteremia, septicemia, and
other disseminated infections [34]. Te clinical diagnosis of
burn infection is based on monitoring vital signs and ex-
amining the entire surface of the burn wound, especially
when changing the dressing [35]. Te conversion of partial
thickness to deep wounds, the rapid expansion of cellulitis
into healthy tissue around the injured area, evident de-
tachment of eschars, and necrosis are among the localized
symptoms of invasion in burn wound infection [34].

Traditionally, factors such as eschar formation, wound
healing time, mortality rate, and specifc conditions like
disseminated infections, immunodefciency, cellulitis, and
impetigo are involved in classifying burn wound infections
[34]. With the advent of early excision treatment, a new
classifcation of burn wound infections associated with
surgical wound infection progressed by a subcommittee of

the American Burn Association’s Organization and Care
Committee; the following is a brief description of these
classifcations [34, 36].

4.1. Impetigo. Impetigo involves the loss of epithelium from
a re-epithelialized surface, such as partial thickness or
grafted burn. Burn impetigo is unrelated to hematoma
formation andmechanical destruction of the graft [37]. Also,
unlike other wound infections, there are no systematic in-
fection symptoms in impetigo, such as leukocytosis, fever,
and thrombocytopenia [37].

4.2. Cellulitis. Burn wound cellulitis is caused by the spread
of infection to healthy skin and soft tissues around the burn
wound [38]. Tis condition can be diagnosed by extending
erythema to the intact skin around the burn site, which is
more signifcant than expected [37]. Burn wound cellulitis
includes at least one of the following signs: swelling or heat,
pain, or local sensitivity in the afected area, progressive
erythema, or edema, as well as symptoms of lymphadenitis,
which spread from the injured skin along the lymphatic
pathways [37]. Bacteremia and septicemia can also be
symptoms of burn wound cellulitis [37, 39].

4.3. Burn Surgical Wound Infection. Surgical wound in-
fections occur in incised wounds and donor tissues that are
not-epithelialized [39].Te wound secretes pus whichmakes
wound culture positive [39]. Also, appearance changes that
include erythema and hyperemia of healthy skin around the
wound include the features of surgical burn infection [39].

4.4. Unexcised BurnWound Invasive Infection. Patients with
unexcised partial-thickness or full-thickness burns are at risk
of invasive infections, which are accompanied by changes in
the appearance and features of the wound that can lead to
darkening and/or detachment of the eschar [34]. Symptoms
of invasive infection in unexcised burn wounds include
infammation, heat, swelling, erythema, and edema of the
surrounding uninjured skin [34]. In addition, isolation of
pathogens from blood culture in the absence of other
identifable sources of infection, signs of systemic septicemia
(such as tachycardia, hypotension, oliguria, and hypergly-
cemia), and evidence of microbial invasion of the underlying
tissues on histopathological examination are other symp-
toms of this type of burn wound infections [34, 37].Temost
common pathogens that are related to unexcised burn in-
vasive infection include P. aeruginosa, S. aureus,
A. baumannii, and Enterobacteriaceae [39, 40].

5. Wound Healing Process

Te restoration wound process is very complicated and
consists of 4 stages that usually overlap and are afected by
each other [41]. Tese stages include hemostasis, in-
fammatory, proliferation, and regeneration; various cells
and biomolecules are involved in each stage (Figure 1) [42].

Canadian Journal of Infectious Diseases and Medical Microbiology 3



5.1. Hemostasis Stage. Tis stage, also known as exudative
and coagulative, begins immediately after the injury, pre-
venting vascular bleeding [43, 44]. Also, cell signaling through
the secretion of cytokines and multiple growth factors causes
the migration of fbroblasts and endothelial, immune, and
progenitor cells to the injured site [45]. Furthermore, an-
giogenesis, vasoconstriction, and clot formation contribute to
the goals of hemostasis in this stage, which also afect other
subsequent stages of wound healing [46].

5.2. Infammatory Stage. Tis phase usually lasts up to
72 hours after the injury [47], and platelets stimulate the
release of infammatory mediators from cells such as mast
cells and basophils, leading to infammation, heat, and va-
sodilation [48]. In addition, platelets cause the absorption of
immune cells to the afected area by releasing several growth
factors involved in cleaning pathogens and
debridement [48].

5.3. Proliferation Stage. Tis stage begins on the fourth day
of the healing process and can take up to 21 days, depending
on the patient’s safety level, size, and type of wound [49]. In
addition to angiogenesis, cell proliferation and elastin
production occur at this stage, and tissue granulation re-
places the clot formed at the afected site [50, 51]. Fur-
thermore, wound contraction is performed by
diferentiating fbroblasts into myofbroblasts, leading to
a boundary between the healthy and damaged areas [46].

5.4. Regeneration Stage. Tis step is the balance between the
synthesis and destruction of damaged tissue, and it can last
one year or even more [2]. In addition, collagen fbers in-
volve in scar formation, which causes wound closure and
strengthens the skin at the injured site [41]. Besides rein-
forcing the connective tissue and epithelial layer in this stage
[52], the apoptosis process destroys the unnecessary cells at
the regenerated site [53].
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Figure 1: Representation of burn wound healing process: (a) hemostasis, (b) infammatory, (c) proliferation, and (d) regeneration stages.
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6. Prevention ofMultidrug-Resistant Infections

Te signifcant impact of infection prevention approaches
on the recovery and survival of burn patients is undeniable
[24]. Burn patients are at increased risk of nosocomial in-
fections due to prolonged hospitalization and frequent in-
vasive procedures [10]. Terefore, strategies such as
disinfecting the hospital environment, hand hygiene, and
patient isolation are among the critical control approaches to
help minimize nosocomial infection in burn wards [54].
Numerous studies have confrmed that these control ap-
proaches efectively prevent the development of MDR
pathogens in burn patients [10, 24, 55]. However, using
shared water resources such as hydrotherapy rooms among
burn patients makes difcult to implement a precise in-
fection control strategy. In this regard, in the Swiss burn
center, the persistent outbreak of MDR P. aeruginosa oc-
curred in 23 groups of patients who had been infected with
the same bacterial genotype for more than three years.
Interestingly, the infection outbreak was restricted by en-
vironmental cleaning measures and the disinfection of the
hydrotherapy rooms [56].

Several techniques should be used in the burn wards for
monitoring of MDR pathogens, especially VRE, MRSA, and
CRE [28]. Also, the high incidence of MDR bacteria in burn
units requires fully considering the cost, time, risks, benefts,
and faws of diferent screening methods [10]. For example,
three days per week of endotracheal aspirate cultures in
patients with inhalation injuries is recommended to identify
MDR strains in ventilator-associated pneumonia (VAP)
[57]. However, further information is needed to determine
whether monitoring cultures should be carried out routinely
in burn wards.

Intravascular catheters are one of the biggest challenges
in burn patients, and according to the guidelines of the
Infectious Diseases Society of America (IDSA) and the
Society for Healthcare Epidemiology of America (SHEA),
most burn centers do not regularly replace these catheters
[58, 59]. However, there are conficting results in a review of
various studies. In this regard, the study found that the rate
of catheter-related bloodstream infections in patients who
had their catheter replaced every four days increased
compared to the 3-day replacement [60]. Nevertheless, in
another study, increasing the duration of catheter use from
48 hours to 72 hours did not increase the catheter-related
infection rate [61]. Based on these limited data, some burn
wards change catheters every 72 hours [24]. Terefore, more
investigations, including controlled trials, are needed to
understand the duration of intravascular catheter re-
placement in burn patients.

In addition, early excision and graft of burnt tissue can
have a signifcant efect on reducing the prevalence of in-
fections and as well as mortality in burn patients [35].
Removal of incurable and necrotic tissues should also be part
of burn patients’ routine and necessary care procedures [62].
Moreover, it has been shown that administration of topical
antimicrobial agents (such as silver sulfadiazine and mafe-
nide), combined with excision, can reduce the incidence of
septicemia induced by burn wound infections [63].

Tere is also contradictory information on systemic
antibiotic prophylaxis to control infections in burn patients.
In this regard, in a study, the systemic antibiotic prophylaxis
in nonsurgical patients was evaluated in three trials (119
participants), and there was no evidence of an efect on rates
of burn wound infection [64]. However, the results of this
study revealed that systemic antibiotics (trimethoprim-
sulfamethoxazole) signifcantly decreased pneumonia rates
in patients with burn wounds [64].Te data of another study
indicated that the prophylactic antibiotics (ampicillin/sul-
bactam and frst-generation cephalosporin) reduced mor-
tality in mechanically ventilated patients with severe burns
but not in those who do not receive mechanical ventilation
[65]. In addition, another study supports the routine usage
of antibiotic prophylaxis in patients with inhalational burns
and developing pneumonia [66]. Also, another study
showed that resistance to the antibiotic administered for
prophylaxis in burn patients signifcantly increased [67].
Furthermore, another study considers the importance of the
grading system in the efectiveness of systemic antibiotic
prophylaxis in burn patients [68]. However, the beneft of
prophylaxis in patients with burn wounds requires more
information, while the International Society for Burn Injury
(ISBI) has not yet recommended systemic antibiotic pro-
phylaxis for burn injury [69].

7. Diagnosis of Multidrug-Resistant Pathogens

Due to the high prevalence of MDR bacterial infections
among burn patients, early diagnosis can play an infuential
role in reducing the mortality of these patients [10].
However, the main difculty in diagnosing MDR bacterial
infection in burn patients is the distinction between colo-
nization and infection [10]. Te colonization of the re-
spiratory tract and endotracheal tubes after severe burns in
patients with prolonged ventilation indicates the precedence
of colonization over infection [24]. Another example is the
colonization of urinary bacteria in patients who have long
used urinary catheters [24]. Unfortunately, most patients
with severe burns are in critical condition and do not
provide relevant clinical information to diagnose
infection [70].

Acute respiratory distress syndrome and inhalation
injury are some of the problems that make it challenging to
diagnose VAP in burn patients [10]. In addition, the in-
fuential role of bronchoscopy in diagnosing pneumonia in
burn patients was also approved. According to the National
Burn Repository data, patients who underwent bronchos-
copy were 18% less likely to die from pneumonia than those
who did not have bronchoscopy [71]. Also, the identifcation
of MDR bacteria causing VAP with bronchoscopy may help
determine the course of antimicrobial therapy and can more
efectively treat pneumonia in burn patients [72].

Te distinction between noninfectious burn erythema
and other similar skin infections in burn patients, such as
invasive burn wound infection and burn cellulite, is so-
phisticated [34]. In invasive burn wound infections, the gold
standard for diagnosing is still tissue biopsy and histopa-
thology, but these approaches are often not carried out due
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to being costly and labor-intensive [34]. Also, in several
studies, surface swab and tissue biopsy culture has been
proposed as suitable methods for diagnosing skin infection
in burn patients [24, 34, 73]. In addition, several studies
suggested swab cultures for regular monitoring of burn
wound infections with insufcient skin tissue for biopsy
[10, 24, 34]. Furthermore, swab culture and biopsy are
recommended in burn patients with systemic infection
symptoms because they increase the chance of identifying
the source of infection, especially MDR bacteria [74].
However, there are some evidences to suggest that a biopsy
or swab may not be able to detect all bacteria involved in
burn wound infection [24]. Besides being costly and labor-
intensive, the need for surgical preparation, invasive sam-
pling, and patient noncompliance are among disadvantages
of the biopsy method for monitoring of burn wound in-
fection [75]. Swab culturing has little use in the identifcation
of bacterial infection in burn patients because it is time-
consuming, requires frequent sample, is contaminated with
bacterial skin fora, is low-sensitive, and results in deep skin
infections [76–78].

According to the ABA Consensus Conference, the
defnition of infection and sepsis in burn patients includes at
least three clinical symptoms: hypo/hyperthermia, hyper-
glycemia, tachypnea, tachycardia, and thrombocytopenia
[38]. Te diagnosis of sepsis in burn patients is also com-
plicated because systemic symptoms, such as fever, leuko-
cytosis, and hypotension, may have occurred in
noninfectious burn patients [74]. Moreover, clinical trials
have not shown successful guidance in diagnosing septi-
cemia in burn patients [38]. However, the determination of
procalcitonin level in the diagnosis of burn sepsis seems
promising [79]. In this regard, a study introduced an an-
tibiotic algorithm based on procalcitonin level that indicates
sepsis in burn patients could be treated on average fve days
earlier [80].

8. Antibiotics Therapy of Multidrug-
Resistant Pathogens

When deciding whether to treat a burn patient with sus-
pected or confrmed bacterial MDR infection, some specifc
issues including timely eradicating the infection sources
must be considered [81]. In this regard, removing eschar in
deep wound infections and burn wound cellulitis usually
leads to rapid limitation of the infection [81]. Also, removing
contaminated catheters, especially those colonized with
bioflm-forming pathogens, efectively improves the treat-
ment outcomes in burn patients [82].

One notable point in treating burn infections is opti-
mizing empirical antimicrobial therapy by analyzing anti-
biogram data collected from all burn wards [83]. However,
guidelines such as the antimicrobial stewardship program
(ASP) are recommended to reduce patients’ antibiotic ex-
posure and the prevalence of bacterial MDR infection [84].
In this regard, a study has proven that the administration of
ASP could decrease drug resistance without much adverse

efect on the patient [85]. Also, the ISBI suggested that
a specifc ASP be developed in burn centers to enable re-
search on microbial resistance in burn patients [69].

Prescribing antibiotics for severe burns becomes more
difcult due to the hyperdynamic status of patients, in-
cluding high renal clearance, which causes patients to need
more signifcant amounts of conventional antibiotics
[84, 85]. Tere are also conficts about the efect of antibiotic
combination therapy on the development of MDR bacteria,
as the main challenges in treating burn patients, and require
further studies [24, 86]. In addition, the exact role of some
antimicrobial agents, such as cephalosporin/beta-lactamase
inhibitor compound combinations, novel cephalosporins,
and long-efective anti-MRSA antibiotics, is yet to be de-
termined in burn patients [24]. However, the appointment
of a pharmacist, infectious disease specialists, and burn
surgeons in the multidisciplinary burn team is necessary to
efectively treat infectious patients [87]. Table 1 lists the
approved and controversial strategies for controlling MDR
pathogens in burn injury.

9. Nanostructures as a Suitable Platform for
Overcoming the MDR Pathogens in
Burn Wounds

MDR pathogens are primary challenges in burn patients
induced by high systemic antibiotic exposure [8]. Also, the
topical administration of antibiotics could not be an efective
wound-healing strategy due to the skin barrier dysfunction
following a burn [88]. Nanostructures as advanced drug
delivery systems can reduce systemic drug dosage and in-
crease the potential for topical administration, which could
be developed as suitable candidates for treating burn wound
infection [89]. However, the kinetics and dynamics of
nanostructures depend on several factors, such as the degree
of injured skin, the presence of infection in the burn wound,
and nanoparticle properties (such as size, type, and half-life)
[90]. In addition, an ideal nanoparticle for topical appli-
cation in burn wounds must have essential features such as
nonimmunologic, nontoxicity, biodegradability, and ap-
propriate release profle [91, 92]. Moreover, the source of
nanoparticles (organic or inorganic compounds) has an
efective role in reducing their side efects that should be
considered for development in wound healing [19]. Table 2
lists some of the advances of nanomaterials for overcoming
MDR pathogens in burn wounds.

Te inefectiveness of traditional wound therapies in-
creases the need for the development and discovery of new
strategies in wound healing [111]. Recently,
nanotechnology-based approaches have announced an ef-
fective wound-healing platform with a high potential for
curing burn wounds [111] (Figure 2). Also, the antimicrobial
activity of nanocarriers, as well as their high ability to deliver
antimicrobial agents, has been applied to increasing wound
closure [112]. In addition, nanostructures can be adminis-
tered as burn wound dressing by mimicking the skin’s ex-
tracellular matrix and encapsulating active ingredients [112].
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9.1. Metallic Nanoparticles. Recently, metallic nanoparticles
(MNPs) such as silver, zinc oxide, gold, titanium dioxide, and
copper attracted special consideration because of their distinct
properties [113]. Te large surface area-to-volume ratio yields
numerous chemically active sites in MNPs, which improves
their therapeutic and pharmaceutical efcacy [114]. Also,
MNPs could increase the accumulation of antimicrobial agents
at the infected sites through magnetic-feld-controlled release
[115]. In the last decade, the use of MNPs to overcome MDR
infections has expanded [113], and the high potency of these
nanoparticles has been proven to successfully prevent and
eradicate of wound infections [116–118]. Metal ions have
extensive antimicrobial properties such as cell membrane
damage, production of reactive oxygen species (ROS), targeting
functional groups ofmetabolites, disruption of electron transfer
chains, protein dysfunction, destruction of DNA, and repair
systems (Figure 3) [119–121]. Silver NPs are one of the well-
knownMNPs [19, 122] that possess properties such as catalytic
activity, chemical stability, low cost, and broad-spectrum re-
sistance to numerous pathogens, which make them an ap-
propriate candidate for combating resistant infections and also
burn wound healing [113, 123]. Other MNPs with antimi-
crobial properties for wound healing are zinc oxide NPs, which
could regenerate damaged skin by reducing necrosis, con-
trolling infection, collagen fber deposition, and re-
epithelialization [113, 124]. Despite the high cost, the out-
standing features of gold NPs, including antioxidant, anti-
infammatory, antimicrobial action, and particularly enhanc-
ing scafold properties, could increase their application in
wound healing [113, 125]. Furthermore, titanium dioxide NPs
can efectively control skin infections caused by Gram-positive
and -negative bacteria that are approved as a wound healer
agent [123]. LikementionedMNPs, copper NPs showed potent
microcidal activities [113]. Also, these nanoparticles could
improve the wound healing process by contributing to collagen
formation, enhancing immunity, and angiogenesis [113].
However, the afordability, mechanism of action, synthesis
methods, and cytotoxicity are among the factors that should be
considered for developing MNPs in burn wound healing
[113, 126, 127].

9.2. Liposome. Liposome nanoparticles of natural origin,
usually phospholipids, are among the main high-
performance nanocarriers in the drug delivery system
[128]. Low toxicity, biocompatibility, stability, sustained
drug release, prolonged systemic circulation, and long re-
sidual time in the targeted site are some of the characteristics
of liposomes that can make them excellent candidates for
eradicating resistance pathogens in burn wounds [129, 130].
Also, the delivery of antimicrobial drugs to target sites and
bacteria is among the signifcant functional aspects of li-
posomes [130–132]. In addition, liposome efectiveness
against resistant wound infection could be improved by
changing composition and using diferent materials in the
liposomal formulation (Table 2) [133]. In this regard, the
study showed that the epidermal growth factor-containing
liposome formulation has an efective role in the treatment
of burn wounds [134]. Also, the synthesized formulation
increased the epidermal thickness, fbroblast, and collagen
fbers at the injured site, which could be a promising strategy
for wound healing [134]. Furthermore, the results of another
study indicated that liposomes, as an efective vehicle for
antimicrobial agents, could enhance local drug concentra-
tion at the site of injury [135]. Moreover, the liposome-
loaded scafolds were proven to have therapeutic efects on
skin regeneration and could be proposed as a potent agent
for burn wound healing [136].

9.3. Hydrogel. Hydrogels are three-dimensional soft poly-
mers composed of nanometer-scale particles with numerous
properties, making them the ideal nanostructures for wound
healing and infection control [137]. Tese features include
high water content, optimal stability, and suitable chemical
and mechanical properties [138]. One of the essential
strategies to tackle MDR pathogens is to increase the bio-
availability of antimicrobial agents in the infection sites.
Recent advances in the development of hydrogels have
achieved not only this factor but also can reduce the side
efects of drugs [139–142]. Te encapsulation and conju-
gation of biocidal agents, such as conventional antibiotics

Table 1: Prevention, diagnosis, and treatment strategies of multidrug-resistant pathogens in burn patients.

Approved strategies

(1) Hand hygiene and environmental disinfection protocols
(2) Isolation of infectious patients caused multidrug-resistant pathogen
(3) Use of antimicrobial stewardship program
(4) Graft and excision burn tissue
(5) Administration of topical antimicrobial agents
(6) Development of a local antibiogram pattern
(7) Engagement of infectious disease specialists, burn surgeons, and pharmacists
(8) Bronchoscopy for help in the diagnosis of ventilator-associated pneumonia in
inhalational burn injury
(9) Wound swabs or biopsy cultures for diagnosis of burn infection
(10) Removing contaminated catheters with bioflm-forming pathogens

Controversial strategies
(1) Systemic antibiotics prophylaxis and combination therapy for control infections
(2) Routine central venous catheter replacement
(3) Antibiotic therapy based on procalcitonin level in burn sepsis
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Skin

Carbon quantum dot
Liposome

Solid lipid nanoparticle

Metal nanoparticle

Protection of drug against enzymatic degradation and controlled release

Targeted delivery and retention of drug into burned tissues of the skin

Improved burn wound healing and tissue regeneration due to preventing
microbial infection and scar formation

Hydrogel
Burn wound

Figure 2: Schematic representation of nanomaterials used for burn wound healing. Metallic nanoparticles, liposome, hydrogel, carbon
quantum dot, and solid lipid nanoparticles.

Metal nanoparticles

Damage to bacteria memberan

Programed bacteria
cell death

Oxidative stress

Protein
denaturalization

DNA damage

ROS
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Figure 3: Mechanisms of antibacterial action of MNPs. MNPs promote programmed bacterial cell death through enzyme inactivation,
protein denaturalization, DNA damage, ROS generation, and cell membrane damage. MNPs: Metallic nanoparticles; ROS: reactive oxygen
species.
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[107, 143–145] and antimicrobial peptides [146–149], into
hydrogels have a signifcant role in developing these
nanostructures. In this regard, in several studies, hydrogels
have been used for antibiotic delivery to infection sites with
desirable treatment outcomes [107, 150–152].

Furthermore, it has been proven that MNPs, in com-
bination with hydrogels, have greater therapeutic efcacy in
burn wounds [153, 154]. In this regard, the hydrogel system
containing silver NPs with signifcant microbicidal efects on
S. aureus and E. coli was introduced as a suitable candidate
for burn wound healing [155]. Also, a hydrogel-embedded
silver-binding peptide is a promising injectable strategy for
wound dressing, which conquers the toxicity of silver by
controlling release patterns [156]. In addition, incorporating
silver sulfadiazine with hydrogel can promote angiogenesis,
re-epithelialization, and collagenases in injured tissues [157].
In several studies, the physical, chemical, and biological
properties of various nanocomposite hydrogels embedded
with silver NPs have been investigated. In this regard, the
study [158] showed that the encapsulation of silver nano-
particles within lignin-based hydrogels could improve their
antibacterial properties towards both S. aureus and E. coli
[158]. Also, this study approved the biocompatibility,
mechanically stability, and rheological properties of
hydrogel-silver nanocomposites, which can be a promising
approach for wound healing [158]. In another study, the
collagen-silver NPs hydrogels displayed remarkable

properties, including biocompatibility with fbroblasts, anti-
infammatory, and broad-spectrum antimicrobial ability
[159]. In addition, silver NPs impregnated chitosan, poly-
vinyl alcohol, and polyethylene glycol hydrogels were pro-
posed as biocomposite dressings, each of which has various
attributes that should be considered in the development of
hydrogels for burn wound healing [160, 161].

9.4. Carbon Quantum Dot. Carbon quantum dots (CQDs)
are carbon-based nanoparticles with a diameter size of fewer
than 10 nanometers [162]. Outstanding properties such as
high chemical stability, signifcant water solubility, excellent
biocompatibility, low toxicity, and exceptional photoelectric
capacity make them appropriate for antibacterial applica-
tions [163]. Generally, CQDs and other nanostructures that
can absorb light radiation could be used for photothermal
and photodynamic therapies, which are excellent strategies
to overcome MDR pathogens. In these therapeutic methods,
light radiation destroys a bacterial cell’s membrane, proteins,
and DNA. Enhancing the production of the temperature and
reactive oxygen species by the emitted waves leads to the
death of bacteria in photothermal and photodynamic
therapy, respectively [164–166]. Besides killing bacteria, heat
generation in photothermal therapy could signifcantly re-
duce the risk of developing resistance mechanism (Figure 4)
[167, 168].

Photothermal
conversion

PTT

Carbon quantum dot

Live bacteria

Dead bacteria

PDT

ROS
generation

Laser 

H+

e-

H+ H+

e-
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e- e- e-
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1O2

H2O .OH
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60 
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80
°c

Figure 4: Representation of the antibacterial mechanism of carbon quantum dots. In PTT and PDT, the temperature and reactive oxygen
species are activated by light radiation to kill bacterial cells, respectively. PTT: photothermal therapy; PDT: photodynamic therapy.

10 Canadian Journal of Infectious Diseases and Medical Microbiology



9.5. Solid Lipid Nanoparticle. Solid lipid nanoparticles
(SLNs) are lipid-based nanoparticles that are widely used in
drug delivery systems. Besides the advantages of liposomes,
SLNs have a higher ability to load hydrophobic and hy-
drophilic materials that can be a suitable alternative for
liposomes [169–171]. SLNs could be developed to deal with
MDR pathogens that delay in tissue regeneration following
burn wound [172]. Also, SLNs signifcantly improve the
therapeutic efects in infected wounds through diferent
mechanism, including reducing the activity of bacterial
efux pumps [173], inhibiting enzymatic degradation of
antimicrobial agents, and increasing drug accumulation at
infected sites [169]. In this regard, the result of the study
showed that ampicillin-loaded SLNs with signifcant anti-
bacterial efcacy could increase the rate of burn wound
healing [174]. In addition, it has been proven that methylene
blue-loaded SLNs accelerate the healing process and could
be a suitable strategy for treating burn wounds [175].
Furthermore, in another study, silver sulfadiazine SLNs were
introduced as appropriate candidates for burn wound
dressing with good bioadhesive behavior [176].

10. Conclusion

Due to the prolonged hospitalization and high antibiotic
exposure, patients with burn wounds are prone to the
emergence of MDR pathogens. Also, the high prevalence of
MDR in burn wards can be attributed to several patients’ risk
factors, including high colony formation, hyperdynamic
status, surgical treatment, and immunodefciency conditions.
Preventing the outbreak of MDR bacteria in this population
requires a multistep approach, including hand hygiene, an-
timicrobial care, operation optimization, careful use of
medical equipment, and environmental controls. It strongly
recommends the involvement of infectious disease specialists,
burn surgeons, and pharmacists in routine therapeutic
measures of burn patients. Given the many social and eco-
nomic consequences of burn wounds and also challenges in
treating of resistant infections caused by these wounds, eforts
to develop new and efcient wound-healing strategies are
essential. Nanotechnology is an exciting emerging feld with
multiple applications in medicine and can be a promising
approach to wound healing based on its diferent properties,
including antimicrobial activity, reduced toxicity, controlled
release profles, and similarity to the extracellular matrix.
Also, nanoparticles could deliver antimicrobial agents and
growth factors to the injured site, leading to improved healing
outcomes. Furthermore, nanostructured scafolds could be
developed as an ideal wound dressing due to their potential to
promote skin regeneration and management of burn injuries.
Terefore, the application of nanotechnology in wound care
shows great promise for reducing the treatment challenges in
burn patients.

Data Availability

Te datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Ethical Approval

Tis study was approved by the Ethics Committee of
Hamadan University of Medical Sciences, Hamadan, Iran
(Ethical approval No. IR.UMSHA.REC.1401.578).

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Authors’ Contributions

JH, BA, and MRA designed the research; JH conducted the
library search and wrote the manuscript; and MA and BA
participated in editing the manuscript. All authors read and
approved the fnal manuscript.

Acknowledgments

Te authors would like to acknowledge the Vice-Chancellor
of Hamadan University of Medical Sciences for the support
of the study (Code Number: 140204273271).

References
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and Ž. Vanić, “Azithromycin-loaded liposomes for enhanced
topical treatment of methicillin-resistant Staphyloccocus
aureus (MRSA) infections,” International Journal of Phar-
maceutics, vol. 553, no. 1-2, pp. 109–119, 2018.

[96] H. Jiang, M. Xiong, Q. Bi, Y.Wang, and C. Li, “Self-enhanced
targeted delivery of a cell wall–and membrane-active anti-
biotics, daptomycin, against staphylococcal pneumonia,”
Acta Pharmaceutica Sinica B, vol. 6, no. 4, pp. 319–328, 2016.

[97] A. H. C. Lam, N. Sandoval, R. Wadhwa et al., “Assessment of
free fatty acids and cholesteryl esters delivered in liposomes
as novel class of antibiotic,” BMC Research Notes, vol. 9,
no. 1, pp. 1–11, 2016.
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