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Beauveria bassiana is a well-known insecticidal biocontrol agent. Despite its broad feld applications, its survival, colonization, and
stability under feld conditions remained unclear, mainly due to the lack of a quick and reliable detection method. In this study, we
developed a quantitative real-time PCR technology to monitor the stability and population dynamics of B. bassiana in diferent
substrates (water, soil, and on the cotton leaves surface), diferent spores of B. bassiana applied on Chinese cabbage leaves surface,
and the lethality of Pieris rapae spraying with diferent spores of B. bassiana. Our results showed a decreased concentration of
B. bassiana DNA in all three substrates from the 1st day till 9th day of post inoculation (dpi) period, possibly due to the death of
B. bassiana. After this decrease, a quick and signifcant rebound of B. bassianaDNA concentration was observed, starting from the
11th dpi in all three substrates. Te B. bassiana DNA concentration reached the plateau at about 13th dpi in water and 17th dpi in
the soil. On cotton leaves surface, the B. bassiana DNA concentration reached the highest level at the 17th dpi followed by a small
decline and then stabilized. Tis increase of DNA concentration suggested recovery of B. bassiana growth in all three substrates.
We found that the most suitable killing efectiveness of P. rapae was the 1.0×107 spores/mL of B. bassiana. In summary, we have
established a detection technology that allows a fast and reliable monitoring for the concentration and stability of B. bassiana
under diferent conditions. Tis technology can beneft and help us in the development of proper management strategies for the
application of this biocontrol agent in the feld.

1. Introduction

Beauveria bassiana is an entomopathogenic fungus that can
infect more than 700 insect species belonging to 149 diferent
families in 15 diferent orders by causing white muscardine
disease in them [1–3]. To date, entomopathogenic fungi have
been used as biological control agents for the management of
various insect and mite pests [4]. B. bassiana is the most well
studied entomopathogenic fungi and has been frequently used
as a commercial mycoinsecticide in the feld [5, 6]. For ex-
ample, B. bassiana was used to control insect pests, including
Pissodes castaneus, Ostrinia nubilalis, and Rhynchophorus

ferrugineus, infeld through direct spraying [7–9]. It is known
thatB. bassiana is safe to human, natural benefcial insects, and
benefcial microorganisms. During feld applications, it can
also be used together with other commercial chemical pes-
ticides [10–12]. More importantly, there is no evidence that
insect pest(s) has evolved resistance against B. bassiana.
Currently, B. bassiana is widely used to control insect pests in
the order of Lepidoptera and Coleoptera, including many
forest pests [13, 14].

It was reported that B. bassiana could secrete many
biologically active compounds like lactide and poisonous
proteases during its infection in insect hosts [15, 16].
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B. bassiana is also known to hijack nutrients and water from
the infected insects to accelerate their death process [17].
B. bassiana spores can be formulated to produce wettable
powder for commercial use in agriculture as well as in forests
[18–21]. A separate study conducted recently showed that
the survival and successful recolonization of the B. bassiana
in feld depended largely on environmental factors [22]. We
reasoned that the understanding of the survival and growth
dynamics of this fungus in nature is necessary for the in-
tegration of this biocontrol agent into a more efective and
safe plant protection strategy and to reduces public concerns
on environment conservation [23, 24].

Peng and coworkers investigated the growth and survival
ofMetarhizium anisopliae in oriental migratory locust [25]. In
this study, we used a similar strategy to establish an accurate
quantitative real-time PCR technology to determine the
stability of B. bassiana in various substrates (i.e., water, soil,
and cotton leaves surface) at 28°C. With this new technology,
we can now monitor B. bassiana population dynamics and
regrowth in feld samples and develop more efective man-
agement strategies using this and other biocontrol agents.

2. Materials and Methods

2.1. Materials. B. bassiana was originally isolated from
a tomato feld in Yueyang, China (113°00′4.39″E,
29°45′9.41″N) and then maintained in the laboratory. Before
use, this fungus was grown till a concentration of
1.0×1012 spores/g·mass. Te liquid growth medium used for
B. bassiana was potato dextrose agar (PDA-Medium), and
the carbon-to-nitrogen (C :N) ratio was at 10 :1 (Vega.
2003). Cotton plants used in this study were grown in
a greenhouse and the soil was from Chunhua in Changsha,
China (113°25′56.50″E, 28°27′80.40″N), which contained
10% water, and the water used was the natural water from
a lake in Changsha, China (113°09′04.77″E, 28°19′39.14″N).

2.2. DNA Extraction from B. bassiana. DNA was extracted
from B. bassiana containing water, soil, and plant leaf
samples using a DNA extraction kit (Tiangen Biochemical
Technology, Beijing, China). Concentration and quality of
each DNA sample were measured by using a spectropho-
tometer (Termo Fisher Scientifc, Massachusetts, USA). For
each DNA sample, three technical replicates were analyzed
during real-time fuorescent PCR with a SYBR Green I
reagent (TransGen Biotech, Beijing, China) as instructed by
the manufacturer (TransGen Biotech).

2.3. Synthesis of B. bassiana Specifc Primers. Te initial PCR
amplifcation was carried out using a set of bacterial uni-
versal primers (Baker. 2003) and the DNA isolated from
B. bassiana. Te resulting PCR products were cloned and
sequenced by the TSINGKN Biotech (TSINGKN Biotech,
Beijing, China). Conserved DNA sequences obtained from
the PCR products were analyzed using the DNAMAN
software, and six pairs of real-time PCR primers were
designed based on the obtained sequences using the Primer
5.0 software in the DNAMAN (LynnonBiosoft, USA). In the

subsequent real-time PCR assays, diluted B. bassiana ge-
nomic DNA or double distilled water (ddH2O) were used as
the positive and negative control sample, respectively. Te
six designed primer sets were frst tested by gradient PCR
with three diferent annealing temperatures (52, 54 and
56°C) and later by PCR amplifcations. Te resulting PCR
products were visualized in agarose gels through electro-
phoresis. Te primer set giving a single specifc PCR product
was considered to be the optimal B. bassianareal-time PCR
primer set and was used in further experiments.

2.4. Preparation of Real-Time PCR Standard Curve.
According to a previously described method [26], we frst
generated a recombinant plasmid DNA carrying a fragment
of B. bassiana genomic DNA and then measured its con-
centration using a spectrophotometer. Te copy number of
the recombinant plasmid DNA was calculated as previously
reported [27] and then further diluted prior to the real-time
fuorescent PCR on a CFX96™Real-Time System (Bio-Rad,
California, USA), and the standard curve was established
using the concentration logarithm and the Ct values.

2.5. Determination of Detection Limit Using Purifed
B. bassiana DNA. B. bassiana was homogenized, dried, and
diluted 1 : 99 (w/v) in sterilized water. Te diluted sample was
incubated at 28°C inside an incubator and sampled once every
two days (onemL sample per sampling time) till the 29th day of
postincubation (dpi) period. Te collected samples were
centrifuged at 12,000 rpm/min for 1minute and the super-
natants were discarded prior to the extraction ofDNA from the
pellets. For real-time PCR reactions, three technical replicates
were analyzed and used to represent a specifc DNA sample.

2.6. Detection of B. bassiana DNA in Soil Samples. One gram
dried B. bassiana powder was mixed with 99 grams sterilized
black soil, incubated at 28°C in an incubator and then sampled
once every two days (1 g soil sample per sampling time) as
described above. Te collected soil samples (0.1 g each) were
used for DNA extraction as described above. Real-time PCR
was then performed using three technical replicates per sample.

2.7. Detection of B. bassiana DNA in Cotton (Gossypium spp.)
Leaves Samples. One gram dried B. bassiana powder was
diluted in 99 grams sterilized water and then spread onto the
surface of cotton leaves. After air drying, three to four cotton
leaf pieces were randomly collected once every two days.Te
sampled cotton leaf tissues were grounded in liquid nitrogen
and 0.1 g powder from each leaf sample was used for DNA
extraction. For real-time PCR, three technical replicates
were used to represent a specifc sample.

2.8. Detection of Diferent Number Spores of B. bassiana DNA
on Chinese Cabbage (Brassica rapa Pekinensis) Leaves.
Te B. bassianawith 1.0×102 (A), 1.0×104 (B), 1.0×106 (C),
1.0×107 (D), and 1.0×108 (E) spores/mL were sprayed
evenly on Chinese cabbage leaves at the same growth level at
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28°C and 60% humidity. Te bufer solution used for the
dilution of the spores of B. bassiana was set as a blank
control. Te leaf samples were analyzed for B. bassianaDNA
concentrations by real-time PCR after 24 hours of spraying,
three to four pieces of cabbage leaf were randomly collected
once every two days. For real-time PCR, three technical
replicates were used to represent a specifc sample.

2.9. Detection of Diferent Number Spores of B. bassiana DNA
in P. rapae. Te B. bassiana with 1.0×102 (A), 1.0×104 (B),
1.0×106 (C), 1.0×107 (D), and 1.0×108 (E) spores/mL were
used to spray uniformly on the cabbage leaves. After
spraying 12 hours, cabbage leaves were fed to 40 heads of
P. rapae selected at normal active fourth stage larvae, the
P. rapae larvae were cultured in a net cage at 28°C and 90%
humidity. Te bufer solution used for the dilution of the
spores of B. bassianawas set as a blank control. After feeding
for 24 hours, one P. rapae were randomly collected to check
for the B. bassiana DNA concentrations by real-time PCR.
Te selected P. rapae was rinsed with water to avoid the
presence of B. bassiana outside the body, which will afect
the experimental results. For real-time PCR, three technical
replicates were used to represent a specifc sample.

In this study, all the experiments were repeated twice to
ensure the repeatability of the results.

3. Data Analysis

Data obtained from three independent experiments were
combined and analyzed by using one-way ANOVA program
in Excel (Microsoft® Ofce Excel 2003, USA) and the SPSS
13.0 statistical software package (SPSS, Inc., Chicago, IL,
USA). Post hoc multiple comparisons were conducted at the
5% level of probability using Duncan’s multiple range test
(DMRT).

4. Results

4.1. Determination of Optimal PCR Primers and Standard
Curve of Real-Time PCR. Gradient PCR was frst used to
determine the optimal annealing temperature for individual
primer sets listed in supplementary Table 1. Te recombinant
plasmid DNA was diluted based on the copy number of
plasmid DNA estimated using the following equation: copy
numbers/μL� (6.0×1014 copies× plasmid concentration (g)/
μL)/(number of bases× 660Dalton/base). Te efciency of
each primer set was determined through PCR reactions and
the resulting PCR products were visualized in agarose gels
through electrophoresis. Results of the assay showed that,
when the annealing temperature was set at 54°C, four of the
six primer sets gave strong and correct sized PCR product
bands. At 52°C, three primer sets gave positive PCR products
of diferent size, and at 56°C, only two primer sets gave
positive PCR products (Supplementary Figure 1). Conse-
quently, the 4th primer set (e.g., 98F 5′GGCATCGATGAA
GAACGCAG3′ and 333R 5′GTATTACTGCGCAGAGGT
CG3′) was used for the following real-time PCR assays.
Trough PCR amplifcation assays, a standard curve of PCR
was determined as Y� −3.26X+11.25, R2 � 0.99965, and the

PCR amplifcation efciency� 1.03 (Supplementary Figure 2).
Using serially diluted plasmid DNA samples, it was observed
that by the 10-fold dilution of DNA samples; the Ct values
increased by 3-4.Te concentration of standard plasmidDNA
was found to be closely correlated with the Ct values, leading
to single melting curves (Supplementary Figure 3).

4.2. Stability of B. bassiana in Water at 28°C. Dried
B. bassiana powder was diluted in water and incubated at
28°C for several days followed by DNA isolation. Stability of
B. bassiana DNA in water was determined as the concen-
trations of B. bassiana DNA in water over time by real-time
PCR. Te result of the assay showed that the amount of
B. bassiana DNA in assayed samples stored for 1 and 3 days
was similar (5.646×106 and 5.622×106 copies of B. bassiana
DNA/μL, respectively) (Figure 1).Te amount of B. bassiana
DNA decreased quickly to 3.762×106 copies of B. bassiana
DNA/μL on the 7th day of postinoculation period followed
by an increase up to 6.619×106 copies of B. bassiana DNA/
μL on the 13th day of postinoculation period. B. bassiana
DNA decreased again at the 17th dpi and maintained at
a similar level till 29th dpi. In this study, no B. bassianaDNA
was detected in the negative control sample.

4.3. Stability of B. bassiana DNA in Soil at 28°C. Stability of
B. bassiana DNA in soil was also determined by real-time
PCR. Results shown in Figure 2 demonstrated that
B. bassianaDNA concentration declined quickly from the 1st

dpi (5.253×106 copies of B. bassianaDNA/μL) to the 9th dpi
(4.530×105 copies of B. bassiana DNA/μL). As shown in
Figure 2, B. bassianaDNA concentration rebound at the 11th
dpi and continued to increase till 17th dpi (4.776×106 copies
of B. bassiana DNA/μL). After this increase, B. bassiana
DNA concentration remained relatively stable till 29th dpi,
suggesting a reestablishment of B. bassiana population in
soil samples. Tis experiment was repeated twice.

4.4. Stability of B. bassiana DNA on Cotton Leaves at 28°C.
Dried B. bassiana powder was diluted in water and sprayed
onto the surface of cotton leaves. After incubation at 28°C for
several days, the leaf samples were analyzed for B. bassiana
DNA concentrations by real-time PCR. Te results shown in
Figure 3 indicated that the concentration of B. bassiana DNA
was at 3.202×105 copies of B. bassiana DNA/μL at the 1st dpi
and then declined to 2.777×104 copies of B. bassianaDNA/μL
at the 9th dpi. Te concentration of B. bassiana DNA rebound
at the 11th dpi and reached 2.975×105 copies of B. bassiana
DNA/μL at the 17th dpi. Te B. bassiana DNA concentration
decreased slightly again and reached 2.126×105 copies of
B. bassiana DNA/μL at the 21st dpi, and then remained sta-
bilized. Tis experiment was repeated twice. B. bassiana DNA
was not detected in the negative control samples.

4.5. Stability ofDiferentNumberSporesofB.bassianaDNAon
ChineseCabbageLeaves at 28°C. To investigate the dynamics
of diferent amounts of B. bassiana spores over time, we
selected diferent concentrations of spores to spray on
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Chinese cabbage leaves and then detected the stability of
B. bassiana DNA. Results shown in Figure 4 indicated that
the concentration of B. bassianaDNAwas at 7.976×107 (A),
1.100×108 (B), 1.308×108 (C), 1.391× 108 (D), and
1.460×108 (E) copies of B. bassiana DNA/μL at the 1st dpi
and then declined to 1.724×107 (A), 5.261× 107 (B),
1.021× 108 (E) copies of B. bassiana DNA/μL at the 9th dpi
and 8.292×107 (C), 9.076×107 (D) copies of B. bassiana
DNA/μL at the 7th dpi. Te concentration of B. bassiana
DNA rebound at the 11th dpi and reached 5.381× 107 (A),
1.156×108 (B), 1.474×108 (C), 1.553×108 (D), and
1.615×108 (E) copies of B. bassiana DNA/μL at the 21st dpi
and then remained stabilized. Although the concentration of
B. bassianawas diferent, the stability of B. bassianaDNA on
Chinese cabbage leaves surface showed roughly the same
trend, which showed a decreasing trend from the 1st dpi to
the 9th dpi (except (A), (B), and (E)), all concentrations
showed an increasing trend from the 11th dpi to the 19th dpi
and then remained stabilized at 21th dpi to the 29th dpi. Tis
experiment was repeated twice. B. bassiana DNA was not
detected in the negative control samples.

4.6. Stability ofDiferentNumber Spores of B. bassianaDNA in
P. rapae at 28°C. After the diferent number of spores of
B. bassiana spraying on cabbage leaves at 12 hours, the treated
leaves were fed to P. rapae. Ten, the assayed P. rapae were
analyzed for B. bassiana DNA concentrations by real-time
PCR. Results shown in Figure 5 indicated that the stability of
B. bassiana DNA were 1.633×108 (A), 2.854×104 (B) copies
of B. bassiana DNA/μL at the 7th dpi; 4.574×108 (C),
5.276×108 (D), and 6.063×108 (E) copies of B. bassiana
DNA/μL at the 9th dpi.Te concentration of B. bassianaDNA
rebound at the 11th dpi and, respectively, reached 2.638×108
(A), 6.953×108 (B), 8.839×108 (C), 8.887×108 (D), and
9.263×108 (E) copies of B. bassiana DNA/μL at the 21st dpi.
Te mortality rate of P. rapae treated with diferent spores at
21st, respectively, reached 15% (A), 50% (B), 65% (C), 90%
(D), and 95% (E), the concentration of 1.0×106 (C) spores/
mL reached 65% at the 19th dpi; the concentration of 1.0×107
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Figure 2: Stability of B. bassianaDNA in soil at 28°C.Te stability of
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(D) spores/mL reached 50% at the 13th dpi and reached 90% at
the 21st dpi; the concentration of 1.0×108 (E) spores/mL
reached 50% at the 14th dpi, and reached 90% at the 19st dpi.
Tis experiment was repeated twice. B. bassianaDNAwas not
detected in the negative control samples.

5. Conclusion and Discussion

In this study, we identifed a pair of PCR primers specifc for
the B. bassiana 16s rDNA and established a sensitive and
reliable PCR and a real-time PCRmethod for the detection of
B. bassiana in various substrates. Te sensitivity of the de-
tection technology was 4.337×104 copies of plasmid/μL.
Using this method, we can now reliably monitor B. bassiana
population dynamics in B. bassiana preinoculated soil or
cotton leaves samples. Our results indicated that during the 1st

to the 9th dpi, B. bassiana DNA concentration declined in all
substrates. According to our understanding, this decline was
caused by themassive death of initially inoculated B. bassiana.
Te DNA concentration started to increase sharply after the
9th till 11th dpi. It is possible that this increase represents
a rapid regrowth of B. bassiana, survived from the treatments.
From the 11th to the 29th dpi, B. bassianaDNA concentrations
remained high in all three substrates, suggesting that the
B. bassiana population had reached the maximum level under
the assayed conditions. In this study, B. bassiana DNA was
not detected in any negative control samples and thus, the
identifed PCR primers produced the B. bassiana DNA
specifc bands when electrophoretically analyzed.

Diferent number spores of B. bassiana applied on
Chinese cabbage result shown that the stability of B. bassiana
DNA are consistent when plants treated with 1.0×106,
1.0×107, and 1.0×108 spores/mL. But the mortality rate of
P. rapae treated with diferent spores at 21st, respectively,
reached 15%, 50%, 65%, 90%, and 95%, the concentration of
1.0×106 spores/mL reached 65% at the 19th dpi; the

concentration of 1.0×107 spores/mL reached 50% at the 13th
dpi and reached 90% at the 21st dpi; the concentration of
1.0×108 spores/mL reached 50% at the 14th dpi, and reached
90% at the 19st dpi. With the increase in the initial spores of
B. bassiana, the mortality of P. rapae gradually increased. At
low spores (1.0×102 spores/mL and 1.0×104 spores/mL),
the death rate was approximately 15–50%. At high spores
(1.0×106, 1.0×107, and 1.0×108 spores/mL), the death rate
was 65–95%.Te results indicated the efect of killing insects
was obviously increased with increasing the concentration of
B. bassiana, whereas considering the cost-efectiveness, the
1.0×107 spores/mL of B. bassiana was the most suitable.

Since the invention of real-time PCR, this technology has
been widely applied to molecular biology studies [28].
Currently, PCR, and real-time PCR are the most popular
technologies for plant pathogen diagnosis [29, 30] and host
gene expression analysis.Te potential of this technology for
the assays on the stability of the inoculated biocontrol agents
remained largely unknown. Te main reason for this is
mainly due to the lack of specifc PCR primers. Current
studies on B. bassiana feld applications focused mainly on
the development of antibiotic-resistant strains [31–33]. Te
development of antibiotic-resistant B. bassiana is, however,
time-consuming and the resulting resistance strain(s) might
become attenuated after a few generations. In contrast,
understanding the environmental impacts on B. bassiana
stability and recolonization behavior in the feld can facil-
itate the design and establishment of more efective insect
pest management strategies and thus achieving a better
control efect. Tis PCR detection technology may also be
modifed for other biocontrol agents. In summary, this study
has established a fast, low-cost, and reliable method for the
determination of B. bassiana stability and recolonization in
various substrates under the controlled conditions.

Abbreviations

B. bassiana: Beauveria bassiana
dpi: Day of post inoculation
P. rapae: Pieris rapae
PCR: Polymerase chain reaction.
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[10] V. A. M. Andaló, A. Moino Jr, L. V. Santa-Cećılia, and
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