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Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most
important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from
mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research
aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans.
Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are
becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close
relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic,
and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we
describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species
biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the
effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C.
albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the
emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important
opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.

1. Virulence of Candida Pathogenic Fungi

The fungal kingdom includes many different virulent species
that are able to infect, colonize, and cause diseases in humans
[1, 2]. Virulence is defined as the relative ability of a microor-
ganism to cause damage to the host during colonization,
whereas virulence factors are defined as microbial attributes
that mediate the destruction capacity. However, the virulence
determinants are not merely proprietary and inherent attri-
butes of the pathogen, but must be carefully considered with

regard to host-pathogen interactions and the state of the host’s
immunity and strength of its response to the pathogen. There-
fore, host damage can result from both the activity of the
microorganism itself and the action of the immune system [3,
4]. If there is no harm to the host or is not clinically relevant,
such microorganisms may be considered commensals that do
not provoke an excessive immune response. However, under
certain conditions, the balance can shift to pathogenicity with
increasing damage and activation of the host’s defense. In
infections caused by Candida fungi, such conditions include a
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disturbance of the beneficial microflora of the host or immune
disorders [5]. In susceptible hosts, Candida fungi can cause dif-
ferent types of infections, manifested by superficial infection of
the skin and mucous membranes or deep tissue infections and
candidemia [6–9].

Of several hundred known species of the genus Candida,
only some are indicated to be capable of causing human infec-
tion, and they even differ significantly in their virulence and
adaptation strategies, thus locating at divergent points in a con-
tinuous spectrum of the types of interactions between the host
and the microorganism. Recent considerations indicate that
the evolution of fungal virulence could have taken many indi-
vidual directions and depended on a variety of factors, and only
some of them have been recognized so far [2, 10–13]. The abil-
ity to colonize the human host by some Candida species arose
from using the available properties related to their cell biology
and required to adapt to specific niche conditions. The transi-
tion between the commensal and pathogenic states, closely cor-
related with modulation of host immunity, is based on the
differential adjustment of fungal virulence to ensure the survival
and multiplication of fungi, in addition to avoiding microbe
removal and causing excessive host damage [2, 14]. Throughout
coexistence with the human host, particular Candida species
have developed different mechanisms for adaptation to coloni-
zation. Observable manifestations of these adaptations related
to the biological functions of the cell, i.e., the ability to grow at
higher temperature, changes in cell morphology, and the range
and level of production of manifold molecules, may be similar
to some extent, or they may differ significantly for individual
Candida species. This could not only result in the distinct viru-
lence potential and adaptation ability of individual Candida
species but can also be of great importance in practice, affecting
the correct diagnosis and effective treatment of candidiases.

So far, the most widespread and best-characterized species
of the Candida genus is C. albicans, representing the so-called
CTG clade, in which the CTG codon is translated as serine
instead of leucine [9, 15]. The frequency and type of infections
caused by selected Candida species from the CTG clade in dif-
ferent groups of predisposed patients, their geographic distri-
bution, and the severity of the disease course can vary,
depending on the specific susceptibility of individuals, con-
comitant risk factors, and environmental determinants [16,
17]. Candidiases comprise fungal manifestations on the skin
andmucous membranes, such as oral or vaginal thrush, which
are relatively mild disorders, although extremely bothersome,
as well as severe infections of internal organs, systems, and
the entire organism with widespread inflammation and sepsis.
The highest distribution is still observed for C. albicans, and
among the other species discussed in this review, the average
incidence was significantly higher for C. tropicalis than for C.
dubliniensis. C. albicans and C. tropicalis belong to a group
of five Candida species that account for more than 90% of
all candidial infections, both superficial and invasive [18].
The number of confirmed identified infections with C. auris
has increased markedly in the last decade, since its first identi-
fication in 2009, making this species an emerging pathogen
[19]. Interestingly, among the discussed species, C. auris is
not considered a component of the commensal intestinal
microflora, but rather as environmental contamination, and

it rather inhabits the skin surface, thus facilitating transmis-
sion between individuals and the development of infections
after gaining access to the interior of the human organism [20].

Since changes in the epidemiology of fungal infections
have been observed in recent decades, manifested by an
increase in candidiases caused by species other than C. albi-
cans, it seems that despite their close relationship (Figure 1),
these species maintain different ways of survival and repro-
duction in the host [21–25]. Therefore, the main objective of
this review was to compare current knowledge on observable
differences and similarities in virulence factors, cointeractions,
and susceptibility to antifungal drugs by Candida species most
closely related to C. albicans, namely, C. dubliniensis and C.
tropicalis, but also by a relatively newly identified species of
global concern, C. auris [26–30], to indicate the impact of
differences between these individual Candida species on prac-
tical issues related to candidial infections, especially problems
in proper diagnosis and treatment of candidiasis.

1.1. Variety of Virulence Factors in the Fungal CTG Clade. Can-
dida species belonging to the CTG clade have evolved multiple
virulence factors that are used at different stages of infection in
interactions with host proteins and cells and in the evasion of
the immune system. Although the set of virulence factors
differs within the CTG clade and their expression depends on
the type of strain and the stage of infection [31], they involve
primarily the production of different classes of proteins, includ-
ing adhesins and a wide spectrum of hydrolytic enzymes
(Figure 2) [32–35]. Comparative genomic analyses indicated
that for C. albicans, a significant enrichment compared to non-
pathogenic yeasts was found for genes encoding secreted prote-
ases and lipases, acid sphingomyelinases, cytochromes P450,
and various transporters. Also, noticeable differences in genes
related to oxidative metabolism and environmental sensing
and response were indicated in comparison with nonpatho-
gens. Understanding the differences in the genomes of individ-
ual fungal species closely related to each other, but differing in
virulence, may allow the determination of the genetic basis of
adaptation of yeasts to pathogenicity [36, 37].

The first landmark study comparing the evolutionary path-
ways of the main fungal pathogens belonging to the Candida
clade, including C. albicans and C. tropicalis, identified 64 gene
families with positive selection, which through their participa-
tion in filamentous growth (e.g., SWI, PMT, and CPH/STE),
biofilm formation (e.g., CPH/STE and PGA/YWP), and drug
sensitivity (e.g., ERG) play an essential role in the pathogenesis
of these species [10]. The genomic comparative analysis of C.
albicans and C. dubliniensis indicated that since both species
lost a common ancestor some 20 million years ago, the former
species was enriched with the virulence-related gene families,
while the latter consistently lost pathogenicity-related genes,
including hyphal-associatedHYR1, genes for particular secreted
enzymes, or IFA gene family encoding transmembrane pro-
teins, which compromised its virulence [38]. Moreover, the dif-
ference in the number of members of the telomere-associated
(TLO) gene family, represented by 14 genes in C. albicans and
only two in C. dubliniensis, may be significant in understanding
discrepancy in the pathogenicity of these species, as they may
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possibly act as transcriptional regulators involved in different
cellular processes [11, 38].

The key stage in the development of a fungal infection is the
adhesion of the pathogen to a variety of biotic and abiotic sur-
faces [39]. The possibility of C. albicans binding to various
ligands on the surface of host cells, as well as to artificial sur-
faces, is associated with exposition of glycosylphosphatidylino-
sitol- (GPI-) anchored adhesins: agglutinin-like sequence
protein family (Als1-7 and Als9), hyphal wall protein family
(Hwp1), Eap1, Iff4, Ecm33, and also noncovalently cell wall-
associated proteins, i.e., Mp65 and Phr1 [40, 41]. Phylogenomic
studies have identified three main families of genes that encode
cell wall components, including genes for Als adhesins, Hyr/Iff
proteins, and Pga30-like proteins that are highly enriched in
pathogenic species, including C. albicans and C. tropicalis
[10]. Analysis of predicted cell wall proteins in C. auris did
not reveal highly developed families, in contrast to the expan-
sion of genes for transporters and lipases, which may also
indicate different mechanisms of virulence in C. albicans and
C. auris [42, 43].

In addition to classic adhesive proteins, this function is also
performed by some cytosolic proteins, calledmoonlighting pro-
teins, and located on the surface of yeast cells, where they per-
form completely different functions than at the primary
location [44, 45]. For example, C. albicans cell wall-associated
glyceraldehyde-3-phosphate dehydrogenase (Tdh3), an enzyme

originally involved in the glycolysis pathway, has a high affinity
for extracellular matrix (ECM) components such as fibronectin
and laminin [46] or other glycolytic enzymes, phosphoglycerate
mutase 1 (Gpm1) which allows adhesion to umbilical vein
endothelial cells (HUVEC) and keratinocytes (HaCaT) [47]
and to vitronectin and fibronectin [35] and triosephosphate
isomerase (Tpi1), which interact with several ECM proteins
[48]. C. albicans enolase (Eno1) was also indicated as an abun-
dant moonlighting protein responsible for binding of human
high-molecular-weight kininogen (HK), prekallikrein, coagula-
tion factor XII, and plasminogen [34, 49, 50]. Furthermore,
moonlighting proteins are also involved in binding to abiotic
surfaces; for example, Eno1 plays a role in silicone and polyvinyl
chloride adhesion and therefore is involved in biofilm forma-
tion on medical devices [51, 52].

Less is known about the profile of adhesins in C. tropicalis.
Studies by Punithavathy and Menon evaluated the presence of
ALS genes in the C. tropicalis genome in clinical isolates from
HIV and non-HIV patients [53]. The results indicated that
the genes ALS2 (50% of isolates) and ALS3 (48%) are more
common than ALS1 (28%). Recently, the use of DNA sequenc-
ing technology combining short-read (Illumina MiSeq) and
long-read (Oxford Nanopore MinION) datasets allowed the
identification of 13 distinct genomic loci in C. tropicalis, with
predicted encoded proteins demonstrating Als structural fea-
tures such as the N-terminal-binding domain, a central domain
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Figure 1: Phylogenetic tree of selected species of the CTG clade generated on the basis of the NCBI or GTD taxonomy available in the
online version of the phyloT program.
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Figure 2: Main virulence factors of selected yeasts of the genus Candida.
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of tandemly repeated sequences and the C-terminal domain
rich in serine and threonine. Detailed comparisons indicated
that the predicted percent sequence identity compared to C.
albicans was highest (30-50%) in the N-terminal domain of
the C. tropicalis protein. Moreover, the predicted ALS genes
showed variability in relative expression depending on the cul-
ture conditions [54]. Furthermore, Himratul-Aznita et al. [55]
showed that the HWP1 adhesin-encoding gene is also present
in the C. tropicalis genome and has a sequence identical to that
of C. albicans. Bioinformatic studies conducted by Willaert
et al. demonstrated the presence of the Flo adhesin family
(Flo11 type), previously discovered in brewer yeasts [56]. Some
reports indicated that the levels of proteins present on the sur-
face of C. tropicalis vary with the growing conditions. For
example, in plasma-containing medium, three times higher
levels of Rbt1, Als-like, and also, Tdh3 were indicated [57]. Fur-
thermore, Hyr1 adhesin was shown to have a significant affin-
ity for ECM proteins and HK [58, 59]. In addition, C. tropicalis
moonlighting proteins such as malate synthase Mls1, fructose-
1,6-bisphosphatase Fbp1, Eno1, and Gpm1 may play a role in
adhesion to components of ECM or plasminogen [48, 50, 58].

Several studies suggested that C. dubliniensis exhibits lower
virulence than C. albicans [23, 60]. As adhesion is one of the
key virulence factors, it was assumed that there may be differ-
ences in the adhesin profile of these two species. It seems that
C. dubliniensis, despite its similar evolutionary origin, might
have gradually lost several genes that are still present in C. albi-
cans [38]. The percentage of homology of amino acids com-
pared to C. albicans is less than 50 [61–63]. To date, several
genes encoding proteins homologous to C. albicans adhesins
have been identified in the genome of C. dubliniensis, including
ALS-like sequences and HWP1 [38]. However, a detailed phy-
logenetic analysis suggests that C. dubliniensis has evolved a
new Als family. That is, ALS3 located on the R chromosome
in C. albicans was shown to be completely absent at its corre-
sponding position inC. dubliniensis, similar toALS5 [38], while
ALS1 and ALS2 do not show an ortholog sequence in relation
to C. albicans, suggesting that these proteins are species-
specific acquisitions [38]. Studies by Oh et al. demonstrated
that the genes encoding Als proteins in C. dubliniensis strain
CD36 differ in relative expression depending on culture condi-
tions, with the greatest changes observed for ALS2 and ALS6
[54]. In the case of HWP1, there is a homologue in the C.
dubliniensis genome, but this gene is very divergent due to
the presence of major deletions [63].

Studies conducted in recent years show that C. auris is as
virulent as C. albicans [64]; however, the range of virulence
attributes used differs between species [65]. The genome of C.
auris contains genes that encode several orthologs of adhesins
found in C. albicans, which are well characterized as virulence
factors [66]. Namely, C. auris biofilm-forming cells possess
orthologs of the ALS protein, as well as proteins such as IFF4,
CSA1, PGA26, PGA52, and HYR3, which are expressed during
biofilm formation [67]. Genomic analyses showed that there
are differences in the adhesin profile between C. auris strains.
The less virulent Clade II strain of C. auris (East Asian type),
responsible for ear infections, lacks significant fragments of
subtelomeric regions encoding adhesins [43].

The virulence of the CTG clade is also associated with the
production of a variety of hydrolytic enzymes that contribute
to the invasion of host tissues by damaging cell surface struc-
tures and degrading a variety of host proteins. In the case of
C. albicans, the following classes of enzymes can be distin-
guished: aspartic proteases (Saps), phospholipases (PL) and
lipases (LIP), esterase, and hemolysin, where most are extracel-
lularly secreted enzymes [68]. These enzymes are differentially
regulated and produced during different stages of infection [68,
69]. In recent years, aspartyl proteases have been most exten-
sively studied. These enzymes are involved in every stage of
C. albicans infection, and their functions are not limited to sub-
strate hydrolysis. Saps contribute to the adhesion and invasion
of tissues and damage a variety of human proteins, including
albumin, hemoglobin, keratin, collagen, laminin, fibronectin,
mucin, and immunoglobulins [70]. The multigene Sap family
in C. albicans consists of at least 10 members. Sap1-8 are
secreted into the extracellular space, while Sap9 and Sap10
are GPI-anchored proteins. PLs are also a broad group of
enzymes that catalyze the hydrolysis of ester bonds in glycero-
phospholipids. These enzymes were recognized as factors that
allow penetration of host cells and interaction with host signal-
ing pathways [68, 71]. PLs can be divided into several subclas-
ses—PLA, PLB, PLC, and PLD—depending on the
phospholipid substrate [68, 72]. PLs are particularly localized
at the ends of penetrating hyphae and at initial budding sites.
Lipases are a relatively poorly studied group of C. albicans
enzymes, and their functions in infections are not precisely
known. Genetic studies have shown the presence of ten
(LIP1-10) genes in the genome of C. albicans [73].

Very high proteolytic activity was also found in C. tropica-
lis. A study by Zaugg et al. indicated the existence of the SAPT
gene family (secreted aspartic proteinase tropicalis) in the
genome of C. tropicalis (SAPT1-4) [74]. Although SAPT2-4
genes are upregulated during the yeast-hyphal transition and
are involved in oral mucosal invasion and damage [75, 76],
earlier studies have shown that the high invasiveness of C. tro-
picalis may not be related to the specific expression of SAPT1
[77, 78]. On the other hand, studies indicate a low activity of
phospholipases in the majority of C. tropicalis isolates [79,
80]. However, 95.8% of the C. tropicalis strains isolated from
the blood of patients admitted to the intensive care unit were
characterized by high hemolysin and esterase activity [81].
Hemolysin secretion by C. tropicalis caused the release of
hemoglobin from red blood cells for further use as an iron
source; however, the production of hemolytic factor strictly
depends on culture conditions [82].

C. dubliniensis is phylogenetically very closely related to
C. albicans; however, it shows significantly reduced virulence
in animal models of infection that may be related to the
absence of certain proteolytic enzymes. The study by
Loaiza-Loez et al. showed that C. dubliniensis expresses
SAP orthologs (CdSAP1-4 and CdSAP7-9), but not SAP5
and SAP6 [83]. The absence of SAP5 may partially explain
the lower ability to invade host tissues because this enzyme
is involved in the degradation of E-cadherin [83]. In addi-
tion, most of C. dubliniensis isolates also lack phospholipase
activity [84].
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Substantial proteinase activity was detected in 96% of C.
auris strains [85]; however, hydrolytic enzymes have not
been well characterized to date. Of the Sap family, SAP5
has been shown to be present in the C. auris genome [67].
Research by Wang and coworkers indicated that C. auris
exhibits a high Sap activity at 25°C, 37°C, 40°C, and even
42°C while C. albicans showed significantly reduced Sap
activity above 37°C [86]. Studies on C. auris isolates from
patients with invasive infections and colonization revealed
also that more than half of the isolates had phospholipase
activity (67.3%) [87]. Among this group of enzymes, phos-
pholipase PLB3 was identified in the C. auris genome [67].
In addition, more than 60% of the clinical isolates were also
indicated to possess hemolytic activity [87].

In the microbial world, another important group of viru-
lence factors includes toxins. Studies on prokaryotic microor-
ganisms indicate that toxins are molecules that target host cells
and manipulate cell signaling or induce cell death [88]. The
first toxin discovered in the fungal pathogen was candidalysin,
isolated fromC. albicans [89]. Candidalysin is an amphipathic,
α-helical peptide, derived from a polypeptide (Ece1) encoded
by the ECE1 gene [90]. Recent studies indicate that candidaly-
sin is one of the key molecules involved in the destabilization
of the epithelial plasma membrane and the induction of
necrotic cell death [91, 92]. Orthologs of candidalysin from
C. albicans have also been found in C. dubliniensis and C. tro-
picalis [92]. Interestingly, studies on oral epithelial cells and
artificial lipid membranes presented by Richardson et al. [92]
indicated that candidalysins produced by C. dubliniensis and
C. tropicalis have stronger and faster cytolytic and immunosti-
mulatory effects than candidalysin of C. albicans. Importantly,
both species cause less damage to epithelial cells than C. albi-
cans, which may be due to lower Ece1 production, processing,
or secretion during contact with the host. Since candidalysin is
a classic virulence factor that involves a strong host immune
response, species that prefer a more commensal mode of exis-
tence are unlikely to exploit its potential to that extent [93]. In
the case of C. auris, the ECE1 gene has not been detected in the
genome and, according to current knowledge, this species does
not produce candidalysin [92].

1.2. Other Mechanisms Related to Virulence. Morphological
change to filamentous form is considered strongly associated
with the significant virulence of C. albicans and C. tropicalis
[94]. In the case ofC. albicans andC. dubliniensis, the different
ability to produce hyphae under specific niche conditions indi-
cates different adaptations to exist as a commensal or patho-
gen, as the transition to the filamentous form for which C.
albicans is more predisposed is considered as increasing viru-
lence potential, while the reduced filamentation is believed to
be an adaptation of C. dubliniensis to a less virulent lifestyle
[2, 23]. However,C. auris exists predominantly as blastospores
[86, 95, 96], which indicates that in addition to the morpho-
logical transformation into hyphae, which is considered con-
siderably important in virulence, there are other relevant
factors that determine a species becoming the pathogen [97].

Phenotypic switching is another feature that allows
yeasts to adapt to different niches [98, 99]. C. albicans, C.
dubliniensis, and C. tropicalis are diploid yeasts that can exist

in two different cell phenotypes. The first, called white,
includes smooth and shiny cells, while the second, called opa-
que, includes flat and rough cells with a curved and elongated
shape [100], although opaque cells, unlike white cells, did not
release a strong chemoattractant for human polymorphonu-
clear leukocytes (PMN), thus gaining invisibility for host
immune cells and protection against phagocytosis [101, 102].
On the contrary, in the case of C. auris, which is the haploid,
three phenotypes were observed: white, opaque, and sectored,
with all cells having shiny and smooth surfaces and the same
size [95]. Interestingly, in the case of white cells, a higher rate
of self-propagation was observed in liquidmedium, suggesting
increased stability of this phenotype [95].

An important factor contributing to the evolution of path-
ogenicity is reproduction, which includes three main mod-
els—sexual, parasexual, and asexual reproduction. While
most fungi reproduce sexually, C. albicans has been shown to
have parasexual cycles in which, after the fusion of diploid cells,
rather than meiosis, coordinated loss of chromosomes occurs,
resulting in viable progeny; this pathway of reproduction
increases genetic diversity and contributes to adaptation to
stressful environments, but also may mediate drug resistance
[103]. The evolutionary role of reproduction, especially para-
sexual, in other medically important species of the genus Can-
dida has become the subject of recent studies that discuss in
detail the regulation of its mechanisms and importance in the
evolution of pathogenicity [104–106]. Although C. albicans,
C. tropicalis, and C. dubliniensis, due to their close relationship,
share common features of the parasexual cycle, such as mating
between diploid cells, the presence of a stable tetraploid form,
coordinated loss of chromosomes, and the ability of diploid
progeny to reenter the parasexual process, they also developed
their unique attributes of those processes [104, 106]. For exam-
ple, in the case of C. tropicalis, the possibility of generating
hexaploid progeny has been reported by mating homothallic
and heterothallic tetraploid products with diploid cells and
the possibility of pheromone-assisted a-a homothallic mating
without the need to white-to-opaque switch [104, 106]. In turn,
C. dubliniensis, compared to C. albicans, shows a much higher
white-to-opaque frequency and does not show clumping
dependent on mating, which results in less efficient intraspe-
cific mating than interspecies mating [104]. To date, parasexual
reproduction has not been reported for C. auris; however, the
presence of a complete mating-type locus suggests that this
species may also be capable of parasexuality [105].

To maintain complete virulence, Candida species also
need calcineurin activity, which is calcium/calmodulin-depen-
dent serine/threonine-specific protein phosphatase composed
of catalytic subunit A (Cna1) and a regulatory subunit B
(Cnb1) [107, 108]. The main target of calcineurin-dependent
dephosphorylation in fungal cells is the Crz1 transcription fac-
tor Crz1; however, there may be other substrates available, and
signaling triggered by calcineurin activity influences many
different aspects related to fungal biology, as well as their
attainment of virulence [109]. For C. tropicalis and C. dubli-
niensis, calcineurin was shown to be crucial for hyphal growth,
while for C. albicans, the role of this phosphatase in filamenta-
tion is discussed [110–112]. Furthermore, in the case of C.
tropicalis and C. dubliniensis, it was also demonstrated that
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calcineurin is important for cell wall integrity, resistance to
echinocandins and azoles, and it is essential for virulence in a
murine systemic infection model [110, 111]. When comparing
the latter species with C. albicans, it is considered that calcine-
urin is more important in controlling acidic pH homeostasis,
while for C. albicans, calcineurin is more essential in serum
survival compared to C. dubliniensis [112]. Orthologous genes
for calcineurin and Crz1 were indicated for C. auris; however,
further detailed studies of their role are required for this
species.

2. Formation of Mixed Species Biofilms within
the CTG Clade: Competition or
Assistance during Infection?

Although most available reports focus on studying biofilms
produced by one Candida species, in vivo analysis shows that
these are complex communities where multiple species can
coexist in the same niches of the host organism [113–118].
The classical division of communication between them is
divided into two paths. The first is synergism that promotes
the formation of biofilms through coaggregation and jointly
increases protection against the host’s immune system. The
second is antagonism based on competition for nutritional
resources and mutual inhibition of growth [119]. Therefore, it
is necessary to identify interactions involving several different
species, as this can be of great importance in combating infec-
tions associated with the formation of a mixed fungal biofilm.

The studies presented by Pathirana et al. [118] focused on
the analysis of biofilms produced under induced flow condi-
tions that mimic the host oral environment in which C. albi-
cans interacted with C. dubliniensis or C. tropicalis shown
that after 4 hours of development of a dual-species biofilm,
the percentage of adherent C. dubliniensis and C. tropicalis cells
was higher compared to that of a single-species biofilm. More-
over, these species were quantitatively dominant over C. albi-
cans, covering a larger biofilm area. However, as the biofilm
reached maturity, C. albicans acquired quantitative dominance
over both species. Interestingly, the coexistence of C. albicans
and C. dubliniensis increased the area covered by mature
biofilms compared to monospecies biofilms. In contrast, the
presence of C. albicans inhibited hyphae production by C. tro-
picalis, and a mixed biofilm was formed more slowly than
monospecies biofilms. Furthermore, it was found that the C.
tropicalis cell clusters formed in sites not occupied by C. albi-
cans cells showed high dispersibility. The authors of the study
postulate that the observed interactions between C. albicans
and C. dubliniensis are synergistic mainly due to the rapid
growth rate of a typical mature biofilm [118], which may con-
tribute to protection against the host immune system or to
increased resistance to the antifungal drugs [120, 121]. These
conclusions are consistent with the results obtained by Kirkpa-
trick et al. [122], who showed that C. dubliniensis could with-
stand competitive pressure from C. albicans and cocreate a
biofilm in the urethral catheter model. Interestingly, C. dubli-
niensis cells were also shown to not adhere to C. albicans blas-
tospores [118]. On the contrary, under the conditions of joint
planktonic growth, C. albicans showed a significant competi-

tive advantage over C. dubliniensis [122]. In vivo studies based
on an oral-gastric infection model of murine infants showed
that despite similar colony forming units (CFU), values were
obtained for both species after 2 days of coinfection; the num-
ber of C. dubliniensis yeast cells was undetectable after 6
days [60].

Interestingly, in the mixed biofilm of C. albicans and C.
tropicalis formed under induced flow conditions, the mature
dual-species biofilm covered a much larger surface area
compared to that produced by C. tropicalis itself, despite
the inhibition of the morphological change of C. tropicalis
cells by C. albicans. Thus, it appears that the in vivo coexis-
tence of the two species may be beneficial to C. tropicalis
[118], by the increased protection against antifungal agents
noted in comparison to monospecies biofilms [123]. On
the contrary, the results presented by de Barros et al. [124]
suggested an antagonistic relationship between C. tropicalis
and C. albicans, which was manifested by a decrease in the
number of C. albicans cells and a decrease in metabolic
activity in mixed biofilms. Moreover, in the presence of C.
tropicalis, a significant reduction in the expression of genes
involved in the morphogenesis and biofilm formation of C.
albicans such as ALS3, BCR1, CPH1, EFG1, HWP1, and
UME6 was shown [124]. When comparing these reports, it
seems that the experimental conditions are of critical impor-
tance in the analysis of interspecies interactions [118, 124].
C. albicans and C. tropicalis show apparent differences in
the adhesion and growth of biofilms in different media,
which can favor the growth of only one of them. Further-
more, the stationary growth of the biofilm differs compared
to the biofilm formed in the induced flow [118, 124]. How-
ever, the effect of reduced pathogenicity of C. albicans in
mixed biofilm formed with C. tropicalis was confirmed by
analyses carried out on Galleria mellonella larvae, where
contact with dual-species biofilm resulted in significantly
higher larvae survival compared to the control group, in
which infection was caused by C. albicans alone [124].

Although C. auris coexists in vitro with other species
[125, 126], no studies on its interaction in mixed biofilms
have been reported yet.

3. Communication of Candida Species with
Host and Environment

To survive and reproduce, pathogenic yeasts have developed
sophisticated mechanisms that allow them to adapt to chang-
ing niches in the host body where oxygen deficiency, nutrient
deficiency, or oxidative stress can occur so as to pursue exis-
tence more as a commensal or pathogen. Despite the close
relationship between Candida species, adaptation mecha-
nisms, including intercellular communication through quo-
rum sensing molecules, changes in fungal cell metabolism
resulting from stress, and response to the emergence of host
immune surveillance, show significant differences (Figure 3).

3.1. Quorum Sensing Molecules Produced by C. tropicalis, C.
dubliniensis, and C. auris. Within the structures of biofilms,
except for the physical cell-cell interactions, the key process
in detecting and reacting to changing external conditions is
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performed by quorum-sensing molecules. By enhancing or
inhibiting the activity of many genes, released signaling mole-
cules regulate the change in morphological form, maintaining
the structure of the cell wall or phagocytic and the response to
heat shock [127, 128]. This strategy benefits biofilm communi-
ties by preventing overpopulation or competition for nutrients
and contributing to the spread of pathogen cells to distal sites
of infection [129–131]. In the case of C. albicans, the best-
characterized quorum sensing molecule so far is the secondary
product of sterol biosynthesis, farnesol, which, by inhibiting
the hyphal formation process and the formation of biofilms,
contributes to culture growth in the form of single cells [127,
132, 133]. Despite the growing importance of quorum sensing
molecules in the regulation of communication within complex
communities [128, 134, 135], limited information is available
on other Candida species.

In the case of C. dubliniensis, the first studies showed that
the use of spent medium inhibited morphological transforma-
tion to the hyphae, as did exogenous farnesol, suggesting that
this species secreted farnesol or another compound with simi-
lar activity [136]. Similar results were obtained for the two ref-
erence strains of C. dubliniensis, which showed that the
presence of exogenous farnesol did not affect growth and
growth rate, but was effective in blocking both the morpholog-
ical changes of yeast to pseudohyphae in RPMI 1640 medium

and the formation of true hyphae in the presence of FBS,
wherein the observed inhibition of the morphological transfor-
mation showed some dose dependency [137]. Interestingly,
achieving 100% inhibition of C. dubliniensis morphological
transformation required the use of doses of farnesol lower than
was necessary for the reference strain of C. albicans [137].
Finally, the analysis of supernatants from both planktonic cul-
ture and C. dubliniensis biofilm, based on high performance
liquid chromatography and gas chromatography coupled with
mass spectrometry, showed that, in addition to farnesol, there
are also four other compounds in the fungal external environ-
ment: isoamyl alcohol, 2-phenylethanol, 1-dodecanol, and E-
nerolidol; however, these alcohols were secreted with different
profiles depending on the stage of cell growth and the compo-
sition of the medium [138–141]. It was shown that synthetic
alcohol mixtures, at physiological concentrations, produced a
similar effect to the supernatants obtained from cultures of
mature biofilms, resulting in inhibition of C. dubliniensis fila-
mentation by approximately 50%. Interestingly, only two com-
pounds—isoamyl alcohol and 1-dodecanol—showed an effect
of inhibiting the growth of planktonic cells [138].

In the case ofC. tropicalis, it was shown that this yeast, after
exposure to exogenous farnesol, showed a significant reduction
in the production of the biofilm on the polystyrene surface, and
an additional enhancement of this effect was evident when cells
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Figure 3: Selected factors of C. tropicalis (Ct), C. dubliniensis (Cd), and C. auris (Cau) related to their interaction with the environment and
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the variable repertoire of secreted quorum sensing molecules favors or inhibits fungal filamentation and biofilm formation (green and
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were grown in nutrient-poor solid medium, and the tempera-
ture was reduced to 30°C [141]. The analysis revealed the pres-
ence of quorum sensing molecules such as farnesol, tyrosol,
dodecanol, isoamyl alcohol, or 2-phenylethanol [140, 142].
Analogously to C. albicans, farnesol was shown to inhibit pseu-
dohyphae formation, mainly in the initial stage of adhesion,
and reduce the number of viable cells in the mature biofilm
of C. tropicalis. The opposite effect was demonstrated for 2-
phenylethanol, whose presence promoted the production of
pseudohyphae and stimulated an increase in the number of
cells and the density of the biofilm [142]. In turn, the addition
of high concentrations of exogenous tyrosol significantly
reduced biofilm formation and reduced mature biofilms of C.
tropicalis, manifested in a reduction in its metabolic activity
[143, 144]. Moreover, the early stage of biofilm formation by
C. tropicalis cells was inhibited by nerolidol, which was identi-
fied by a significant decrease in biofilm biomass andmitochon-
drial activity [140].

Metabolic profiling showed that the main compounds
secreted by C. auris are aromatic alcohols such as tyrosol, phe-
nylethyl alcohol, benzyl alcohol, and isoamyl alcohol, with
only two compounds—phenylethyl alcohol and tyrosol
revealed a significant gain [145]. According to the authors of
the study, the lack of detection of farnesol may not only sug-
gest its lower production compared to C. albicans species but
also indicate that the metabolites inhibiting the development
of the filamentous form of C. auris differ from those described
for C. albicans [145]. Studies by Srivastava and Ahmad [146]
demonstrated that the presence of exogenous farnesol in the
initial stages of biofilm development significantly inhibits cell
adhesion. However, along with the extension of the cell culture
time of C. auris without the presence of farnesol, the created
biofilms became more resistant to the action of this molecule,
and to inhibit the development of the mature biofilm, it was
necessary to use a higher concentration of the metabolite. By
downregulating biofilm-related genes, such as IIF4, PGA7,
PGA26, PGA52, and HYR3, farnesol reduces the thickness of
the biofilm and reduces the viability of C. auris cells. Further-
more, farnesol has been shown to block the effect of drug
resistance-promoting efflux pumps [146, 147]. A detailed
report based on the analysis of genome-wide gene transcrip-
tion using transcriptome sequencing (RNA-Seq) showed that
the presence of farnesol causes significant changes in the
expression of more than 700 genes, manifested by increased
superoxide dismutase production, inhibition of manganese,
zinc and iron transport by a simultaneous increase in copper
content in fungal cells, as well as modulation of metabolism
towards β-oxidation [147].

3.2. Environmental Stress Response and Related Changes in
Fungal Cell Metabolism. Adapting to the novel environment
related to the initiation or further dissemination of infection
requires Candida fungi to respond immediately and effectively
to the stress associated with the colonization of a new infec-
tious niche, consisting of fluctuations in the availability of
nutrients, limits in access to essential microelements, physico-
chemical changes in the surroundings, the influence of other
microorganisms, and activity of host defense cells [148, 149].
One of the most important factors that influencesCandida cell

metabolism during infection is the availability and type of
carbon source, where glucose is preferred. However, some
environments, that is, blood or vaginal secretions, have limited
glucose concentrations, or alternative carbon sources are avail-
able, including lactate, acetate, ethanol, glycerol, fatty acids,
amino acids, and N-acetylglucosamine [150, 151]. When set-
tling in a new niche, fungal cells must change their metabolism
to adapt to the conditions in the existing environment and to
face a combination of the different stresses encountered, i.e.,
thermal, osmotic, oxidative, and nitrosative stress, destructive
impact of different substances on the cell wall, phagocytes, and
antifungal drugs action [149, 152, 153]. In studies by Heaney
et al., it was shown that different Candida species, including
multidrug-resistant C. auris, displayed rather similar sensitiv-
ity to combinatory stress, including high salt concentration,
alkaline, and thermal stress; however, for individual stresses,
there were some important species and strain-dependent dif-
ferences [154]. In C. tropicalis, high resistance to osmotic
stress could also be correlated with the activity of ion efflux
pumps, which could also explain the inherent drug resistance
of environmental strains, especially those that inhabit marine
environments [155].

Carbon assimilation by Candida cells takes place via gly-
colysis, the glyoxylate cycle, and gluconeogenesis, while the
latter two appear to play an important role during the initi-
ation of infection and phagocytosis of fungal cells by host
immune cells, while further development of infection and
tissue colonization causes metabolism to go through the gly-
colysis pathway [156–159]. Lactate-grown C. albicans cells
were more virulent and resistant to osmotic stress, cell wall
disruptors such as Calcofluor White or Congo Red, and anti-
fungals caspofungin, tunicamycin, and amphotericin B than
glucose-grown cells, while they were more sensitive to
miconazole [160]. Additionally, C. dubliniensis cells grown
in the presence of lactate instead of glucose were more resis-
tant to osmotic stress and amphotericin B and C. tropicalis
to amphotericin B [160]. Omic analysis showed that in C.
albicans, the glycolytic pathway was enriched in proteins
with higher abundance, while in C. auris, proteins involved
in the tricarboxylic acid cycle were more abundant in yeast
grown in Sabouraud broth [161].

Genes encoding key enzymes of the glyoxylate cycle in C.
albicans, namely, isocitrate lyase (ICL1) and malate synthase
(MLS1), were upregulated during phagocytosis and identified
as necessary for complete fungal virulence [156]. Furthermore,
many genes involved in β-oxidation of fatty acids were upreg-
ulated during the phagocytosis of C. albicans, which may prove
that the acetyl coenzyme A that drives the glyoxylate cycle is
the product of this process [157]. Orthologs of the ICL1 and
MLS1 genes are specified for C. dubliniensis (Cd36_04240 for
ILC1 and Cd36_09130 for MLS1) and C. auris (B9J08_
003374 for ILC1 and B9J08_002919 forMLS1), and for C. tro-
picalis, both genes for Icl1 and Mls1 were reported to be regu-
lated by the carbon source, and their expression is repressed in
the presence of glucose and increased when cells grown with
acetate [162, 163]. For C. albicans, disruption of the glyoxylate
cycle could lead to disturbed drug efflux pumps belonging to
the ABC superfamily, disorder of plasma membrane homeo-
stasis, and decrease in chitin biosynthesis, which can increase
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the susceptibility of fungi to azole drugs and echinocandins
[164]. Contact with macrophages may represent a glucose-
depleted location for C. tropicalis, and a similar mechanism
ofmetabolic adaptationmay be demonstrated as forC. albicans
during phagocytosis [156, 165]. Using the complex model of
ex vivo whole blood infection, the C. tropicalis genes ICL1
and MLS1 were shown to be strongly upregulated under these
conditions [97]. In the case ofC. dubliniensis cells phagocytized
by macrophages, upregulation of genes encoding Icl1 andMls1
was also demonstrated [166]. Interestingly, during such model
infection caused by C. auris, unlike C. albicans, C. dubliniensis,
and C. tropicalis, no upregulation of the ICL1 andMLS1 genes
was observed, while downregulation of genes involved in β-
oxidation including CRC1 encoding mitochondrial carnitine
carrier protein, FOX2 for 3-hydroxyacyl-CoA epimerase, and
the POX1-3 gene for predicted acyl-CoA oxidase was detected.
For C. tropicalis, the latter two were upregulated, suggesting
differences in the use of various carbon sources between these
species. In response to reactive oxygen species during engulf-
ment by host phagocytes C. albicans upregulated the superox-
ide dismutase genes, i.e., SOD5, while C. tropicalis gene AHP1
encoding alkyl hydroperoxide reductase and genes for putative
after fungal infection reduces intestinal colonization by C. tro-
picalis [167].

For C. albicans virulence access to microelements during
infection is crucial, as this species produces proteins responsi-
ble for binding zinc ions (Pra1p; pH-regulated antigen 1) and
several proteins involved in iron acquisition, i.e., ferric reduc-
tase Frp1 [168], genes for these proteins were upregulated for
both C. albicans and C. tropicalis in the whole blood infection
model, but not for C. auris [97]. Although another protein
gene was involved in iron acquisition, FRE3 encoding ferric
reductase was strongly upregulated in C. auris, but not in C.
tropicalis in this model [97, 169]. For C. auris, significant
upregulation of genes encoding ferrichrome siderophore
transporters (i.e., SIT1) was observed, similarly to C. albicans
and contrary to C. tropicalis; additionally, the C. auris gene
CSA1 encoding a protein belonging to the heme-binding pro-
tein family was also upregulated under these conditions [97,
170, 171]. As evidenced by the published data, there are also
differences in this regard between the discussed species in
obtaining micronutrients in various infection niches where
access to them is often limited by the host.

3.3. The Effect of C. tropicalis, C. dubliniensis, and C. auris on
the Host. The immune system response to fungal infections
has been extensively studied for several years. The recogni-
tion of Candida spp. by host cells contributes to the develop-
ment of a strong inflammatory state at the site of infection.
The most important immune cells involved in the first line
of the antifungal response are phagocytic cells such as neu-
trophils and macrophages. Due to differences in the level
of virulence of individual species in the CTG clade, some
variations in the host response are noticeable.

An important signaling pathway involved in the response
to Candida spp. is Dectin-1/caspase-associated recruitment
domain adapter 9 (CARD9)/IL-17 axis [172]. CARD9 is
expressed inmyeloid cells (neutrophils, macrophages, and den-
dritic cells), although the expression of CARD9 was observed

in T and NK cells. Upon activation of the CARD9 receptor, it
activates NF-kB and then induces the production of cytokines,
including IL-6, IL-1β, IL-23, and TNF-α, which, in turn, are
involved in inducing an IL-17/Th17 response. IL-17 is an
important activator of the antifungal response, as it activates
signaling through the IL-17 receptor that induces other proin-
flammatory cytokines, antimicrobial peptides, and neutrophil
chemokines that are important for antifungal activity [173]. A
study byWhibley et al. showed that C. tropicalis, unlike C. albi-
cans, requires CARD9 and TNF-α, but not IL-17, signaling.
CARD9-dependent TNF-α production plays an important role
in the induction of the neutrophil response [174]. C. tropicalis
induces robust formation of neutrophil extracellular traps
(NET) even in the absence of filamentous structure [175]. Fur-
thermore, C. tropicalis phagocytosis is more efficient compared
to C. albicans, most likely due to differences in the structure of
the cell wall [176].

Differential induction of the immune response was also
observed for C. albicans and C. dubliniensis. C. dubliniensis
induced increased neutrophil migration and phagocytosis
compared to C. albicans, but in turn activated less NET release
despite a high level of reactive oxygen species, myeloperoxi-
dase, and lactoferrin excretion [177]. A possible explanation
for this phenomenon is that C. dubliniensis is phagocytosed
much more efficiently than C. albicans. Considering studies
showing that C. albicans escape from the interior of neutro-
phils by changing themorphological form, capture and immo-
bilization with NETs appear to be an essential neutrophil
defence mechanism against this species, but not for C. dubli-
niensis [177]. Significant differences in response to these two
related species determined by cytokine production were also
shown. For example, C. dubliniensis increases the production
of IL-8, a key cytokine responsible for enhancing neutrophil
migration, but not IL-17A [177]. On the contrary, a compari-
son of macrophage responses to contact with C. dubliniensis
and C. albicans showed reduced production of G-CSF, GM-
CSF, IL-1α, IL-1β, IL-10, IL-16, serine protease inhibitor-1,
and TNF-a, when exposed to C. dubliniensis. This research
suggests that C. dubliniensis primarily activates the early
immune response [177].

Research on C. auris began in 2009, and therefore, the
immune system response to this species is poorly understood.
One of the studies on the pathogenicity of C. auris indicates
that this pathogen avoids the induction of antifungal neutro-
phil responses. The results obtained in the Zebrafish model
indicated that C. albicans induces the recruitment of 50%more
neutrophils than C. auris [178]. Furthermore, microscopic
observations showed that only a small fraction of neutrophils
(15-20%) attempted to phagocytose C. auris, while at least half
of the neutrophils were able to neutralize C. albicans by engulf-
ing [178, 179]. The results presented by Johnson et al. [178]
indicated that neutrophils did not form NETs in contact with
C. auris. It has been suggested that mannosylation pathways
may be the reason for avoiding an immune response by C.
auris. The C. auris cell wall efficiently masks strong immuno-
genic patterns such as β-glucan and chitin by forming a layer
of mannoproteins. Mannosylation of C. auris may be crucial
for protection against neutrophil phagocytosis and activation
of other types of immune response. Themannosylation pattern
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in C. auris differs from that of C. albicans, which may be
important in its ability to be recognized by receptors such as
Dectin-1 and correlate with the variation in neutrophil
response in these two species [179]. Slightly different results
were obtained in the work of Bruno et al. [180] where it was
shown that the production of one of the neutrophil response
markers—myeloperoxidase in C. auris-infected mice was com-
parable to C. albicans. PBMCs incubated with clinical isolates
(in particular clades I and IV) ofC. auris produced significantly
higher amounts of proinflammatory cytokines TNF-α, IL-6,
and IL-1β compared to C. albicans [180]. In these studies, it
has been shown that the early (4 hours) PBMC cytokines were
mainly induced by β-glucans, and it was similar to the response
induced by C. albicans. On the contrary, the late host response
(24 hours) was mainly activated by C. auris mannoproteins
characterized by a specific structure that includes a unique
M-α-1-phosphate side chain [180]. The results obtained so
far indicated that the immune response induced by C. auris is
complicated, and further work is required.

As mentioned above, candidal coinfection has been
reported to be a serious problem that increases the risk of severe
COVID-19 disease and increases the number of deaths [181,
182]. The high susceptibility of COVID-19 patients to fungal
infections is associated with changes in the host immune sys-
tem caused by the presence of the virus. It was shown that these
patients had a higher level of proinflammatory cytokines such
as IL-1, IL-2, IL-6, and TNFα. They also experienced dysregu-
lation of monocytes, which showed a phenotypic shift from
CD16+ to CD14+. In addition, BALFmacrophages and neutro-
phil counts were increased, and the type I interferon (IFN-I)
response was reduced or delayed, making it difficult to remove
the virus. From the point of view of fungal infections, lympho-
penia is also important, i.e., a decrease in the absolute number
of T lymphocytes, which in patients with severe COVID-19
was manifested by a significant decrease in the number of
CD4+ T cells, CD8+ T cells, NK, and B cells [183, 184].

4. Methods of Species Identification:
Problems of Diagnostics

Despite advances in yeast identification techniques, diagnos-
ing fungal infections remains a challenge. The specific nature
of the fungi and the fact that yeast infections occur less fre-
quently than bacterial infections make it difficult to quickly
identify yeast pathogens [185]. Another problem is the correct
differentiation of individual Candida species due to the fact
that they are quite closely related and show similarities with
each other. The selection of the appropriate diagnosticmethod
is crucial for the efficient application of antifungal treatment.
Previously, C. dubliniensis has often been misidentified as C.
albicans [21, 186], and the first infections caused by C. auris
were incorrectly assigned to C. sake, C. haemulonii, S. cerevi-
siae, and Rhodotorula glutinis [187, 188].

Various types of diagnosticmethods can be used at present,
and all have some advantages and disadvantages (Table 1).
Currently, tests based on the comparison of fungal phenotypes
could only play a complementary role when more specific
methods are available.

Candida yeasts may exist in the form of single oval blasto-
spores, which was reproduced by budding, and their size
ranges between 2 and 8μm and depends on the species. C. tro-
picalis cells are the largest (4-8μm), slightly smaller are C.
dubliniensis (3-7μm) and C. albicans cells (4–6μm), and the
smallest are C. auris cells (2-3μm) [86, 95, 96, 186, 189].
Moreover, they show the ability to change their morphological
form in response to different external conditions. The yeasts
can convert to the form of hyphae, which are tightly connected
and form shared walls, and pseudohyphae, which are formed
by budding without separation from the mother cell [22, 32,
60, 94, 186, 189–192]. These forms are similarly developed
by C. albicans and C. tropicalis [94]. Additionally, large, spher-
ical, thick-walled cells—chlamydospores—are produced only
by C. albicans and C. dubliniensis [193]. In the case of C. auris,
most reports indicated that it occurs in the form of blasto-
spores [86, 95, 96], although there were reports indicating that
some clinical isolates can form filaments and large aggregates
of pseudohypha-like cells to which mother and daughter cells
are attached [27, 96, 194, 195].

The methods based on chromogenic media are easy to per-
form and useful in preliminary tests, but due to the possible
misidentification of closely related species, they require confir-
mations by more advanced methods. Several different com-
mercially available biochemical systems based on fungal
carbohydrate assimilation profiles are also often used to distin-
guish Candida species in addition with methods based on spec-
troscopy, including mass spectrometry characterized by
significant precision [196–199]. The application of other spec-
troscopic methods in yeast identification, including rapid evap-
orative ionization MS (REIMS), vibrational spectroscopy, or
surface-enhanced resonance Raman spectroscopy (SERRS)
was described in detail in the review of Arastehfar et al. [200].
In addition to physicochemical techniques, methods based on
the molecular identification of targeted DNA regions are
implemented to identify Candida species. They meet the high-
est accuracy expectations, even for rare and uncommon spe-
cies. Unfortunately, their disadvantage is still high costs and
the fact that they are not widely available. Comprehensive
descriptions of the different molecular diagnostic methods used
in the identification of Candida species are included in several
reviews [200–203] and will not be discussed in detail here.

5. Treatment of Infections and Drug Resistance

5.1. Methods for Treating Infections Caused by C. tropicalis,
C. dubliniensis, and C. auris. Currently, several main classes
of antifungal drugs are used to treat Candida infections,
including echinocandins, azoles, allylamines, polyene antibi-
otics, and nucleoside analogues (mainly 5-fluorocytosine).
One of the first classes of drugs introduced into widespread
use in the treatment of mycoses is polyenes, complex macro-
lides with amphipathic characteristics, derived from the fer-
mentation products of Streptomyces bacteria [164, 233].
Polyenes such as nystatin, amphotericin B, candicidin, and
natamycin work by disrupting the fungal plasma membrane
by binding to ergosterol and forming canals responsible for
increased membrane permeability, adsorption to the mem-
brane surface, and the formation of “sterol sponges” and
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by induction of oxidative stress leading to cell damage [164,
234, 235]. Another class of antifungals was azoles which can
be divided into imidazoles and triazoles, depending on
whether they have two or three nitrogen atoms in a five-
membered ring. These two groups include clinically impor-
tant drugs such as clotrimazole, tioconazole, and ketocona-
zole of the first category and fluconazole, itraconazole, and
terconazole of the second [236]. The mechanism of action
of azoles is the disruption of the fungal plasma membrane
by altering the conversion of lanosterol to ergosterol by inhi-
biting the cytochrome P-450-dependent enzyme lanosterol
demethylase, a product of the ERG11 gene [237–239]. Also,
allylamines, i.e., terbinafine, affect ergosterol synthesis by
inhibiting squalene epoxidase, a product of the ERG1 gene,
although they are mainly used for the treatment of superfi-
cial candidiasis [237, 240, 241]. One of the newest group of
antifungals is echinocandins, including anidulafungin, cas-
pofungin, and micafungin—lipopeptides being derivatives
of the fungal fermentation products that affect candidial cell
wall integrity acting as inhibitors for beta-1,3-glucan syn-
thase [238, 239, 242]. Azoles, echinocandins, and polyenes
alter Candida morphogenesis (yeast to pseudohyphae and
hyphae transformation); however, the vast majority of infor-
mation about this phenomenon is related to C. albicans
[243]. Nucleoside analogs, such as 5-fluorocytosine, are
absorbed into the cytoplasm by cytosine permease, where after
conversion to 5-fluorouridine by cytosine deaminase, they
inhibit DNA or RNA synthesis [244, 245]; however, at higher
doses, nucleoside analogs are toxic to humans, so they are not
the first-choice drugs [246, 247]. The most recent drug intro-
duced into use is triterpenoid ibrexafungerp, which is a glucan
synthase inhibitor that weakens the fungal cell wall. It is an
orally administered preparation used to treat vulvovaginal
candidiasis that demonstrates antifungal activity against C.
albicans, C. glabrata, C. tropicalis, C. parapsilosis, C. dublinien-
sis, and C. auris [248, 249]. There are also other new drugs in
clinical trials, including fosmanogepix, which is an inhibitor of
the inositol acyltransferase Gwt1 involved in the early steps of
GPI anchor biosynthesis, the novel triazole opelconazole and
the novel echinocandin rezafungin, which are described in
detail by Hoenigl et al. [250]. Both fosmanogepix and rezafun-
gin have antifungal activity against C. albicans, C. auris, C.
dubliniensis, and C. tropicalis, while for opelconazole, this
activity has been demonstrated so far for the two first Candida
species [250]. These are promising preparations that may sig-
nificantly enrich the arsenal of currently available antifungal
agents and overcome the resistance problem of some Candida
strains to available antifungals.

In the therapies currently used against superficial and
invasive candidiasis, different antifungals from the above-
mentioned classes and their combinations are used; however,
due to the emerging resistance among species other than C.
albicans, problems with selecting the appropriate therapy
often occur. As previously described, C. albicans and C. dubli-
niensis demonstrate common antifungal susceptibility pat-
terns in vitro, and most of the C. dubliniensis isolates tested
were susceptible to commonly used antifungal agents,
although in several studies, some strains resistant to flucona-
zole were identified [251–255]. Interestingly, the in vitro test

showed differences in the tolerance of fluconazole or echino-
candins between C. albicans and C. dubliniensis. In the case
of C. dubliniensis, incomplete growth inhibition in supraMIC,
known as a trailing effect, was observed with echinocandins
but not with fluconazole, while for C. albicans, the reverse
has been observed [256]. C. tropicalis strains are largely sus-
ceptible to azole antifungals, polyenes, flucytosine, and echi-
nocandins; however, worldwide recorded resistance to
fluconazole or amphotericin B is increasing alarmingly [17,
189]. In 2015, Kawai et al. demonstrated that C. tropicalis bio-
films are susceptible to liposomal amphotericin B in high con-
centrations (starting at 8μg/ml). The same study with
micafungin showed that this drug reduced biofilm formation
when used at low concentrations (0.125-1μg/ml), but surpris-
ingly, biofilm metabolic activity increased in the presence of
higher concentrations of micafungin (2-64μg/ml) [257]. This
could be the effect of slow resistance development against
drugs present in the growth environment, possibly by recon-
struction of the cell wall structure and modification of the
expression of the FKS gene. However, Marcos-Zambrano
et al. demonstrated that exposing mature C. tropicalis biofilm
to micafungin resulted in changes in biofilm formation: the
number of hyphae and pseudohyphae was significantly
reduced, although the application of liposomal amphotericin
B (16μg/ml) caused only a few biofilm alterations [258].

In general, C. auris characterizes a significantly higher tol-
erance level for fluconazole than C. albicans, since approxi-
mately 90% of C. auris strains demonstrate intrinsic
resistance to fluconazole; however, a considerable number of
strains appear to be susceptible to echinocandins, some also
to amphotericin B and voriconazole [259–261]. The use of
echinocandin in the treatment of candidiases caused byC. auris
is recommended, but there are also reports of strains resistant
to these drugs [260–262]. Therefore, combinations of antifun-
gal drugs can be used to treat infections with C. auris, some
of which show a synergistic effect [263–265]. Antifungal sus-
ceptibility is higher for C. auris planktonic cells but extremely
lower for biofilms. C. auris biofilm resistance may be related
to high cell density and other resistance mechanisms, rather
than to biofilm matrix formation and hyphal production as is
the case ofC. albicans [261, 266]. Interestingly, the use of farne-
sol to modulate C. auris biofilm formation and efflux pump
activity, also in combination with classic antifungals such as
echinocandins, might be a possible novel approach to combat
biofilms [146, 267, 268]. Miltefosine, a medicament used in
the therapy of leishmaniasis or infections caused by Cryptococ-
cus spp. [269], has recently been revealed as a promising drug
for the treatment of C. auris infections. Applied together with
amphotericin B showed a synergistic effect for several isolates
tested; however, more studies are required on its efficiency for
C. auris candidiases [270–272].

5.2. Mechanisms of Drug Resistance. Resistance of Candida
fungi to antifungal drugs is primarily related to quantitative
or qualitative changes in target enzymes, reduced contact of
the drug with its target, overexpression of genes encoding
multidrug efflux pumps/transporters, and biofilm formation
with a dense extracellular biofilm matrix [189, 273, 274].
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In C. tropicalis, resistance to fluconazole was shown to be
correlated with amino acid substitutions Y132F and S154F in
lanosterol 14-alpha-demethylase (Erg11p) [275, 276]. Further-
more, the resistance of C. tropicalis to azoles could also depend
on the expression level of ERG11 and UPC2, the second of
which encodes the zinc transcription factor involved in the reg-
ulation of ergosterol biosynthesis genes [277, 278]. Overexpres-
sion of the ERG11 and UPC2 genes was observed in drug-
resistant isolates of C. tropicalis in the studies by Wang et al.
[278] and Choi et al. [279]; however, not by Jin et al. [276],
demonstrating the complexity and variety of resistance phe-
nomena in C. tropicalis. In the case of the C. tropicalis biofilm,
overexpression of ERG11 andMDR1was associated with resis-
tance to fluconazole [280]. Additionally, the presence of large
amounts of dense biofilm extracellular matrix material was
indicated as responsible for the C. tropicalis biofilm resistance
for amphotericin B and fluconazole through impaired drug
penetration [123]. The deletion of 132 nucleotides in ERG11
and substitution S258F in ERG11 play a role in the cross resis-
tance of C. tropicalis to azoles and polyenes [281]. The lower
susceptibility to antifungals might be also caused by overex-
pression of MDR1 (multidrug resistance) and CDR1 (Candida
drug resistance) genes encoding plasma membrane MDR/MFS
multidrug efflux pump and multidrug transporter of ABC
superfamily, respectively. The higher expression of MDR1
combined with mutations in ERG11was noticed for C. tropica-
lis fluconazole-resistant strains [276], as well as the overexpres-
sion of CDR1 and MDR1 genes [279]. Analogously to C.
albicans, resistance to caspofungin in C. tropicalis might be
determined by specific mutations in FKS1 gene, encoding ele-
ments of beta-1,3-glucan synthase, i.e., change of amino acid
L to W in position equivalent to position 644 in C. albicans
Fks1p was reported for C. tropicalis drug-resistant strain
[282]. Resistance to flucytosine could also be developed by C.
tropicalis and may be determined by the mutation in the
FCY2 gene that encodes purine-cytosine permease [283].

Similarly to C. albicans, C. dubliniensis resistance to flu-
conazole was related to different molecular mechanisms,
including upregulation of the genes CdCDR1, CdMDR1, and
CdERG11 and the presence of mutations in the CdErg11 pro-
tein [284]. In the case of itraconazole-resistant C. dubliniensis
isolates, the expression level of the CdERG11 gene was at least
four times higher than for susceptible isolates, and also, the
increased expression of the CdCDR1 gene was shown, but
not of the CdMDR1 gene, as itraconazole is not a substrate
for this protein [285–287]. Furthermore, the resistance of C.
dubliniensis to itraconazole was correlated with mutations in
the ERG3 gene, which encodes sterol C5,6-desaturase [287].
The resistance of C. dubliniensis also to 5-flucytosine was
characterized, and a single-point mutation (substitution of
serine at the 29 position by leucine) in the CdFCA1 gene for
cytosine deaminase has been identified as a potential factor
in the appearance of flucytosine resistance [288, 289].

C. auris is a multidrug-resistant species, and the mecha-
nisms of its drug insusceptibility are multifactorial and over-
lapped [290]. Some of them are similar to those previously
indicated for C. albicans, while novel molecular mechanisms
and their combinations are also identified, making the out-
break of multiresistance in C. auris an extremely important

problem, which was described in great detail in several reviews
previously; for a comprehensive overview, see [273, 274, 291,
292]. In the case of C. auris fluconazole-resistant strains,
amino acid substitutions Y132F, K143R, or Y132F in ERG11
gene have been identified as responsible for resistance to anti-
fungal [260, 293] and additionally nonsense mutations E429∗

in ERG11 and W182∗ in ERG3 genes [294], overexpression of
ERG11 [260], mutation in gene encoding zinc-cluster tran-
scription factor TAC1b resulting in CDR1 overexpression
[295], and aneuploidy including ERG11 and TAC1b genes
duplication and formation of an isochromosome [296, 297].
Additionally, the sequestration of fluconazole by biofilm extra-
cellular matrix increasing fungal resistance was demonstrated
for C. auris biofilms, similarly to C. albicans [298, 299].

The balance between expression ratios of FKS1/FKS2 genes
seems to be one of the main elements of echinocandin-
resistance progression in C. auris [300]. Two mutations in hot
spot 1 of the product of the FKS1 gene were identified for C.
auris in positions S639F and S639P and additionally deletion
mutationΔF635 [260, 293, 301, 302]. In theC. auris strain resis-
tant to fluconazole and amphotericin B, two mutations were
detected: Y132F in the ERG11 gene and D709E in the CDR1
gene in the studies carried out by Reslan et al. [303]. The
resistance of C. auris to flucytosine is related to the mutation
F211I in the FUR1 gene that encodes uracil phosphoribosyl-
transferase [304].

5.3. Alternative Methods for Treating C. tropicalis, C.
dubliniensis, and C. auris Infections. The increased preva-
lence of multidrug resistance in yeasts implicates an urgent
need to develop new therapeutic strategies to combat infec-
tions caused by species other than C. albicans. In addition
to the widely described chemical modification of the surface
of medical devices by coating them, for example, with a chi-
tosan hydrogel [305], other methods are still being sought
that would allow combating biofilms produced within vari-
ous niches of the host organism.

A promising alternative treatment for Candida infections
is the combination of quorum sensingmoleculesmanipulating
fungal morphology with traditional antifungal drugs, which
are the subject of clinical trials in C. albicans [143, 144, 306,
307]. Combining farnesol with traditional antifungal drugs
such as amphotericin B, fluconazole, itraconazole, caspofun-
gin, and natamycin has been shown to reduce minimum
inhibitory concentrations (MIC) against resistant C. tropicalis
cells [142, 308, 309]. In the case of fluconazole, it has been
shown that the synergistic effect of farnesol is further
enhanced when the quorum sensing molecule is previously
incorporated into liposomes [310]. Similar effects were
observed for exogenous tyrosol, which, when combined with
traditional antifungal drugs such as amphotericin B, flucona-
zole, and itraconazole, significantly reduces biofilm formation
and its metabolic activity; however, in the case of mature bio-
films, similar effects were observed only for amphotericin B
[144]. In the case of C. dubliniensis, which has the ability to
develop resistance to fluconazole [285, 311, 312], the presence
of farnesol increases the permeability of the cell membrane to
exogenous compounds, which in turn significantly increases
the sensitivity of yeast cells to fluconazole [136]. In addition,
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in the treatment of infections caused by C. auris, farnesol is
considered one of the supportive treatments. In vivo studies
in a mouse immunocompromised candidiasis model showed
that both preexposure to farnesol and daily farnesol treatment
of infected mice significantly reduced the yeast load of the kid-
neys [268]. In addition, a significant synergy was observed
between triazoles, echinocandins, and farnesol against C. auris
biofilms [267, 268].

Another alternative method that has successfully passed
preclinical and clinical trials in the case of C. albicans infection
is the use of yeast-based probiotics [313–316]. It has been
shown that Saccharomyces boulardi secreted into the medium
active compounds, such as caproic acid, which reduce the vir-
ulence of C. albicans mainly by inhibiting the production of
hyphae [314]. Also, in the case of other Candida species, it
has been shown that two strains of probiotic yeast—Saccharo-
myces cerevisiae and Issatchenkia occidentalis—were shown to
be able to inhibit adhesion to both abiotic surfaces and epithe-
lial cells, inhibit morphological changes and biofilm forma-
tion, i.e., not only by C. tropicalis and C. auris species but
also by mixed biofilms coproduced with C. albicans [315,
316]. Interestingly, the action of S. cerevisiae and I. occidentalis
was more potent than that of S. boulardi, which best inhibited
the biofilm of C. albicans [314–316]. Furthermore, in vivo
studies using the Caenorhabditis elegans model showed that
exposure of nematodes to probiotic yeast protected them from
infection, while the use of probiotic yeast after fungal infection
reduced intestinal colonization by C. tropicalis [316].

There are also reports in the literature showing that photo-
dynamic therapy using a nontoxic dye photosensitizer, which
when activated with visible light, produces reactive oxygen spe-
cies having a cytotoxic effect on pathogen cells, is a promising
method of treating superficial infections of the mucous mem-
branes and skin [317–319]. In the case of Candida non-albicans
species, it was demonstrated that the use of photodithazine
formulated in hydrogel reduced the viability and biomass of
biofilms produced by C. tropicalis [320], while curcumin-
mediated photodynamic therapy in combination with LED
light significantly reduced the metabolism of C. dubliniensis
biofilms [321]. Furthermore, in the case of C. auris, blue and
red lights in combination with photosensitizers were shown to
inhibit biofilm formation and disrupt mature biofilms, with
only blue light itself having antibiotic properties [322].

6. Conclusions

There are many different niches in the host organism that
fungi can colonize, and various sophisticated and still insuffi-
ciently recognized factors may determine the outcome of the
Candida–host relationship. Due to the wide variation within
the genus Candida and the multitude of factors affecting viru-
lence, there are still cases in clinical practice that, despite the
available knowledge, show unpredictable disease evolution.
Therefore, it is difficult to unequivocally answer the question
of why some species may prefer a more commensal lifestyle,
while others show increased pathogenicity [10, 323].

Currently, it is assumed that the four Candida species
discussed, although so closely related, follow different path-
ways of adaptation during the colonization of the human

host. Understanding the mechanisms leading to these diver-
gences and based on the evolutionary history of individual
species, resulting also in the differences in their genetic back-
ground, is undoubtedly very important to elucidate the
emergence of pathogenicity among these fungi. However,
the similarities observed, as well as differences in biology
and virulence, between different species may have a direct
impact on the practical aspect of our fight against fungal
infections, which is a tough challenge during the diagnosis
and treatment of candidiasis.

First, differences in virulence attributes and host inva-
sion mechanisms may determine the design of distinct ther-
apeutic strategies for infections caused by particular species.
Moreover, as some niches may be shared by several Candida
species that interact with each other, it is reasonable to con-
sider the aspects of their virulence not only in isolation from
each other but also in relation to other species to apply
appropriately selected alternative therapy. Second, similari-
ties in the biology of closely related species can make a cor-
rect diagnosis of candidiasis more difficult, especially when it
is based on fast and inexpensive simple diagnostic tests. It
seems, particularly when mixed infections are suspected,
that it is necessary to use advanced diagnostic techniques
based on physicochemical methods or molecular biology.
Third, awareness of differences in antifungal drug resistance
between species may outweigh the success of therapy and
also lead to the search for new alternative treatments, espe-
cially in multiresistant species such as C. auris.

Therefore, in the case of such a multifactorial process as
the development of infections caused by various pathogens
of the genus Candida, the correct, multifaceted, and compre-
hensive approach to genetic and phenotypic differences is
crucial not only to understand the entire infection process,
but most of all to fight the invaders.
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