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Innate immunity recognizes microorganisms through certain invariant receptors named pattern recognition receptors (PRRs) by
sensing conserved pathogen-associated molecular patterns (PAMPs). Their recognition activates several signaling pathways that
lead the transcription of inflammatory mediators, contributing to trigger a very rapid inflammatory cascade aiming to contain
the local infection as well as activating and instructing the adaptive immunity in a specific and synchronized immune response
according to the microorganism. Inflammation is a coordinated process involving the secretion of cytokines and chemokines
by macrophages and neutrophils leading to the migration of other leukocytes along the endothelium into the injured tissue.
Sustained inflammatory responses can cause deleterious effects by promoting the development of autoimmune disorders,
allergies, cancer, and other immune pathologies, while weak signals could exacerbate the severity of the disease. Therefore,
PRR-mediated signal transduction must be tightly regulated to maintain host immune homeostasis. Innate immunity
deficiencies and strategies deployed by microbes to avoid inflammatory responses lead to an altered immune response that
allows the pathogen to proliferate causing death or uncontrolled inflammation. This review analyzes the complexity of the
immune response at the beginning of the disease focusing on COVID-19 disease and the importance of unraveling its
mechanisms to be considered when treating diseases and designing vaccines.

1. Introduction

In 1908, Mechnikoff and Ehrlich received the Nobel Prize
in Medicine for the discovery of innate immunity and
acquired immunity, respectively. Although research on
acquired immunity subsequently made remarkable prog-
ress, innate immunity was, until recently, regarded as an
ancient, nonspecific immunity that functions in the lower
animal kingdom. Although innate immunity evolutionarily
precedes acquired immunity, vertebrates use both types of
response in coordination. Innate immunity recognizes the
invader through certain invariant receptors named pattern
recognition receptors (PRRs), which have broad specificity
for conserved features of microorganisms named pathogen-
associated molecular patterns (PAMPs) [1]. Cells of innate
immunity are dendritic cells, macrophages, neutrophils,
NK cells, eosinophils, basophils, and mast cells, among

others. All of them contribute in some extent to trigger a
very rapid inflammatory cascade which helps fight the
infection and also activates and instructs the adaptive
immunity [2]. Adaptive immunity exerts two fine-tuning
mechanisms consisting in a cellular-mediated cytotoxicity
removing infected cells and the antibody-mediated neutral-
ization of extracellular microorganisms [3]. Here is an over-
view of those events that occur at the beginning of the
immune response where the complex interaction between
innate immunity, pathogen, and inflammation could be
decisive to the resolution or progression of the disease.
These possible scenarios seem to reproduce the movie
“The Good, the Bad and the Ugly” (1966) where the
“Good” represents the beneficial innate immune response,
the pathogens play the role of the “Bad”, while the “Ugly”
depicts the uncontrolled inflammation when the innate
immune response is delayed.
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2. The Good

2.1. Innate Immunity. PRRs play a crucial role in the induc-
tion of early signals that establish the inflammatory frame
[2]. PRRs have the ability to discriminate between self and
nonself since PAMPs, that are not present in the host, are
highly conserved among microorganisms of a given class
[4]. Among PRRs, Toll-like receptors (TLRs) are evolution-
arily conserved between insects and vertebrates recognizing
bacterial products and viral nucleic acids [5]. Mannan-
binding lectin (MBL) and C-reactive protein (CRP) are
soluble PRRs which also act as opsonins [6]. Intracellular
microbial sensors include NOD-like receptors which recog-
nize structurally distinct peptidoglycan fragments [7, 8] and
the RNA helicase family proteins retinoic acid-inducible gene
I (RIG-I) and melanoma differentiation-associated protein 5
(MDA5) [9] which recognize single-stranded RNA contain-
ing 5′ triphosphate and double-stranded RNA, respectively
[10] that are absent from cellular RNAs; thus, these distin-
guish between viral and self-RNAs and inducing an antiviral
immunity [11]. Moreover, NOD-like receptors form the
“inflammasome,” a multiprotein complex involved in
activating caspase-1, a protease that processes pro-IL-1 into
a mature active and released form [12]. Another well-
characterized PRR is dectin-1, a C-type lectin receptor widely
expressed among leukocytes [13], which binds β-1,3 and β-
1,6 glucans on the fungal cell walls [14], inducing immune
responses that are essential in antifungal immunity [15] but
also participate in the recognition of mycobacteria [16–18]
and inducing radical oxygen species (ROS) in macrophages
[19], neutrophils [20], and dendritic cells [21]. Recognition
of PAMPS activates innate immune cells to produce tumor
necrosis factor (TNF) and interleukin-1β (IL-1β) leading to
local vasodilation and increasing the permeability of the
blood vessel, allowing the recruitment of proteins and
leukocytes to the site of infection which in turn activate
complement improving opsonin-mediated phagocytosis
and engagement of adaptive immunity [22, 23] Figure 1.

2.2. Inflammation. Inflammation begins with recognition of
microbes, inducing cell recruitment to the site of infection
for microbe clearance and finally returning to homeostasis.
However, if the inflammation is not controlled, it could lead
to destruction of host tissues and ultimately organ failure
and death [24, 25]. Lengthy inflammatory responses can
cause deleterious effects by promoting the development of
autoimmune disorders, allergies, cancer, and other immuno-
pathologies [26]; nevertheless, weak or ineffective signals
could exacerbate the severity of the disease. Therefore,
PRR-mediated signal transduction must be tightly regulated
to maintain host immune homeostasis [27], and to that,
there is a balance in the production of cytokines that can
be proinflammatory or anti-inflammatory depending on
whether it activates or attenuates the host response. Proin-
flammatory cytokines (TNF-α, IL-6, and IL-1 family) induce
vasodilation and permeability, favoring extravasation of
immune cells through the endothelium, whereas anti-
inflammatory cytokines (IL-10 and transforming growth
factor (TGF-β)) control the collateral damage to sur-

rounding cells [28]. Besides, the microbicide mechanisms
displayed by neutrophils (that include the release of proteo-
lytic enzymes, antimicrobial peptides, and the rapid produc-
tion of ROS) would also be regulated [29, 30] since the
excessive neutrophil activation might cause severe tissue
damage and inflammatory diseases. In this context, pro-
grammed cell death, or apoptosis, constrains the release of
inflammatory mediators through the recognition and phago-
cytosis of the pathogen [31, 32], while in turn, ROS would
play a positive role in the processing and antigen presenta-
tion by dendritic cells, improving the adaptive immune
response [33].

3. The Bad

3.1. The Bad’s Strategies. Pathogen virulence factors help to
invade the host, cause disease, and evade host defenses; after
all, their role is to adapt and to promote transmission to
another host. In fact, pathogens must overcome host defense
mechanisms, which begin from the first moment of its
encounter with innate cells. Enveloped viruses display a vari-
ety of host-derived proteins that could be immunoregula-
tors, complement inhibitors, signaling ligands, or adhesion
molecules [34]. One of the best studied examples is the
gp120 env glycoprotein of HIV, which mediates virus bind-
ing and entry to the cell [35]. In addition, RNA viruses have
effectively adopted a strategy named antigenic variation
which involves different molecular mechanisms [36]. Anti-
genic variation arises convergent in pathogens across differ-
ent phyla and is frequently found in obligate pathogens
where long-term infection increases the probability of trans-
mission achieving antigen diversification through high rates
of point mutation and short generation times. Hepatitis C
and HIV have evolved an antigenic variation rate that it
effectively outpaces the development of both an effective
immune response and efficient prophylactic vaccines
[37, 38]. Besides, certain viral proteins could be secreted or
expressed by the host cell membranes and exhibit immuno-
modulatory properties. Those proteins include superanti-
gens, immune cell ligands, receptor mimics, complement
inhibitors, binding proteins that sequester cytokines, and
regulators of leukocyte activation [39, 40]. On the other
hand, for bacteria, the ability to avoid internalization and
killing plays a central role in their virulence strategy. Bacteria
express a carbohydrate capsule that prevents the deposition
of antibodies and complement, thus avoiding opsonization
and phagocytosis or modifying lipid A to alter TLR4
responses [41]. For instance, Yersinia species, including the
causative agent of plague (Y. pestis), can neutralize phago-
cytic activity [42]. Once internalized, microorganisms could
elude intracellular killing by escaping from the phagosome,
blocking phagosome-lysosome fusion, or by simply surviving
in phagolysosomes [43]. Such is the case of Mycobacterium
tuberculosis which has many surface glycolipids and carbo-
hydrates that prevent phagosome acidification and alter
phagosomes [44], making these bacteria so successful. Even
more, viruses [45] and bacteria [46] can disrupt cytokine pro-
duction as well as adaptive immunity since they can interfere
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with dendritic cells either disrupting their differentiation or
inhibiting effector functions [47, 48].

3.2. The Bad’s Opportunities. Sometimes, the state of the
host’s immune system determines the degree of pathogen
colonization and tissue damage. Pathogens might harness
certain weakness in the host; for instance, individuals with
defects in cytokine production or cytokine receptors (e.g.,
L-12 and IFN-γ) are susceptible to infections with intracellu-
lar microorganisms such as mycobacteria and Salmonella
[49]. In addition, disorders of the complement pathway pre-

dispose to Neisseria infection and deficiencies of the NLR
lead to a range of autoinflammatory syndromes [7]. The
importance of TLRs in protection against infection has been
recently confirmed in patients with MyD88 deficiency which
has recurrent pyogenic bacterial infections [50]. Similarly,
disorders of TLR3 confer predisposition to herpes simplex
virus (HSV) encephalitis [49]. Moreover, certain polymor-
phisms in dectin-1 have been shown to be associated with
invasive aspergillosis [51] and predispose to chronic candida
infection in hematopoietic transplantation patients [52].
Likewise, specific human genetic polymorphism has been
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Figure 1: Innate immunity and inflammation. Resident macrophages secrete cytokines in response to infection (1), triggering the
recruitment of innate cells to the infected tissue (2) (The Good). Neutrophils phagocytose and destroy pathogens (The Bad), contributing
to the control of infection (3), whereas monocytes differentiate into dendritic cells (DCs) (4). DCs take up the pathogen, became
activated (5), and migrate to draining lymph nodes (6) where they present processed antigens to naïve T cells, initiating the adaptive
immunity (7). Whether the innate immune response is delayed (8), the pathogen becomes uncontrolled (9) and the adaptive response is
also delayed. An inflammatory loop is then generated that converges in a cytokine storm (10) (The Ugly) and the constant recruitment
of inflammatory cells (11) leading to tissue damage.
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described to be related to susceptibility and severity of
tuberculosis infections such as TLR1, TLR2, IL-6, IL-8,
IL-9, TNF-α, IL-1 receptor antagonist (IL-1RA), IL-10,
resistance-associated macrophage protein 1 (NRAMP1),
vitamin D receptor (VDR), dendritic cell-specific ICAM-3-
grabbing nonintegrin (DC-SIGN), monocyte chemoattrac-
tant protein-1 (MCP-1), NOD2, IFN-γ, inducible nitric oxide
synthase (iNOS), MBL, mannose receptor (MR), and surfac-
tant proteins A (SP-A) [53–55]. Indeed, polymorphisms in
genes of the human leukocyte antigen (HLA) system, the
human version of MHC, are associated with celiac disease,
inflammatory bowel disease, rheumatoid arthritis, psoriasis,
type 1 diabetes, and multiple sclerosis. Additional studies
have found genetic associations between MHC-I and infec-
tious diseases such as HIV, human hepatitis B virus, and
tuberculosis [56].

4. The Ugly

In addition to developing strategies to avoid immunity, some
pathogens are able to delay an appropriate response, causing
the pathogen to proliferate and to trigger uncontrolled cyto-
kine production called a “cytokine storm,” which can lead to
symptoms such as hypotension, fever, and edema, and
ultimately death [57]. Diverse pathogenic viruses (e.g.,
SARS-CoV, MERS-CoV, SARS-CoV-2, Ebola virus (EBOV),
HIV, and bacteria (Francisella tularensis)) have been found
to induce hypercytokinemia [58, 59]. The H1N1 strain that
caused the 1918 pandemic has been shown to induce higher
levels of proinflammatory immune cells and cytokines in the
lungs than seasonal influenza viruses inducing vasodilation,
permeability, complement, and opsonization [60]. Interest-
ingly, infection with F. tularensis via the inhalational route
causes a delay in the induction of cytokines and chemokines,
resulting in a systemic inflammatory response [60]. In addi-
tion, phospholipid platelet-activating factor (PAF) binding
activates platelet aggregation, coagulation cascades, and pro-
inflammatory cytokine production contributing to the pro-
cess of pulmonary edema systemic inflammation [61, 62].
The most increased cytokines and chemokines reported are
TNF-α, IL-1β, IL-6, IL-8, MCP-1, IP-10, and IL-17 [63]
(Figure 1). Indeed, IL-8 increases 200 times in Ebola fatali-
ties and it was described to be markedly increased in patients
with pulmonary infections [64–66] and may be the most sig-
nificantly induced cytokine in SARS-CoV-2 infection [67].
Several works have shown to date that the outcome of the
disease is related to the intensity of the inflammatory phe-
nomena [68–70], and in this regard, many treatments have
focused on preventing the excessive effect of these cytokines.
The strategy has addressed the neutralization of cytokines as
well as the blockage of cytokine receptors with antibodies or
antagonists. For instance, anti-IL-6 receptor antibodies, toci-
lizumab and sarilumab, have been used for the treatment of
rheumatoid arthritis [71], and today, clinical trials to assess
the benefits of these drugs in COVID-19 treatment are in
progress [72].

Interestingly, although not all COVID-19 patients
develop severe respiratory illness [73], some cases would
progress to a cytokine storm, acute respiratory distress syn-

drome (ARDS), and multiorgan dysfunction [74]. As a mat-
ter of act in fatal cases, inflammatory increased cytokines
[75] together with mononuclear infiltrate in the lungs have
been observed throughout the time [76]. Moreover, inflam-
matory CD14+/CD16+ monocytes, which are related to
chronic inflammation and autoimmunity [77–79], have been
found to be expanded in the peripheral blood of those
patients who require hospitalization [80, 81] reinforcing
the idea that innate immune cells determine the outcome
of cytokine dysregulation. In this way, blockade of CCR2
and/or CCR5—chemokine receptors that regulate monocyte
migration—could potentially help to reduce the accu-
mulation of pathological monocytes in inflamed tissues
(NCT04343651).

However, it would be the early immunological features
which define the prognosis of the disease in these patients.
Notably, proinflammatory monocytes were found to be ele-
vated in the circulation at early stages of the disease in
deceased patients [75] together with delayed antibody
response which correlated with poor clinical outcome of
the disease [82]. This late onset in the humoral response is
in line with the delay in differentiation of plasma cells in
severe [83]. Although the early presence of inflammatory
monocytes in the lungs of patients with mild COVID-19
has not been described, to our knowledge, those monocytes
are likely to play a positive role at the site of infection
mounting an effective cellular immune response [84] while
remaining normal in circulation (Figure 1). Although the
mechanisms that regulate cell migration remain unclear, it
could be speculated that a delay in the migration of innate
immune cells to the site of infection would be decisive for
the resolution of the disease, by preventing the growth of
the pathogen and the consequent uncontrolled release of
inflammatory mediators.

5. Innate Immunity Past and Future

Trundle on the knowledge about how innate immunity
detects microbes offers a great opportunity for the design
and development of a wide variety of adjuvants [85]. In this
way, innate immune is crucial for the successful activation of
protective humoral immunity during vaccination and the
development of new adjuvants for use in vaccines against
COVID-19 and future pandemics. Several COVID-19 vac-
cines available triggered innate immunity via different path-
ways: for mRNA vaccine, the endosomal Toll-like receptors
(TLR3 and TLR7) bind to single-strand RNA (ssRNA) in the
endosome, while MDA5, RIG-1, NOD2, and PKR bind to
ssRNA in the inflammasome and double-stranded RNA
(dsRNA) in the cytosol [86]. Adenovirus vector vaccine
(AdV) contains a vector’s hexon protein with autoadjuvant
properties involving Toll-like receptor 3 (TLR3), TLR7/8,
and in particular TLR9 to recognize dsDNA, ssRNA, and
ssDNA of the viral vector [87]. In this context, it has been
recently demonstrated that the innate immune responses
after the first dose of ChAdOx1nCoV-19 vaccination corre-
lated with the neutralizing antibody production elicited by
the boost, confirming that innate immune activation is cru-
cial for the successful protective humoral immunity [88].
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Table 1: Pathogen-associated molecules and vaccines with experimental evidence of cross-protection.

Trained immunity inducers Cross protect from Evidenced in Ref.

Microbial components

β-Glucan

Staphylococcus aureus Mice [109], [110]

Listeria monocytogenes Mice [111]

Mycobacterium tuberculosis Human [112]

Flagellin
Streptococcus pneumonia Mice [113]

Rotavirus Mice [114]

Muramyl dipeptide
Influenza virus Mice [115]

Toxoplasma gondii Mice [116]

CpG oligodeoxynucleotides Escherichia coli Mice [117]

Chitin E. coli, Candida albicans, S. aureus Mice [118]

LPS P. aeruginosa Mice [102]

Poly IC:LC SARS-CoV Mice [119]

Live vaccines

Bacillus Calmette-Guérin (BCG)

Childhood mortality Human [95]

C. albicans SCID mice [120]

Viral infections Human [90]

Yellow fever model Human [105]

Respiratory syncytial virus (RSV) Human [121]

Malaria infection Human [122]

Respiratory infection Human [123]

Respiratory viral infections Human [124]

SARS-CoV-2 Human [125], [126], [127]

Other live vaccines

Measles Childhood mortality Human [89]

Polio Childhood mortality Human [128]

Smallpox HIV-1 Human [129]

MTBVAC S. pneumoniae Mice [130]

MMR Respiratory syncytial virus (RSV) Human [131]

Nonlive vaccines

AdHuAg85A M. tuberculosis Mice [132]

F. hepatica extract Autoimmune encephalomyelitis Mice [133]

MV130 Influenza (H1N1) Mice [134]

RZV SARS-CoV-2 Human [135]

New vaccines

BPZE1 Bordetella bronchiseptica Mice [136]

BNT162b2 mRNA ND Human [137]

MV130 SARS-CoV-2 Human [138]

CG:CoVac SARS-CoV-2 Human [139]

BCG-adjuvanted Mtb Tuberculosis Human [140]

MV-based SARS-CoV-2 SARS-CoV-2 Mice [141]

Poly IC:LC: synthetic double-stranded polyriboinosinic-polyribocytidylic acid (poly IC) stabilized with poly-L-lysine and carboxymethyl cellulose (LC).
Hiltonol®; MMR: live vaccine against measles, mumps, and rubella; RZV: recombinant adjuvanted zoster vaccine; SCID: severe combined
immunodeficient; BPZE1: modified live attenuated pertussis vaccine strain; BNT162b2: Pfizer–BioNTech mRNA vaccine; AdHuAg85A: recombinant
human serotype 5 Ad-based TB vaccine expressing an immunodominant Ag 85A; MV130: polybacterial mucosal vaccine composed of different
proportions of whole heat-inactivated Gram-positive (90%) and Gram-negative (10%) bacteria including Streptococcus pneumoniae, Staphylococcus aureus,
Staphylococcus epidermidis, Klebsiella pneumoniae, Moraxella catarrhalis, and Haemophilus influenza. ∗BCG:CoVac: BCG-adjuvanted COVID-19,
combination of BCG with a stabilized, trimeric form of SARS-CoV-2 spike antigen. ND: not determined.
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Until recently, innate immunity was assumed to lack
specificity and memory. However, the innate immunity of
mammals also exhibits an immunological memory mediated
by epigenetic and metabolic modifications widely known as
“trained immunity.” In this context, measles vaccine is
strongly associated with better childhood survival in devel-
oping countries. Since this effect cannot be explained by
the specific prevention of measles, measles vaccination may
be associated with a nonspecific beneficial activation of the
immune system [89]. Similarly, the tuberculosis vaccine
Bacillus Calmette-Guerin (BCG) protects against influenza
virus, yellow fever virus, herpes simplex virus, respiratory
syncytial virus, and human papilloma virus [90], and was
also associated with a decrease in the incidence of sickness
during the COVID-19 pandemic helping to reduce hospital-
izations [91, 92]. First evidences of nonspecific immunity
induced by BCG vaccine dated from 1932, when child mor-
tality unrelated to tuberculosis disease was reduced after
BCG vaccination [93]. Nearly 70 years later, it was described
a 45% reduction in mortality due to neonatal sepsis and
respiratory tract infections by BCG vaccination in West
Africa [94, 95]. The existence of innate memory was demon-
strated when the BCG vaccine was able to protect against
lethal infections in SCID mice [96, 97]. Afterwards, it was
shown that β-glucans present in fungi lead to a change in
cellular metabolism from oxidative phosphorylation to glu-
cose fermentation [98, 99]. All in all, the protective effects
of BCG involve a shift of glucose metabolism to glycolysis,
which induces in turn histone modifications and functional
changes in innate immune cells such as monocytes [100]
and in bone marrow [101].

Trained immunity inducers are mostly microbial-
derived products that stimulate innate immune cells through
different PRRs. In this context, it has recently been described
that TLR4 and TLR3 signaling give rise to trained immunity
[102]. In this way, RIG-I and MDA5 that also sense viral
dsRNA may also play a role in training [103]. In addition,
the binding of β-glucans to dectin-1 initiates a cellular
response dependent on monocytes and the long-term
epigenetic reprogramming through the noncanonical Raf-1
pathway [99, 104]. Considering the advantages offered by
the trained immunity, nowadays, trained immunity-based
vaccines (TIbV) are being designed to generate adequate
activation of circulating monocytes and signaling for T cell
[105]. TIbV provides nonspecific protection against different
pathogens [106]—and potentially against cancer [107] and
allergies [108]—based on innate immune cells and on their
self-adjuvant properties. Pathogen-associated molecules and
vaccines with experimental evidence of cross-protection are
depicted in Table 1.

6. Conclusions

The inflammatory nature of the innate immune response
restricts the growth of pathogens. However, activation of
innate receptors by different ligands may determine the
appropriate degree of inflammation. This, in turn, may
determine the rate of cell migration, although the mecha-
nisms remain undefined. Like the movie, the final scene is

decisive to the infected host: you would die with the bad
guy’s bullet (the pathogen wins the game), you would die
with the ugly guy’s bullet (the cytokine storm wins the
game), or you would kill the bad guy and control the ugly
inflammation. Understanding the mechanisms underlying
the early recognition of the pathogen and the consequent
inflammatory events is extremely important to propose dif-
ferent strategies in the treatment of diseases and vaccine
design. Taking into account that the memory conferred by
innate immunity would determine the outcome of the dis-
ease by driving the rapid migration of innate immune cells
to the site of infection, it is important to consider the design
of vaccines that carry epigenetic self-adjuvant beyond their
antigenic formulation, providing nonspecific protection
against different pathogens.
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NRAMP1: Resistance-associated macrophage protein 1
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