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Background. NK cells are imperative in spontaneous antitumor response of various cancers. Currently, lncRNAs are considered
important modulators of the tumor microenvironment. This study investigated the molecular mechanism by which mitotically
associated long noncoding RNA (MANCR) controls killing effect of NK cells on lung adenocarcinoma (LUAD) in the tumor
microenvironment. Methods. The interplay between MANCR and miRNA-30d-5p was analyzed by bioinformatics. Expression
of MANCR mRNA and miRNA-30d-5p was examined using qRT-PCR. Dual-luciferase reporter and RIP assays were utilized
to verify the targeted relationship between MANCR and miRNA-30d-5p. To investigate regulation of MANCR/miRNA-30d-5p
axis in NK cell killing effect on LUAD cells, western blot tested the protein level of perforin and granzyme B. ELISA
determined the level of IFN-γ. CytoTox 96 Non-Radioactive Cytotoxicity Assay kit was applied for cytotoxicity detection of
NK cells. Perforin and granzyme B fluorescence intensity was measured via immunofluorescence, and cell apoptosis levels were
also revealed via flow cytometry. Results. MANCR was found to be upregulated, while miRNA-30d-5p expression was
downregulated in LUAD tissues. Overexpression of MANCR in LUAD cells significantly reduced NK cell IFN-γ secretion,
expression of granzyme B and perforin, and NK cell killing effect. In addition, MANCR could target and downregulate
miRNA-30d-5p expression, and miRNA-30d-5p overexpression reversed the inhibition of NK cell killing effect caused by
MANCR overexpression. Conclusion. MANCR inhibited the killing effect of NK cells on LUAD via targeting and
downregulating miRNA-30d-5p and provided new ideas for antitumor therapy based on tumor microenvironment.

1. Introduction

Comprising about 40% of all lung cancer cases, LUAD is the
most frequent type of lung cancer [1]. Despite great advances
in diagnostic and therapeutic approaches over the last decades,
the 5-year survival rate for LUAD is only 15% [2]. Hence, it is
important to develop new treatments for LUAD to improve
life quality of patients. Studies have indicated that tumor cells
can perform various interactions in tumor microenvironment
through cytokines, chemokines, and immune cells, thereby
regulating tumor progression [3]. NK cells are important for
tumor microenvironment and are considered the first line of

defense against tumors and viral infections because of their
cytotoxic and regulatory functions [4, 5]. In recent years, the
key role of NK cells in cancer immune monitoring has been
recognized. NK cells are able to promote antitumor immunity
by direct elimination of malignant cells [6], and activated NK
cells can secrete inflammatory cytokines like TNF-α and IFN-
γ and stimulate antigen-presenting cells, ultimately forming
tumor-specific adaptive immune responses [7, 8]. NK cells
are involved in spontaneous antitumor responses in cancers,
such as gastric cancer, liver cancer, and breast cancer [9–11].
Additionally, tumor infiltration of NK cells is linked with
long-term survival of cancer patients, and highNK cell toxicity
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is associated with a reduction in cancer risk [12]. Therefore,
exploring the mechanism of NK cells in patients with LUAD
may be a new direction to seek novel strategies for LUAD
treatment.

Long noncoding RNAs (lncRNAs) participate in biolog-
ical processes like cell growth, apoptosis, differentiation,
angiogenesis, migration, and invasion as tumor suppressor
genes or oncogenes in varying cancers [13–15]. Previous
reports have implied the crucial role of lncRNAs in NK cell
responses. For example, lncRNA GAS5 enhances NK cell
killing effect on liver cancer by modulating miRNA-544/
RUNX3 [16]. Further studies by Wei et al. found that
GAS5 could also promote killing effect of NK cells on gastric
cancer by regulating miRNA-18a [17]. It can be seen that
lncRNAs are able to regulate NK cell-mediated tumor cell
killing process. As a novel lncRNA, MANCR plays a
cancer-promoting role in progression of tumors, including
mantle cell lymphoma, breast cancer, and gastric cancer
[18–20]. As reported by Liu et al. [21], lncRNA MANCR
facilitates the malignant progression of LUAD cells. Never-
theless, the modulatory role of MANCR on NK cell function
in LUAD remains unclear so far.

Aberrant expression of miRNAs is involved in pathogenesis
of multiple diseases including cancer. Available studies have
shown that miRNA-30d-5p is generally downregulated in lung
tumors and exerts cancer suppression effect [22]. For example,
Chen et al. reported that miRNA-30d-5p repressed malignant
progression of lung cancer by targeting CCNE2 [23]. miRNA-
30d-5p can target and downregulate DBF4 to suppress migra-
tion, proliferation, invasion, and epithelial-mesenchymal transi-
tion of lung squamous cell carcinoma cells [24]. In addition, the
functions of miRNAs are regulated by a variety of competitive
endogenous RNAs including lncRNAs [25]. In thyroid cancer,
LINC00284 binds miRNA-30d-5p to activate ADAM12-
dependent Notch signaling pathway, thus accelerating tumor
development [26]. Similarly, Zeng et al. discovered that
miRNA-30d-5p was negatively mediated by lncRNA POU3F3
in LUAD cells, leading to increased proliferation, migration,
and invasion of cells [27]. Notably, studies have found thatmiR-
NAs can be involved in regulating tumor immunosuppression
through NK cells. For example, Tang’s study demonstrated that
miRNA-20a knockout increased the sensitivity of colorectal
cancer cells to NK cells [28]. Another report indicated that
miRNA-140-3p inhibited NK cell killing effect on ovarian can-
cer cells by mediating MAPK1 [29]. The previous results of this
study revealed a targeted relationship between MANCR and
miRNA-30d-5p, but how the MANCR/miRNA-30d-5p axis
affects the cytotoxicity of NK cells is not clear.

By summarizing the results of previous studies and bioin-
formatics analysis, we performed a set of cell function assays
and confirmed that MANCR inhibited NK cell killing effect
on LUAD cells by targeting and downregulating miRNA-
30d-5p. The MANCR/miRNA-30d-5p axis may serve as a
promising target in NK cell-based therapy for LUAD.

2. Material and Methods

2.1. Bioinformatics Analysis. MANCR expression level anal-
ysis was performed using TCGA-LUAD database. Subse-

quently, the patients were grouped based on the median
value of MANCR expression, and KEGG pathway enrich-
ment analysis was performed for MANCR using GSEA soft-
ware. For upstream miRNA prediction, miRNA expression
profiling data were acquired from TCGA-LUAD database.
Differentially expressed miRNAs were obtained by differen-
tial analysis using the edgeR package [30]. miRNAs with
interactions with MANCR were predicted using the lncBase
database, and the prediction results of lncBase and differen-
tial miRNAs were intersected to select miRNAs with low
expression in LUAD. The correlation between miRNA
expression and MANCR was subsequently calculated to con-
firm miRNAs that may have a regulatory relationship with
MANCR.

2.2. Cell Culture and Cell Transfection. Human normal bron-
chial epithelial cells 16HBE (BNCC338044), human LUAD
cell lines A549 (BNCC337696), H1975 (BNCC340345),
H1299 (BNCC100859), and HCC827 (BNCC342007) were
all purchased from the BeNa Culture Collection (China),
and cells were maintained in DMEM with 10% fetal bovine
serum (FBS). All cell cultures were performed under stan-
dard conditions.

Human NK cell line NK92 (PTA-6967) was offered by
ATCC (USA) and cultured with α-MEM containing 1.5 g/L
sodium bicarbonate, 12.5% horse serum, 12.5% FBS, and
2mM L-glutamine at 37°C with 5% CO2. 100U/mL of IL-2
(BD Biosciences, USA) was utilized to stimulate NK92 cells
for 24 h [16].

The oe-MANCR, si-MANCR, miRNA-30d-5p mimic
(miR-mimic), and their negative controls (oe-NC, si-NC,
and mimic-NC) were all purchased from Invitrogen
(USA). Lipofectamine 2000 kit (Thermo Fisher, USA) was
applied to transfect the above-mentioned plasmids into
H1299 or HCC827 cells. After 24 h, the transfected cells were
utilized for subsequent experiment.

2.3. Cell Coculture. H1299 and HCC827 cells were diluted to
1:5 × 105 cells/mL in DMEM with 10% FBS. NK92 cells acti-
vated by IL-2 were cocultured with H1299 or HCC827 cells
treated with different transfections for 4 h at 37°C at a 10 : 1
effector/target (E:T) ratio. Culture supernatants were then
collected for subsequent assays.

2.4. Cytotoxicity Assay. CytoTox 96 Non-Radioactive Cyto-
toxicity Assay kit (Promega, USA) was applied for cytotoxic-
ity detection of NK cells. Briefly, IL-2-activated NK92 cells
were cocultured with differently transfected H1299 or
HCC827 cells at a 10 : 1 E:T ratio in 96-well plates for 4 h
at 37°C, supplemented with 10μL 10× lysate 45min prior
to addition of CytoTox 96 reagent. Later, 50μL of CytoTox
96 reagent was supplemented to each well. Next, 50μL of
stop buffer was added after 30min of incubation at room
temperature in the dark, and absorbance at 490nm was
measured within 1 h. The cytotoxicity percentage was calcu-
lated with the formula: Percent cytotoxicity = 100 ×
Experimental LDHRelease ðOD490Þ/MaximumLDH
Release ðOD490Þ.
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2.5. ELISA. Supernatants were collected from IL-2-activated
NK92 cells after coculture with H1299 or HCC827 cells
treated for 4 h with different transfections, and the level of
IFN-γ was measured using an IFN-γ human ELISA kit
(Invitrogen, USA). Absorbance at 450nm was measured
using an iMark™ Microplate Absorbance Reader (Bio-Rad,
USA).

2.6. Immunofluorescence Detection. Cells were fixed with 4%
formalin for 8 h at 4°C, embedded in paraffin blocks, and cut
into sections (3μm), which were mounted on glass slides.
The slides were then permeabilized in 0.2-0.5% Triton X-
100 and blocked in 5% normal donkey serum for 1 h at room
temperature. Then, they were cultured overnight with anti-
perforin (sc-373943, Santa Cruz, USA) and antigranzyme B
(ab225473, Abcam, UK) antibodies, followed by culture with
DAPI and fluorescently conjugated goat antimouse/rabbit
IgG HampL. Finally, the slides were fixed and photographed
for observation [31].

2.7. Apoptosis Detection. The treated cells were gathered and
washed with prechilled PBS. 1 × 106 cells were dyed with
500μL binding buffer, 5μL FITC-labeled Annexin V, and
5μL PI solution and cultured for 10min in the dark. Cell
apoptosis was evaluated using a FACSCalibur flow cyt-
ometer system (BD Biosciences, USA) [32].

2.8. qRT-PCR. RNA extraction and PCR analysis were per-
formed according to the steps described by Fang et al. [16].
GAPDH was an internal reference for relative quantification
of total RNA in cells, and PowerUp™ SYBR™ Green Master
Mix (Invitrogen, USA) was introduced for qRT-PCR analy-
sis. GAPDH and U6 were internal reference genes for detect-
ing lncRNA MANCR and miRNA-30d-5p expression,
respectively. The relative gene expression was calculated
using 2−ΔΔCt method (primers refer to Table 1).

2.9. Western Blot. Total proteins were extracted using RIPA
Lysis Buffer (Thermo Fisher, USA), and equal amounts of
proteins were separated by 10% SDS-AGE, which were then
transferred to PVDF membranes, blocked with 5% skimmed
milk, and cultured with primary antibodies overnight at 4°C.
Subsequently, membranes were probed with secondary anti-
body for 1 h at room temperature. Finally, the immunoblot
results were visualized using Bio-Rad ChemiDoc XRS sys-
tem. The antibodies were antigranzyme B (ab243879,
Abcam, UK), antiperforin (ab256453, Abcam, UK), anti-
GAPDH (ab181602, Abcam, UK), and goat antirabbit IgG
H&L (HRP) (ab6721, Abcam, UK).

2.10. Dual-Luciferase Assay. PmirGLO-MANCR-3′-UTR-
WT and pmirGLO-MANCR-3′-UTR-MUT luciferase
reporter vectors (Promega, USA) were first constructed.
Then miRNA-30d-5p mimic/mimic-NC and MANCR-
WT/MANCR-MUT plasmids were, respectively, cotrans-
fected into H1299 cells for 48-h culture. The luciferase activ-
ity was detected using the luciferase activity assay kit
(Promega, USA).

2.11. RIP Assay. Magna RIP™ RNA-Binding Protein Immu-
noprecipitation Kit (Millipore, USA) was introduced for RIP
assay. After washing H1299 cells with prechilled PBS, the
supernatant was discarded, and 100μL of RIP lysis buffer
containing 0.25μL RNase inhibitor and 0.5μL protease
inhibitor was added to lyse the cells on ice. The supernatant
was discarded after centrifugation. Cells were incubated with
RIP buffer containing magnetic bead-protein antibody com-
plex and anti-AGO2 antibody (Invitrogen, USA) or negative
control IgG (Invitrogen, USA) for coprecipitation. After
obtaining RNA-binding protein complexes, the relative
enrichment of MANCR in the precipitate was examined by
qRT-PCR.

2.12. Statistical Analysis. All quantification experiments were
carried out in triplicate. Data were expressed as mean ± SD
and statistically analyzed by GraphPad Prism 6 software
(GraphPad Software, USA). Differences were compared by
t-test or one-way analysis of variance, ∗, # representing P
< 0:05, indicating statistical significance.

3. Results

3.1. MANCR Expression Is Upregulated in LUAD. Previous
analysis based on TCGA-LUAD database in this study
revealed that MANCR expression was significantly upregu-
lated in LUAD tissues (Figure 1(a)). qRT-PCR result showed
that MANCR was notably highly expressed in different
LUAD cell lines compared to human normal bronchial epi-
thelial cells 16HBE (Figure 1(b)). Among LUAD cell lines,
MANCR expression was relatively low in H1299 and
HCC827 cells. These two cells were therefore chosen for sub-
sequent experiments. MANCR was enriched in NK cell-
mediated cytotoxic pathways as revealed by GSEA pathway
enrichment analysis (Figure 1(c)). Thus, we hypothesized
that MANCR may promote LUAD development by inhibit-
ing killing effect of NK cells. For subsequent analyses, we
cultured NK92 cells and activated them using IL2. ELISA
result showed that IFN-γ secretion was significantly
increased in the supernatant of NK92 cells from the IL-2-
treated group versus the control group (Figure 1(d)). In
summary, MANCR was remarkably upregulated in LUAD
and may affect the cytotoxicity of NK cells.

Table 1: Primers of qRT-PCR.

Gene Primer sequence (5′→3′)

MANCR
F: CAATACCACAATTGCAATC

R: CATGTTCTTCCTCATATGGA

miR-30d-5p
F: CCTGTTGGTGCACTTCCTAC

R: TGCAGTAGTTCTCCAGCTGC

U6
F: ATGACGTCTGCCTTGGAGAAC

R: TCAGTGTGCTACGGAGTTCAG

GAPDH
F: GAGTCAACGGATTTGGTCGT

R: TTGATTTTGGAGGGATCTCG
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3.2. MANCR Inhibits the Killing Effect of NK Cells on LUAD
Cells. H1299 and HCC827 cells were first transfected with
oe-MANCR and oe-NC, and the transfection efficiency was
examined via qRT-PCR (Figure 2(a)), followed by coculture
of treated cells with IL-2-activated NK92 cells. ELISA result
showed that IFN-γ content in cell supernatant was reduced
in oe-MANCR group, which suggested that MANCR
reduced killing effect of NK cells on tumor cells
(Figure 2(b)). Further examination displayed that cytotoxic-
ity of NK92 cells against LUAD cell lines HCC827 and
H1299 was significantly reduced after MANCR overexpres-
sion, compared with the control group (Figure 2(c)). Gran-
zyme B and perforin are cytotoxic molecules manipulated
by NK cells to induce cell apoptosis [33]. Western blot result
exhibited that granzyme B and perforin expression levels
were prominently reduced in NK cells of oe-MANCR group
(Figure 2(d)). Immunofluorescence experiment yielded the
reduced fluorescence intensities of perforin and granzyme
B in NK cells of oe-MANCR group in comparison with the

control group (Figure 2(e)). Tumor cell apoptosis level was
subsequently evaluated by flow cytometry. It was observed
that the apoptotic rates of LUAD cell lines HCC827 and
H1299 were reduced in the coculture system after MANCR
overexpression (Figure 2(f)). The above results showed that
MANCR significantly weakened the killing effect of NK cells
on LUAD cells.

3.3. MANCR Targets and Regulates the Expression of
miRNA-30d-5p. To further determine how MANCR regu-
lates NK cell killing, we screened the miRNAs with the high-
est correlation with MANCR expression through
bioinformatics databases. The result demonstrated that
miRNA-30d-5p expression was significantly negatively cor-
related with MANCR expression (Figure 3(a)), and
miRNA-30d-5p was remarkably downregulated in LUAD
tissues (Figure 3(b)). In addition, MANCR was predicted
to have potential binding sites targeting miRNA-30d-5p
based on bioinformatics methods (Figure 3(c)). H1299 cells
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Figure 1: MANCR is upregulated in LUAD. (a) Analysis of MANCR expression using TCGA-LUAD database, blue indicating normal tissue
samples and yellow indicating tumor tissue samples; (b) the expression of MANCR in different cell lines; (c) the GSEA pathway enrichment
analysis result of MANCR; (d) the concentration of IFN-γ in NK92 cells before and after IL-2 stimulation; ∗ represents P < 0:05.
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Figure 2: MANCR suppresses the killing effect of NK cells on LUAD cells. (a) Detection of transfection efficiency of oe-MANCR in LUAD
cells; (b) the IFN-γ secretion level in supernatant after coculture of IL-2-activated NK92 cells with LUAD cells; (c) NK cell cytotoxicity; (d)
the protein level of perforin and granzyme B after coculture of NK92 cells with LUAD cells of different treatments; (e) the fluorescence
intensity of perforin and granzyme B after coculture of NK92 cells with LUAD cells of different treatments; (f) the apoptosis level of
LUAD cells; ∗ represents P < 0:05.
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were selected for subsequent molecular experiments to verify
correlation between MANCR and miRNA-30d-5p. As sug-
gested by dual-luciferase reporter assay, overexpression of
miRNA-30d-5p reduced wild-type MANCR 3′-UTR lucifer-
ase activity, but had no prominent effect on mutant MANCR
3′-UTR luciferase activity (Figure 3(d)). The binding rela-
tionship between MANCR and miRNA-30d-5p was then
further verified using RIP assay, and the result showed
remarkable MANCR enrichment in miRNA-30d-5p overex-
pressed cells (Figure 3(e)). Additionally, qRT-PCR result
showed that overexpression of MANCR evidently reduced
miRNA-30d-5p expression, while silencing MANCR could
increase miRNA-30d-5p expression (Figure 3(f)), which
illustrated that MANCR targeted and negatively regulated
the expression of miRNA-30d-5p.

3.4. MANCR Inhibits Killing Effect of NK Cells through
miRNA-30d-5p. To confirm that MANCR can inhibit killing

effect of NK cells through miRNA-30d-5p, we set up 4 dif-
ferent treatment groups and performed subsequent experi-
ments: oe-NC+mimic-NC, oe-MANCR+mimic-NC, oe-
NC+miR-mimic, and oe-MANCR+miR-mimic. qRT-PCR
suggested that miRNA-30d-5p was prominently upregulated
after miRNA-30d-5p overexpression, indicating a good
transfection efficiency. Meanwhile, miRNA-30d-5p expres-
sion in LUAD cells returned to the level of control group
after overexpression of MANCR (Figure 4(a)). The result
of ELISA showed that miRNA-30d-5p overexpression in
LUAD cells restored the inhibitory effect of MANCR overex-
pression on IFN-γ secretion from NK cells (Figure 4(b)).
Later, NK cell cytotoxicity was examined after coculture of
IL-2-activated NK92 cells and LUAD cells treated with dif-
ferent transfections. Compared with the control group,
NK92 cells presented remarkably increased cytotoxicity
against miRNA-30d-5p overexpressed H1299 and HCC827
cells, while overexpression of MANCR reversed the
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Figure 3: MANCR targets and regulates the expression of miRNA-30d-5p. (a) Pearson correlation analysis diagram of MANCR and
miRNA-30d-5p; (b) analysis of miRNA-30d-5p expression using TCGA-LUAD database. Blue indicates normal tissue samples, and
yellow indicates tumor tissue samples; (c) schematic diagram of binding sites between MANCR and miRNA-30d-5p predicted by
bioinformatics; (d and e) verification of the targeted relationship between MANCR and miRNA-30d-5p; (f) miRNA-30d-5p expression
in different treatment groups; ∗ represents P < 0:05.

6 Cellular Microbiology



Re
lat

iv
e e

xp
re

ss
in

 o
f m

iR
-3

0d
-5

p

H1299 HCC827

# #

**

2.0

12
14

10

1.0
1.5

0.5
0.0

8

oe-NC+miR-mimic

oe-NC+mimic-NC

oe-MANCR+miR-mimic

oe-MANCR+mimic-NC

⁎
⁎

(a)

HCC827

300

200

100

0
H1299

oe-NC+miR-mimic

oe-NC+mimic-NC

oe-MANCR+miR-mimic

oe-MANCR+mimic-NC

⁎

⁎

⁎ ⁎

#

#

IF
N

-𝛾
 (n

g/
m

l)

(b)

C
yt

ot
ox

ic
ity

 (%
)

HCC827H1299

60

80

40

20

100

0

oe-NC+miR-mimic

oe-NC+mimic-NC

oe-MANCR+miR-mimic

oe-MANCR+mimic-NC

⁎ ⁎

⁎ ⁎

# #

(c)

GAPDH

Granzyme B

Perforin

GAPDH

Granzyme B

Perforin

HCC827

oe-NC+
miR-mimic

oe-MANCR+
mimic-NC

oe-MANCR+
miR-mimic

oe-NC+
mimic-NC

oe-NC+
miR-mimic

oe-MANCR+
mimic-NC

oe-MANCR+
miR-mimic

oe-NC+
mimic-NC

H1299

(d)

Pe
rf

or
in

G
ra

nz
ym

e 
B

D
A

PI
M

er
ge

Pe
rf

or
in

D
A

PI
M

er
ge

D
A

PI
M

er
ge

G
ra

nz
ym

e 
B

D
A

PI
M

er
ge

oe-NC+
miR-mimic

oe-NC+
miR-mimic

oe-NC+
miR-mimic

oe-NC+
miR-mimic

oe-MANCR+
mimic-NC

oe-MANCR+
mimic-NC

oe-MANCR+
mimic-NC

oe-MANCR+
mimic-NC

oe-NC+
mimic-NC

oe-MANCR+
miR-mimic

oe-NC+
mimic-NC

oe-MANCR+
miR-mimic

oe-NC+
mimic-NC

oe-MANCR+
miR-mimic

oe-NC+
mimic-NC

oe-MANCR+
miR-mimic

H1299 H1299

HCC827 HCC827

(e)

PI

Annexin V FITC-A

oe-NC+mimic-NCoe-NC+mimic-NC

oe-NC+miR-mimic
Annexin V FITC

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Pr
op

id
iu

m
 Io

di
de

Annexin V FITC

Annexin V FITCAnnexin V FITC Annexin V FITC Annexin V FITC

Annexin V FITC Annexin V FITC

oe-NC+miR-mimicoe-MANCR+miR-mimic oe-MANCR+miR-mimic

oe-MANCR+mimic-NC
oe-MANCR+mimic-NC

H1299 HCC827

Q4
0.68

Q8
87.5

Q6
5.36

Q7
6.44

108

107

106

106

105

105

104

104

103

103

102

101

Q5
0.32

Q8
92.5

Q6
3.04

Q7
4.12

108

107

106

106

105

105

104

104

103

103

102

101

Q1
3.95

108

107

106

106 108

105

104

104

103

102

102

101

Q4
81.9

Q2
7.27

Q3
6.92

Q1
0.89

108

107

106

106 108

105

104

104

103

102

102

101

Q4
89.9

Q2
5.21

Q3
4.04

Q5
2.40

Q8
80.7

Q6
13.9

Q7
3.00

108

107

106

106

105

105

104

104

103

103

102

101

Q5
0.87

Q8
87.0

Q6
5.98

Q7
6.20

108

107

106

106

105

105

104

104

103

103

102

101

Q1
3.61

108

107

106

106 108

105

104

104

103

102

102

101

Q4
76.8

Q2
10.3

Q3
9.32

Q1
2.91

108

107

106

106 108

105

104

104

103

102

102

101

Q4
81.0

Q2
8.37

Q3
7.71

H1299 HCC827
20

2015

15

25

10
10

5 5

0 0

⁎

⁎

⁎

# #

⁎

Ap
op

to
sis

 ra
te

 (%
)

Ap
op

to
sis

 ra
te

 (%
)

oe-mimic+miR-mimic

oe-NC+mimic-NC

oe-MANCR+miR-mimic

oe-MANCR+mimic-NC

(f)

Figure 4: MANCR inhibits the killing effect of NK cells by miRNA-30d-5p. (a) Detection of the transfection efficiency of miRNA-30d-5p in
LUAD cells; (b) the IFN-γ secretion level in supernatant after coculture of IL-2-activated NK92 cells and LUAD cells; (c) NK cytotoxicity;
(d) the protein expression of perforin and granzyme B after coculture of NK92 cells and LUAD cells with different treatments; (e) the
fluorescence intensities of perforin and granzyme B after coculture of NK92 cells and LUAD cells with different treatments; (f) the level
of apoptosis of LUAD cells; ∗P < 0:05 (vs. oe-NC+mimic-NC) and #P < 0:05 (vs. oe-MANCR+mimic-NC) indicate significant statistical
differences.
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enhancement of NK cell cytotoxicity induced by miRNA-
30d-5p (Figure 4(c)). Western blot result exhibited that the
protein level of granzyme B and perforin in NK cells of the
oe-NC+miR-mimic group was increased over the oe-NC
+mimic-NC control group, and their expression in NK cells
of oe-MANCR+miR-mimic group returned to the level of
the control group, indicating that MANCR overexpression
reversed the promoting effect of miRNA-30d-5p
(Figure 4(d)). Immunofluorescence experiment revealed that
the fluorescence intensities of granzyme B and perforin in
NK cells in the oe-NC+miR-mimic group were increased
compared with the oe-NC+mimic-NC control group, which
in the oe-MANCR+miR-mimic group returned to the level
of the control group (Figure 4(e)). Further, the apoptosis of
LUAD cells with different treatments was detected by flow
cytometry. The apoptosis rates of H1299 and HCC827 cells
in the oe-NC+miR-mimic group were significantly
increased, which were remarkably decreased in the oe-
MANCR+miR-mimic group compared with those in the
oe-NC+miR-mimic group and returned to the level of the
control group, indicating that MANCR overexpression
reversed the apoptosis-promoting effect of miRNA-30d-5p
on LUAD cells (Figure 4(f)). The above data indicated that
MANCR restrained the killing effect of NK cells on LUAD
cells by modulating miRNA-30d-5p.

4. Discussion

Numerous studies implied that improving immune function
and inhibiting immune escape can inhibit malignant pro-
gression of LUAD [34–36]. NK cells take a crucial part in
the prognosis of tumors because they can induce immune
responses after cancer treatment [37]. In addition, NK cells
dissolve target cells by releasing cytotoxic granules contain-
ing granzymes and perforin, which mediate contact-
dependent killing of target cells [38]. In recent years,
researchers have begun to focus on the application of NK
cell immunotherapy in LUAD treatment. Song et al. revealed
that overexpression of PTPRN promoted LUAD metastasis
and inhibited NK cell cytotoxicity [39]. In the current study,
we found that MANCR gene upregulation in LUAD cells
could repress the killing ability of NK cells, which provided
support for developing novel immune therapeutic strategies
for LUAD patients.

In LUAD, aberrant expression of lncRNAs is involved in
regulating proliferation, invasion, migration, and tumor
immunity of LUAD cells [40, 41]. MANCR is an lncRNA
associated with mitosis [19]. Recent studies have suggested
that MANCR is highly expressed in LUAD and can enhance
proliferation, migration, and invasion of LUAD cells and
reduce apoptosis [21]. In this work, MANCR was signifi-
cantly upregulated in LUAD, which may be a potential
molecular target for LUAD treatment. As reported, NK
cell-mediated tumor cell killing effect is strengthened in the
context of molecularly targeted therapies [42]. However,
the effect of MANCR on NK cell tumor killing has not been
elucidated. Here, we discovered that overexpression of
MANCR significantly reduced secretion level of cytotoxic
factor IFN-γ and protein expression of granzyme B and per-

forin in NK cells, and upregulation of MANCR prominently
repressed killing effect of NK cells on LUAD cells, confirm-
ing that MANCR can be used as a potential target for NK
cell-based immunotherapy of LUAD.

Several studies have stated that lncRNAs can be widely
involved in the modulation of NK cytotoxicity in a variety
of cancers by specifically binding to the corresponding miR-
NAs [43, 44]. In this study, we analyzed and predicted by
bioinformatics means that there were potential binding sites
between MANCR and miRNA-30d-5p. miRNA-30d-5p has
been elucidated as a potential biomarker for the treatment
of various cancers, including LUAD, prostate cancer, and
gallbladder cancer [45–47]. It has been shown that silencing
miRNA-30d-5p expression can reduce the percentage of
CD8+ T cells, which leads to immune escape of prostate can-
cer [48]. However, the mechanism by which miRNA-30d-5p
regulates NK cell function remains unclear. Therefore, we
hypothesized that the MANCR/miRNA-30d-5p axis could
affect NK cell killing effect on LUAD. Based on the hypoth-
esis, this study found that MANCR negatively regulated the
expression of miRNA-30d-5p. More importantly, upregula-
tion of miRNA-30d-5p expression reversed the inhibitory
effect induced by MANCR overexpression on cytotoxicity
of activated NK cells. These conclusions provide a molecular
mechanism by which the MANCR/miRNA-30d-5p axis acts
on NK cell killing effect.

In conclusion, this study elucidated the effect of the
MANCR/miRNA-30d-5p axis on NK cell cytotoxicity
against LUAD. Upregulation of MANCR expression in
LUAD cells decreased IFN-γ secretion, granzyme B, and
perforin expression in NK cells and cytotoxicity of NK cells
by negatively regulating miRNA-30d-5p expression. How-
ever, there are also some limitations, such as the failure to
validate the suppressive effect of MANCR on NK cell killing
in LUAD at the animal level. The results of this study indi-
cate that the MANCR/miRNA-30d-5p axis may be a poten-
tial target for immunotherapy of LUAD, providing new
ideas for developing NK cell-based anticancer drugs.
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