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Ferroptosis is a new type of iron-dependent cell death caused by lipid peroxide (LPO) accumulation and involved in disease of
pulmonary infection. The dysregulation of iron metabolism, the accumulation of LPO, and the inactivation and consumption
of glutathione peroxidase 4 (GPX4) are the crucial cause of ferroptosis. Pulmonary infectious diseases caused by Pseudomonas
aeruginosa (PA), Mycobacterium tuberculosis (MTB), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-
2) are associated with ferroptosis. Ferroptosis may be a potential therapeutic target for pulmonary infectious diseases. However,
the mechanisms by which these infections are involved in ferroptosis and whether pulmonary infectious diseases caused by
Staphylococcus aureus, Klebsiella pneumoniae, and Leishmania spp are related to ferroptosis are unclear. Accordingly, more
researches are needed.

1. Introduction

Cell death is an essential process for maintaining tissue
morphology and function and includes accidental cell death
(ACD) and regulatory cell death (RCD). RCD under phys-
iological conditions is also known as programmed cell
death (PCD) [1]. Currently, known PCD includes apoptosis
[2], ferroptosis [3], necroptosis [4], pyroptosis [4, 5],
autophagy-dependent cell death [6], invasive cell death
[7], lysosomal dependent death [8], NETosis [9], parthana-
tos [10], oxeiptosis [11], alkali death [12], etc. [13]. Ferrop-
tosis is a way in which excessive accumulation of lipid
oxides in cells destroys normal metabolic reactions of cells
and eventually leads to cell death [3, 14]. The main causes
of ferroptosis are abnormal iron metabolism, reactive oxy-
gen species (ROS) metabolism, etc.

Pulmonary infection is a disease caused by pathogenic
microorganisms [15]. A variety of microorganisms cause
abnormalities in iron metabolism which is an important
cause of ferroptosis [16, 17]. Recently, accumulating studies
confirm that ferroptosis plays an increasingly important role

in pulmonary infection [18]. This article summarized the
relationship between ferroptosis and pulmonary infection
disease.

2. Overview of Ferroptosis

It was reported that xCT, also commonly known as solute
carrier family 7 member 11 (SLC7A11), a key membrane
protein associated with ferroptosis, was identified as early
as the 1980s [19], but not until 2012, ferroptosis was for-
mally named as an iron-dependent and nonapoptotic mode
of cell death [3]. In 2017, Stockwell et al. defined ferroptosis
as an iron-dependent way of RCD through the accumulation
of intracellular lipid peroxidation to a lethal level [20].

Ferroptosis is mainly characterized as the aggregation of
iron ions (Fe2+) and ROS, activation of mitogen-activated
protein kinase system (MAPK), reduction of cystine intake,
depletion of glutathione, and inhibition of cystine/glutamate
antiporter (System Xc-) [21], which leads to the release of
damage-associated molecular patterns (DAMPs) that pro-
mote inflammatory responses and thereby results in cell
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death [22]. There are multiple genes involved in ferroptosis,
such as ribosomal protein L8 (RPL8), iron response element
binding protein 2 (IREB2), tetratricopeptide repeat domain
35 (TTC35), citrate synthetase (CS), acyl-CoA synthase fam-
ily member 2 (ACSF2), ATP synthase F0 complex subunitC3
(ATP5G3), and various storage and metabolic genes [23].

Different types of RCD cause cell death in different ways,
resulting in different morphological changes and immune
consequences. In addition, the evolutionary relationship
between the different RCD pathways remains unknown. How-
ever, there are some relations among these kinds of RCD. It is
suggested that knockout or knockdown of autophagy-related 5
(ATG5) and autophagy-related 7 (ATG7) limits erastin-
induced ferroptosis, thereby reducing intracellular ferrous
levels and lipid peroxidation [24]. Additionally, many ferrop-
tosis inducers cause overactivation of autophagy [25]. More-
over, ROS-mediated autophagy increases ferroptosis by
ferritin and transferrin receptor regulation and glutathione
peroxidase 4 (GPX4), a key regulator of ferroptosis, inhibits
apoptosis [26], necrosis [27], and pyroptosis [28]. Accord-
ingly, ferroptosis is related to other types of RCD.

3. The Control Mechanism of Ferroptosis

3.1. Iron Metabolism. Under normal circumstances, Fe2+

absorbed by the human body is oxidized to Fe3+ by cerulo-
plasmin in the epithelial cells of the small intestine; then,
Fe3+ is combined with transferrin in the plasma before being
transported into the cell. Under the action of ferrireductase
prostate six-transmembrane protein 3, Fe3+ is reduced to
Fe2+, and then, Fe2+ is stored in the cytoplasmic ferritin or
pumped out with the aid of the iron transporter on the
membrane, participating in the iron recycling and maintain-
ing iron homeostasis of the body [29]. When the iron
homeostasis in the organism is broken, a large amount of
free Fe2+ will appear and the free Fe2+ easily undergoes a
Fenton reaction with H2O2 to generate many hydroxyl rad-
icals, thereby causing oxidative damage to DNA, proteins,
and membrane lipids [30]; then, the ferroptosis occurs
[31]. Iron-containing proteins include three main groups:
iron-containing sulfur clusters, heme-containing proteins,
and iron-containing enzymes [32]. The activity of iron-
containing proteins depends on the binding to iron cofactors
to influence the balance of iron metabolism as a buffer sys-
tem for regulation of iron in the cells, subsequently causing
ferroptosis [33]. Accordingly, iron metabolism is closely
related to ferroptosis.

3.2. Lipid Peroxidation. Lipid peroxidation is a process in
which oxygen free radicals or lipid peroxidase reacts with
the side chains of polyunsaturated fatty acids associated with
phospholipids, enzymes, and membrane receptors to form a
lipid peroxide (LPO) which changes the fluidity and perme-
ability of cell membrane and ultimately leads to lipid oxida-
tion degradation reactions, leading to the change of cell
structure and function [34]. Compared with other fatty
acids, polyunsaturated fatty acids (PUFA) are more prone
to lipid peroxidation, resulting in ferroptosis [35]. In addi-
tion, ROS plays an important role in ferroptosis, which

reacts with lipids to produce LPO through lipid peroxida-
tion; thereby, the damage of cells occurs [34]. Meanwhile,
the Fenton reaction generates many hydroxyl radicals to
damage cells [30]. Cellular antioxidant systems mainly con-
sist of glutathione, selenium, and CoQ systems. Inactivation
of these antioxidant systems will lead to the accumulation of
lipid hydroperoxides, resulting in ferroptosis [36]. In addi-
tion to ROS, reactive nitrogen species (RNS) also contributes
to the occurrence of ferroptosis [37]. Nitric oxide (NO) and
peroxynitrite (ONOO−) can interact with unsaturated fatty
acids to form nitration oxidation products [38–40]. Also,
the RNS attacks PUFA in the plasma membrane and intra-
cellular organelles to produce LPO [41]. It is suggested that
mouse double minute 2 (MDM2) and mouse double
minute 4 (MDM4) and the negative regulators of tumor
suppressor P53 mediate lipid metabolism through one or
more main regulators and thus cause ferroptosis [42].
Moreover, studies suggested that cytochrome P450 oxidore-
ductase (POR) mediates ferroptosis through upregulating
peroxidation of membrane polyunsaturated phospholipids
[43]. In addition, the oxidoreductases, POR, and NADH-
cytochrome b5 reductase (CYB5R1) induce the membrane
damage caused by phospholipid oxidation during ferropto-
sis [44]. Zhang et al. proposed that protein kinase C βII
(PKCβII) phosphorylation of acyl-CoA synthetase long-
chain family member 4 (ACSL4) amplified ferroptosis
induced by lipid peroxidation [45]. Accordingly, lipid per-
oxidation, ROS, and RNS metabolism may play an impor-
tant role in ferroptosis.

3.3. System Xc-. System Xc- is formed by SLC7A11 and sol-
ute carrier family 3 member 2 (SLC3A2) and located on the
phospholipid bilayer of cell membrane where glutamate and
extracellular cysteine are exchanged by System Xc- in a 1 : 1
ratio [19, 46]. Studies confirm that glutamate-induced neu-
rotoxin is an iron-dependent oxidation process, which indi-
cates that glutamate is related to ferroptosis [35]. Cystine
exchanged into the cell is converted into cysteine which pro-
vides the synthesis raw material for glutathione (GSH) [46].
GSH presents the antioxidant effect and the integrated
detoxification effect, reduces the toxic lipid peroxide to
nontoxic alcohols, and subsequently plays a key role in pro-
tecting cells from peroxide damage [47]. The abnormalities
of exchange between cystine and glutamate with the System
Xc- blocked lead to a large amount of glutamic acid accu-
mulating and failure of the extracellular cysteine being
transferred into the cell, which results in insufficient syn-
thesis of GSH and in turn induces the occurrence of ferrop-
tosis [48]. In addition, it is suggested that activating
transcription factor 3 (ATF3) induces ferroptosis by inhi-
biting System Xc- [49].

3.4. Glutathione Peroxidase 4. Glutathione in humans
includes GSH and oxidized glutathione (GSSG) [50]. GSH
is an important antioxidant, and GPX4 is a peroxidase
decomposition enzyme widely existing in the body which
is a key regulator of ferroptosis [51]. GPX4 decomposes
LPO into corresponding lipid alcohols and protects cells
from oxidative damage [52]. With the participation of
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GPX4, GSH maintains dynamic balance with GSSG [47].
Accordingly, inhibition of GPX4 leads to the accumulation
of LPO, which induces ferroptosis [53]. Additionally, FINO2,
a 1, 2-dioxane-containing endoperoxide, induces ferroptosis
through a combination of direct iron oxide death-related
substrates and indirect GPX4 inactivation though the mech-
anism of GPX4 inactivation by FINO2 is not clear [54].
Meanwhile, ferroptosis inducers RAS-selective lethal 3
(RSL3) and erastin both directly and indirectly inhibit
GPX4 to cause ferroptosis in cells [53]. Accordingly, GPX4
is closely associated with the occurrence of ferroptosis.

The regulatory mechanism of ferroptosis is shown in
Figure 1.

4. Ferroptosis and Pulmonary
Infectious Diseases

Increased studies focus on ferroptosis in several diseases
[55]. It is reported that ferroptosis is related with traumatic
brain injury [56], stroke [57], heart injury [58], and Parkin-
son’s disease [59] and is considered a therapeutic target for a
variety of diseases [60, 61]. Importantly, there are increasing
studies on the relationship between ferroptosis and pulmo-
nary infectious diseases [62–64]. With the condition of dif-
ferent pulmonary infections, several factors are changed,
such as ROS, GPX4, Fe2+, and LPO, and these changes trig-
ger the occurrence of ferroptosis (Table 1).

4.1. Bacterial Infection

4.1.1. Pseudomonas aeruginosa Infection. Pseudomonas aeru-
ginosa (PA) is a gram-negative bacterium that exists widely in
nature [65, 66]. PA is the most common opportunistic patho-
gen causing nosocomial infection and is prone to causing
respiratory tract diseases such as cystic fibrosis (CF) and per-
sistent lower respiratory tract infection [67–69] and often
causes acquired pneumonia in the intensive care unit (ICU)
[70]. It is reported that PA without arachidonic acid-
phosphatidyl ethanolamine (AA-PE) produces lipoxygenase
(pLoxA) to transform the AA-PE contained in human bron-
chial epithelial cells into 15-hydroperoxy-AA-PE (15-HOO-
AA-PE), which produces ROS, thereby resulting in ferroptosis
of host bronchial epithelial cells [71]. NO∙ is a reactive mole-
cule produced by the nitric oxide synthase (NOS). NO∙
directly binds and inactivates iron-containing enzymes or
reacts with the superoxide anion radical O2∙- to form highly
active pernitrite (OONO-), thus attacking pathogens
[72–75]. It is shown that NO∙ produced by macrophages
inhibits PA-induced ferroptosis by inhibiting phospholipid
peroxidation, especially the production of 15-HOO-AA-PE
[76]. Meanwhile, PA generates proferroptotic signal 15-
HOO-AA-PE through 15-pLoxA, which suggested that
pLoxA inhibitors might be a promising treatment for PA
infection [77]. Ferroptosis is a kind of cell death induced by
iron-dependent oxidative stress [78]. It is shown that oxidative
stress impacts on the antibiotic sensitivity of PA. Under the
conditions of oxidative stress, the minimum inhibitory con-
centration (MIC) of antibiotics tends to increase or decrease
and oxidative stress significantly reduced the pathogenesis of

PA in the host [79]. Removal of OsaR (PA0056), a regulator
of oxidative stress and antibiotic tolerance produced by PA,
increases PA tolerance to aminoglycosides and beta-lactam
antibiotics as well as hydrogen peroxide [80]. Accordingly, fer-
roptosis may be related with respiratory tract infection caused
by PA infection (Figures 2 and 3).

4.1.2. Mycobacterium tuberculosis Infection. Mycobacterium
tuberculosis (MTB) is a pathogen causing tuberculosis and
invades many organs. MTB infection in the lungs is the most
common [81]. Pulmonary MTB is considered a global public
health problem [82, 83] because pulmonary MTB is not
completely under control due to the lack of adult MTB vac-
cine and the long-term use of antibiotics to treat MTB [84].
When MTB infects the host, macrophages respond quickly
to the MTB infection and induce anti-MTB immunity in
the host, such as phagocytosis and apoptosis [85]. It has
been reported [53, 62] that the death of host macrophages
induced by acute lung necrosis induced by MTB may be
related to the decrease of GPX4 level and the increase of
LPO, mitochondrial peroxide, and free iron. And MTB-
infected macrophages also produce ROS. The decrease of
GPX4 level and the increase of LPO, mitochondrial perox-
ide, free iron, and ROS are the important characteristics of
ferroptosis (Table 2). In addition, the process of the acute
lung necrosis inducing the death of host macrophages is pro-
moted by iron supplementation and inhibited by the iron-
chelating agent pyridoxal isonicotinoyl hydrazone (PIH)
which is a compound that prevents Fenton reaction from
producing hydroxyl radicals [86, 87]. Moreover, the process
is inhibited by ferrostatin-1 (Fer-1), a ferroptosis inhibitor
[62]. RNS and ROS induce ferroptosis in macrophages and
kill intracellular MTB during MTB infection [88, 89]. Stud-
ies showed that there are many MTB-secreted proteins
which are the necrosis inducers of macrophages and the
important virulence factors of MTB [90]. However, MTB
evolves several proteins and enzymes to detoxify ROS and
RNS [91–94]. It is reported that the MTB-secreted protein
Rv1324 may present oxidoreductase activities against ROS
and RNS in the process of MTB infection and is a potential
virulence factor of MTB, which promotes host cell ferropto-
sis, inflammatory response, and the survival and spread of
MTB during infection [95]. Meanwhile, ferroptosis-related
gene suppressor of cytokine signaling 1 (SOCS1) is a bio-
marker for the diagnosis and treatment of MTB [96]
(Table 2). A recent study found that heme oxygenase-1
(HMOX1) is an important regulator of MTB-induced fer-
roptosis, regulating ROS production and iron accretion, thus
changing the outcome of macrophage death after MTB
infection [97]. It is suggested that excess iron significantly
reduces resistance to mycobacterial infection now that mac-
rophages lose their ability to kill intracellular pathogens in a
NO-mediated mechanism during iron overload [98–100]. In
addition, NOS inhibitors lead to latent MTB infection reac-
tivation [101], which suggested that the use of iron chelation
therapy may prevent latent MTB infection to be activated.
Moreover, the standard antibiotic combination with chela-
tion can promote extraction of host iron and reduce avail-
ability of iron for MTB to promote MTB infection
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recovery [102]. Accordingly, ferroptosis may be associated
with pulmonary MTB (Figures 4 and 3).

4.1.3. Staphylococcus aureus Infection. Staphylococcus aureus
is an important pathogenic bacterium of human beings [103].
It is the most important pathogen causing bacteremia, infec-
tive endocarditis, pneumonia, and other diseases [104]. It is
shown that Staphylococcus aureus gradually becomes the
main pathogen that causes bacterial pneumonia [105]. At

present, no evidence shows the exact relationship between pul-
monary infectious diseases caused by Staphylococcus aureus
and ferroptosis. However, Staphylococcus aureus is sensitive
to arachidonic acid and lipid peroxidation of the host, which
provides conditions for the possible involvement of ferroptosis
in Staphylococcus aureus infection [106, 107]. A recent study
found that FeSO4 promotes ferroptosis-like cell death in
Staphylococcus aureus in mouse keratitis models, and its key
features are ROS production and lipid peroxidation [108].
Accordingly, whether ferroptosis is involved in Staphylococ-
cus aureus infection may become a new research direction in
the future [109] (Figure 3).

4.1.4. Klebsiella pneumoniae Infection. Klebsiella pneumo-
niae, as a gram-negative bacterium, is the most important
class of Klebsiella in Enterobacteriaceae Klebsiella genus
[110]. Klebsiella pneumoniae is ubiquitous in nature, includ-
ing plants, animals, and humans [111]. It is the pathogen of
a variety of human infections, including respiratory tract
infections, urinary tract infections (UTIs), and bloodstream
infections. Pulmonary infection is the most common clini-
cally [112, 113]. It is suggested that liproxstatin-1 can syner-
gize with rifampicin to enhance its antibacterial effect
against Klebsiella pneumoniae [114], while liproxstatin-1
(Lip-1) is a derivative of spiroquinoxaline which inhibits
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Figure 1: The regulatory mechanism of ferroptosis. The regulatory mechanisms of ferroptosis include iron metabolism, lipid peroxidation
and ROS metabolism, cystine/glutamate antiporter, and glutathione peroxidase 4. The different mechanisms interact with each other. ROS:
reactive oxygen species; POR: cytochrome P450 oxidoreductase; CYB5R1: NADH-cytochrome b5 reductase; PUFA: polyunsaturated fatty
acids; SLC7A11: solute carrier family 7 member 11; SLC3A2: solute carrier family 3 member 2; ATF3: activating transcription factor 3;
GSH: glutathione; GSSG: oxidized glutathione; GPX4: glutathione peroxidase 4.

Table 1: Changes in lipid peroxidation and ferroptosis-related
features in the case of different factors associated with pulmonary
infection.

Infectious factor ROS GPX4 Fe2+ LPO

PA Increase / / /

MTB Increase Decrease Increase Increase

SARS-CoV-2 Increase Decrease / /

Staphylococcus aureus Increase / / Increase

Klebsiella pneumoniae Increase / / /

Leishmania spp / Deficiency / Increase

PA: Pseudomonas aeruginosa; MTB: Mycobacterium tuberculosis; SARS-
CoV-2: severe acute respiratory syndrome coronavirus Type 2; LPO: lipid
peroxides; GPX4: glutathione peroxidase 4; ROS: reactive oxygen species.
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ferroptosis [115, 116]. Klebsiella pneumoniae induces meta-
bolic stress in the host and promotes tolerance to pulmonary
infections, and this tolerance may be related to ROS [117,
118]. However, it is unclear that the ROS changes in this tol-
erance lead to ferroptosis. Accordingly, more researches are
needed to confirm the relationship between ferroptosis and
Klebsiella pneumoniae infection in the lung (Figure 3).

4.2. Virus Infection

4.2.1. Severe Acute Respiratory Syndrome Coronavirus Type 2
Infection. In 2019, the world suffered a pandemic of Corona-
virus Disease 2019 (COVID-19), a disease caused by severe
acute respiratory syndrome coronavirus type 2 (SARS-
CoV-2) infection [119, 120]. It is shown that patients with
SARS-CoV-2 infection have altered tryptophan metabolism;
dysregulated nitrogen metabolism; altered levels of most
amino acids; increased markers of oxidative stress (such as
methionine sulfoxide and cystine), proteolysis, and renal
dysfunction (such as creatine, creatinine, and polyamine);
and increased levels of circulating glucose and free fatty
acids. Levels of metabolites in these biological processes cor-
relate with clinical laboratory markers of inflammation (i.e.,
interleukin-6 (IL-6) and C-reactive protein) and renal func-
tion (i.e., blood urea nitrogen) [121]. Patients with SARS-
CoV-2 infection present malfunctioning iron metabolism,
which leads to iron accumulation and overload [122, 123].
It has been shown that SARS-CoV-2 increases mitochon-
drial ROS production, thereby accelerating SARS-CoV-2
replication [124]. Studies showed that [63] SARS-CoV-2
inhibits the expression of GPX4 and then promotes ferrop-
tosis. It is reported that GPX4 reduces LPO in biofilms, so

upregulation of GPX4 activity reduces inflammatory factors
and promotes inflammation regression [125] (Table 2). Sele-
nium is an important component of selenocysteine proteins
(including GPX4) [36]. As a member of the cellular antioxi-
dant system, selenium also increases the number of T cells,
enhances the response of mitotic lymphocytes, increases
the secretion of interleukin-2 (IL-2) cytokines, enhances
the activity of NK cells, and reduces the risk of SARS-
CoV-2 infection through the antioxidant systems [126].
Accordingly, selenium supplementation may increase resis-
tance to respiratory infections [127]. It was reported that a
ferroptosis inducer, acyl-CoA synthetase long-chain family
member 1 (ACSL1), inhibits syncytial formation induced
by hepatitis virus A59 strain (MHV-A59) infection and viral
transmission in primary macrophages, while reducing lung
inflammation and injury in the mouse model of coronavirus
infection [64, 128] (Table 2). Syncytium is the product of
cell-to-cell fusion after coronavirus infection and is consid-
ered a marker of infection with COVID-19 [129, 130]. It is
reported that alveolar epithelial cells are sensitive to SARS-
CoV-2 and alveolar macrophages also suffer from the
infection of SARS-CoV-2 [131, 132]. In addition, MHV-
A59 infects mouse bone marrow-derived macrophages
(BMDMs) and peritoneal macrophages (PMs) [133], while
neuropilin-1 (NRP1) mediates SARS-CoV-2 to infect mouse
BMDMs [134]. Accordingly, the infection of coronavirus is
closely related with ferroptosis, which may provide a new
therapeutic target for the treatment of COVID-19. In recent
years, ferroptosis is found in hamster lung infected with
SARS-CoV-2 [135, 136]. It is confirmed that iron chelation
is beneficial to various viral infections, such as HIV-1 [137],
hepatitis B virus [138], and enterovirus 71 [139]. In addition,
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Promotion Inhibition
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Figure 2: Ferroptosis and pulmonary infection caused by Pseudomonas aeruginosa. The PA without AA-PE produces pLoxA to transform
the AA-PE contained in human bronchial epithelial cells into 15-hydrogenation oxygen-AA-PE, which produces ROS, thereby resulting in
ferroptosis of host bronchial epithelial cells. NO∙ produced by macrophages inhibits PA to induce ferroptosis by inhibiting phospholipid
peroxidation, especially by producing 15-hydrooxidation-AA-PE signal. PA generates proferroptotic signal 15-HPET-PE through 15-
lipoxygenase. PA: Pseudomonas aeruginosa; AA-PE: arachidonic acid-phosphatidyl ethanolamine; pLoxA: lipoxygenase; 15-HOO-AA-
PE: 15-hydrogenation oxygen-AA-PE; ROS: reactive oxygen species.
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SARS-CoV-2 infection presents high IL-6 ferritin levels
[140], while the iron-chelating agent deferoxamine (DFO)
completely blocks production of IL-6, delaying severe sys-
temic inflammatory response syndrome (SIRS) and circula-
tory collapse in animal models [141–143]. Moreover, iron

chelation prevents excessive inflammatory reactions and tis-
sue damage by blocking free iron and preventing oxygen free
radical formation and lipid peroxidation [144]. Accordingly,
iron chelation therapy improves SARS-CoV-2 infection.
Depletion of intracellular iron or the development of new

Lipid 
peroxidation

15-HOO-
AA-PE

ROS
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MTB

Staphylococcus
aureus

LPO

Hydroxyl 
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Promotion Inhibition

AA-PE
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SARS-CoV-2

Free iron

Figure 3: The cascade of these substances during infection. The PA without AA-PE produces pLoxA, which converts AA-PE contained in
human bronchial epithelial cells into 15-HOO-AA-PE and produces ROS. MTB infection induces a decrease in GPX4 levels and an increase
in LPO, free iron, and ROS. SARS-CoV-2 inhibits GPX4 expression. In addition, ROS can be produced and lipid peroxidation can be
promoted to generate LPO during Staphylococcus aureus infection. Also, ROS are also produced during Klebsiella pneumoniae infection.
Meanwhile, Leishmania spp infection of GPX4-deficient T lymphocytes causes LPO accumulation. A decrease in GPX4 levels weakens its
ability to break down LPO, leading to the accumulation of LPO. Additionally, ROS can also produce LPO through lipid peroxidation.
Meanwhile, the increase of free iron leads to the increase of oxygen free radical produced by Fenton reaction. Both LPO and hydroxyl
radicals can damage cells and eventually lead to ferroptosis. PA: Pseudomonas aeruginosa; AA-PE: arachidonic acid-phosphatidyl
ethanolamine; pLoxA: lipoxygenase; 15-HOO-AA-PE: 15-hydrogenation oxygen-AAPE; ROS: reactive oxygen species; MTB:
Mycobacterium tuberculosis; LPO: lipid peroxides; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2; GPX4:
glutathione peroxidase 4.

Table 2: Ferroptosis-associated genes associated with pulmonary infection.

Gene Infectious factor Function

GPX4

MTB
Decreased GPX4 levels lead to acute lung necrosis induced by MTB

and thus host macrophage death

SARS-CoV-2 Reduces LPO in biofilms

Leishmania spp GPX4-deficient T lymphocytes have difficulty resisting pulmonary infections caused by leishmaniasis

SOCS1 MTB As a biomarker for the diagnosis and treatment of MTB

ACSL1 SARS-CoV-2
Inhibits syncytial formation and viral transmission in primary macrophages;

reduces lung inflammation and injury

GPX4: glutathione peroxidase 4; SOCS1: suppressor of cytokine signaling1; ACSL1: acyl-CoA synthetase long-chain family member 1; MTB: Mycobacterium
tuberculosis; SARS-CoV-2: severe acute respiratory syndrome coronavirus type 2; LPO: lipid peroxides.
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ferroptosis inhibitors and GPX4 agonists may help further
develop treatment options for COVID-19 (Figures 5 and 3).

4.3. Parasite Infection

4.3.1. Leishmania spp Infection. Leishmania spp is a parasite
that parasitizes the macrophages of humans and other mam-
mals and causes leishmaniasis in the host [145]. Leishmaniasis
is widely distributed all over the world, and large numbers of
people are at risk of infection, so leishmaniasis is considered
a priority disease by the World Health Organization [146,
147]. Leishmaniasis has two clinical forms, visceral leishman-
iasis and cutaneous leishmaniasis [148]. Pulmonary leishman-
iasis is a common leishmaniasis [145]. It is suggested that
GPX4-deficient T lymphocytes rapidly accumulate LPO and
induce ferroptosis in vitro after leishmaniasis infection and
then, GPX4-deficient T lymphocytes have difficulty resisting
pulmonary infections caused by leishmaniasis [149]
(Table 2). Although a definite relationship between pulmo-
nary infection caused by Leishmania and ferroptosis has not

been found so far, ferroptosis inhibitors and GPX4-related
agonists deserve to be researched in the treatment of pulmo-
nary leishmaniasis in the future (Figure 3).

4.4. The Pulmonary Infections in Other Pulmonary Diseases.
Chronic obstructive pulmonary disease (COPD) is a chronic
pulmonary disease, and pulmonary infection may occur dur-
ing acute exacerbation of COPD (AECOPD) [150]. It is
reported that ferroptosis is involved in AECOPD with unsta-
ble iron accumulation and increased lipid peroxidation
[151]. Bacterial or viral infections often cause AECOPD
[152]. PA is the main cause of AECOPD [153], while PA
can cause ferroptosis in bronchial epithelium [71]. In addi-
tion, ferroptosis is related to asthma and may occur in air-
way epithelial cells of asthma [154]. The pathogen
infections commonly cause the acute exacerbation of asthma
[155]. However, no researches have presented the changes of
ferroptosis in AECOPD or asthma with pathogen infection
so far. It is reported that ferroptosis is also involved in pul-
monary fibrosis (PF) [156]. PF is easily secondary to
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Figure 4: Ferroptosis and pulmonary infection caused by Mycobacterium tuberculosis. In the process of ferroptosis in host macrophages
induced by acute lung necrosis induced by MTB, GPX4 levels are decreased and LPO, mitochondrial peroxide, free iron, and ROS are
increased. The decreased level of GPX4 reduces its ability to decompose LPO, leading to the accumulation of LPO. ROS can also
produce LPO through lipid peroxidation. At the same time, the increase of free iron leads to the increase of oxygen radicals produced by
Fenton reaction. Both LPO and oxygen free radicals can damage cells. Iron supplementation promotes the Fenton reaction to produce
oxygen free radicals and promotes the process of acute lung necrosis inducing host macrophage death, while the iron-chelating agent
PIH inhibits this process by preventing Fenton reaction. Similarly, the ferroptosis inhibitor ferrostatin-1 inhibits this process by
inhibiting lipid peroxidation. And HMOX1 can regulate the production of ROS and the increase of iron, thus changing the outcome of
macrophage death after MTB infection. MTB: Mycobacterium tuberculosis; LPO: lipid peroxides; PIH: pyridoxal isonicotinoyl
hydrazone; ROS: reactive oxygen species; GPX4: glutathione peroxidase 4; HMOX1: heme oxygenase-1.
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SARS-CoV-2 infection [157]. Although SARS-CoV-2 infec-
tion leads to ferroptosis [63], whether ferroptosis is related
to PF secondary to SARS-CoV-2 infection remains unclear.

Ferroptosis contributes to the occurrence and development
of acute lung injury (ALI) [156]. PA infection leads to severe
ALI which may be related to ferroptosis in bronchial

SARS-CoV-2

SARS-CoV-2 Iron metabolism dysfunction Iron accumulation
Iron overload

GPX4

Up-regulating activity

Lung
inflammation
and damage

ACSL1
inhibitor

Host
macrophage

death 

Inflammatory factors

Cell fusionSyncytia
formation 

LPO

Ferroptosis

Promotion Inhibition

Inflammation resolution

Figure 5: Ferroptosis and pulmonary infection caused by SARS-CoV-2. SARS-CoV-2 inhibits the expression of GPX4 and then promotes
ferroptosis. GPX4 reduces LPO in biofilms, so upregulation of GPX4 activity reduces inflammatory factors and promotes inflammation
regression. A ferroptosis inducer, ACSL1, inhibits syncytial formation and viral transmission in primary macrophages, while reducing
lung inflammation and injury in the mouse model of coronavirus infection. SARS-CoV-2: severe acute respiratory syndrome coronavirus
type 2; GPX4: glutathione peroxidase 4.

Table 3: The inhibitors of ferroptosis.

Compounds Mechanisms Special effect

DFO Inhibit accumulation of iron
DFO completely blocks IL-6 production after SIRS,

delaying SIRS and circulatory collapse

CPX Inhibit accumulation of iron NA

2,2′-pyridine Inhibit accumulation of iron NA

Fer-1 Remove ROS, inhibit lipid peroxidation
Fer-1 inhibits the process of host macrophage death

induced by MTB in acute lung necrosis

Lip-1 Remove ROS, inhibit lipid peroxidation
Lip-1 can synergize with rifampicin to enhance its
antibacterial effect against Klebsiella pneumoniae

Vitamin E Compensate GPX4 loss
Vitamin E supplementation has been shown to
increase resistance to respiratory infections

Curcumin Prevent GSH depletion and lipid peroxidation NA

EGCG Prevent GSH depletion and lipid peroxidation NA

Baicalein Prevent GSH depletion and lipid peroxidation NA

NDGA Prevent GSH depletion and lipid peroxidation NA

CPX: ciclopirox; DFO: deferoxamine; EGCG: (-)-epigallocatechin-3-gallate; Fer-1: ferrostatin 1; GSH: glutathione; GPX4: glutathione peroxidase 4; Lip-1:
liproxstatin-1; NDGA: nordihydroguaiaretic acid; IL-6: interleukin-6; SIRS: systemic inflammatory response syndrome; ROS: reactive oxygen species.
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epithelium [71]. However, the role of ferroptosis in ALI
caused by PA infection needs more studies to be confirmed.

4.5. Pulmonary Infections and Ferroptosis Inhibitors. Since
ferroptosis is associated with pulmonary infections, the
inhibitors of ferroptosis are important for the treatment of
pulmonary infections. There are four kinds of ferroptosis
inhibitors according to different effects. One kind of ferrop-
tosis inhibitor includes DFO, ciclopirox (CPX), and 2,2′
-pyridine, which inhibit iron accumulation [158]. In addi-
tion, DFO completely blocks IL-6 production after SIRS,
which delays SIRS and circulatory collapse. The second kind
of inhibitor includes Fer-1 and Lip-1 which remove ROS and
inhibit lipid peroxidation [159, 160]. Additionally, Fer-1
inhibits the process of host macrophage death induced by
MTB, while Lip-1 synergizes with rifampicin to enhance its
antibacterial effect against Klebsiella pneumoniae [62, 116].
Another inhibitor includes mainly vitamin E which compen-
sates for loss of GPX4. It is reported that supplementation of
vitamin E increases resistance to respiratory infections [126].
The fourth inhibitors include curcumin, (-)-epigallocate-
chin-3-gallate (EGCG), baicalein, and nordihydroguaiaretic
acid (NDGA) which prevent glutathione depletion and lipid
peroxidation. However, no researches on the role of the
fourth inhibitors in pulmonary infection were found [161]
(Table 3).

5. Summary

Ferroptosis, as a new type of cell death, is closely related to
the occurrence of various pulmonary infectious diseases.
The mechanisms of both most pulmonary infections and
ferroptosis involve features such as dysregulation of iron
metabolism, the accumulation of LPO, and the inactivation
and consumption of GPX4. Among pulmonary infectious
diseases, PA infection, MTB infection, and SARS-CoV-2
infection are associated with ferroptosis, which may provide
a potential therapeutic target for the treatment of pulmonary
infections. However, the mechanisms by which these infec-
tions are involved in ferroptosis are unclear. In addition, it
is unclear whether Staphylococcus aureus infection, Klebsi-
ella pneumoniae infection, and Leishmania spp infection
are involved in ferroptosis. Accordingly, more researches
are required further.
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