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Fusarium head blight (FHB) is a serious disease of wheat that threatens wheat production worldwide. In this study, high-throughput
sequencing technology was used to analyze the rhizosphere soil microbial metagenomes of 4 wheat cultivars with different levels of
resistance to FHB. The results showed that there were differences in the diversity, structure, and composition of rhizosphere
microorganisms between resistant and sensitive varieties. The rhizosphere soil bacterial diversity of the resistant wheat varieties Su
Mai 3 and Yang Mai 16 was higher than that of the susceptible wheat varieties Zheng Mai 9023 and Zhou Mai 20. The diversity of
rhizosphere fungi in resistant varieties was lower than that in susceptible varieties, but the abundance was higher than that in
susceptible varieties. Variety was found to alter the community structure of wheat rhizosphere microorganisms. Resistant varieties
SM3 and YM16 and moderately susceptible variety ZM9023 had similar microbial community structure, while highly susceptible
variety ZM20 was significantly different from other varieties. The study is aimed at analyzing the effects of wheat varieties of
different resistance to FHB on the composition and abundance of rhizosphere soil microbial community to screen out bacteria or
fungi that can be used to control FHB, providing the theoretical basis for FHB biological control.

1. Introduction

Bread wheat (Triticum aestivum L.) is one of the most signifi-
cant crops, and its global production ranks the third followed
by corn and rice [1]. Wheat diseases are a key factor affecting
the quality and yield of wheat, and the occurrence of wheat
diseases results in severe losses [2]. FHB is a fungal disease

caused by various Fusarium species, such as Fusarium grami-
nearum, F. culmorum, and F. moniliforme. The different geo-
graphical distribution and climatic environment result in
dominant species variation. For example, F. graminearum, F.
culmorum, F. poae, and F. avenaceum are the most important
dominant species in Europe [3, 4], while the main pathogenic
species is only F. graminearum in China [5]. Infected wheat

Hindawi
Cellular Microbiology
Volume 2023, Article ID 9963635, 11 pages
https://doi.org/10.1155/2023/9963635

https://orcid.org/0000-0003-4530-9776
https://orcid.org/0000-0002-0724-0870
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9963635


grains were contaminated by the fungal toxin produced by F.
graminearum, which can chronically remain in food chain.
The contaminated food is dangerous to animals and humans
and can even cause death [6–8].

At present, chemical control has been regarded as the
significant measures to control FHB in China. The long-
term use of pesticides not only enhances the resistance of
the pathogenic microorganisms but also pollutes the envi-
ronment [7]. Now, scientists focus on the cooperation with
microbial populations in plant rhizosphere and the relative
relationship applying to agricultural systems [9–11].

The soil is an essential material for plant survival.
Besides, the soil microbial community has a direct impact
on plant growth and development [12, 13]. There are signif-
icant differences between the community structure of differ-
ent plants varieties and microorganisms. Both individual
strains of bacteria and the rhizosphere soil microorganism
community play important roles in plant health [14, 15].
Plant rhizosphere with a rich microbial diversity exhibits
dynamic interactions [16]. The microbiome is an extended
genome or secondary genome, including bacteria, fungi,
viruses, protozoa, and archaea [17, 18]. Isolation of wheat
rhizosphere soil can yield rhizosphere microorganisms. Ben-
eficial rhizosphere microorganisms not only enhance host
resistance but also synthesizes hormones that benefit plant
growth and promote plant metabolism [19, 20]. Zhao et al.
found that plant endophytes are correlated with rhizosphere
microorganisms to some extent through exploring the bacte-
rial community structure between root endophytes and rhi-
zosphere soil on the traditional rice (Oryza sativa) variety
“Yuelianggu” in the Yuanyang terraces [21, 22]. Li et al. have
examined the impact of rhizosphere soil microorganism
diversity on resistant cotton Verticillium wilt, which shows
that the dominant rhizosphere fungal species of disease-
resistant was significantly stronger than that of disease-
susceptible in control cotton Verticillium wilt fungus. Fur-
thermore, they found that rhizosphere beneficial microor-
ganisms could regulate the composition of the rhizosphere
soil microorganism community, which is likely to control
effectively cotton Verticillium wilt [23]. The correlation
between rhizosphere soil microorganism diversity differ-
ences and resistance disease could be explored through the
diversity analysis on rhizosphere soil microorganism com-
munities of different disease-resistant varieties on metabolic
functions and structures [24].

With the development of molecular biology and bioinfor-
matics, the plant microbiome has enhanced potentially agri-
cultural production, which is expected to meet future food
demand worldwide [20, 25]. In this study, the rhizosphere
microbiomes of different FHB resistant in wheat varieties were
analyzed to elucidate the differences in rhizosphere soil micro-
bial diversity. This study provides the theoretical basis for
green prevention and control of FHB.

2. Materials and Methods

2.1. Experimental Materials. The seeds of the test wheat are
retained in our laboratory. Wheat varieties included the
high-resistant variety of FHB “Su Mai 3” (SM3), the

medium-resistant variety “Yang Mai 16” (YM16), the
medium-susceptible variety “Zheng Mai 9023” (ZM9023),
and the high-susceptible variety “Zhou Mai 20” (ZM20). In
the wheat seedling stage, the fertilizer, water, pests, diseases,
and weed should be managed strictly according to the tech-
nical requirements of local agricultural production. Five-
point sampling method was used to sample wheat at heading
stage and flowering stage. In order to reduce the test error
caused by environmental factors, different wheat varieties
were planted in plot. The samples in this study were col-
lected from the experimental plots of continuous cropping.

2.2. Sample Collection. The samples in the present study
were collected in Jingzhou District, Jingzhou City, Hubei
Province, located in the Jianghan Plain with annual average
temperature at 15.9-16.6°C, annual frost-free period of 242-
263 days, and annual average precipitation at 904-1127mm.
The experiment was carried out in the experimental field of
Jingzhou high and new technology industrial development
zone in Jingzhou District, Jingzhou City (longitude:
112.121781, latitude: 30.355227, and altitude: 37m).

The samples were taken by digging up an intact wheat
plant and gently shaking the plant with soil to dislodge it
completely. The soil sample that fell off was regarded as
the nonrhizosphere soil, and the soil sample that adhered
to the plant root systems was regarded as the rhizosphere
soil [26]. To maintain the integrity of the root systems, first
the soil of wheat roots was dug at least 15 cm, and interrhi-
zosphere soil with about 500 g was collected from each plot.
Then, the soil was sieved by a 20 mesh screens, subsequently
placed in sterile bags and numbered, and finally stored at
-80°C.

2.3. DNA Extraction and Amplicon Generation. Wheat rhi-
zosphere soil DNA was extracted using DNeasy PowerMax
Soil Kit (QIAGEN) according to the manufacturer’s instruc-
tions. The quality and quantity of extracted DNA were
checked on 1% agarose gel stained with ethidium bromide.
The diluted soil genomic DNA was used as template for
PCR amplification using the following primers. For fungi,
ITS1 region primers were used: F (ITS1): 5′-CTTGGTCAT
TTAGAGGAAGTAA-3′ [27] and R (ITS4): 5′-GCTGCG
TTCTTCATCGATGC-3′ [28]. Bacteria were amplified using
universal primers 27F: 5′-ACTCCTACGGGAGGCAGCA-3′
and 1492R: 5′-GGACTACHVGGGTWTCTAAT-3′ [29] to
amplify the V3-V4 region of 16S rRNA. The PCR amplifica-
tions for each sample were conducted in a 50μl reaction sys-
tem that contains 5.0μl 10× PCR buffer, 1.0μl dNTPs, 0.5μl
(10μM) of each forward and reverse primer, 0.5μl DNA poly-
merase, 1μl template DNA, and 42.5μl ddH2O. The PCR pro-
gram consists of the following: 94°C, 5min, followed by 35
cycles (94°C, 30 s; 55°C, 30 s; and 72°C. 1min) and by a final
extension step at 72°C, 5min. The PCR products were verified
by agarose gel electrophoresis, and the target bands were puri-
fied using EasyPure® Quick Gel Extraction Kit (TransGen
Biotech, China). The PCR-amplified products from each
sample were quantified and homogenized, and a paired-end
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sequencing library was constructed and sequenced using the
Illumina HiSeq platform of Biomarker (Beijing, China).

2.4. Statistical Analysis. Sequences were clustered at 97% simi-
larity level using QIIME (version 1.8.0) software. The obtained
OTUs were taxonomically annotated based on Silva (bacteria)
and UNITE (fungi) taxonomic databases (https://ngdc.cncb
.ac.cn/databasecommons/database/id/4075). All data was ana-
lyzed using a one-way ANOVA at the P < 0 05 level for signif-
icance of differences. According to the distribution of OTU in
different samples, mothur software (version v.1.30) was used
to calculate the α-diversity index values of each sample at
97% similarity level. It includes the Chao1 index, Shannon
index, Simpson index, and ACE index. For β-diversity, QIIME
1.9.1 software was used to calculate the diversity distance
matrix, and the sample community distance matrix was used
to analyze the similarity and difference of microbial commu-
nity structure of different samples.

3. Results and Discussion

The effects of different FHB-resistant varieties on rhizosphere
soil microorganisms were elucidated through sampling

analysis of experimental fields. In this study, we explored the
effects of different wheat varieties with resistance and suscep-
tibility to FHB on the diversity, structure, and function of
rhizosphere soil microbial population by high-throughput
sequencing.

3.1. Sequencing Quality Evaluation. A total of 1,099,541 pairs
of reads were obtained from 12 bacterial samples, and a total
of 1,020,929 clean tags were generated by splicing and filter-
ing of double-ended reads. Each sample included at least
62,894 clean tags, with an average of 85,077 clean tags. Tags
were clustered at a 97% similarity level, and 1999 and 802
OTUs were obtained from bacteria and fungi, respectively
(Figures 1(b) and 1(d)). There were 1637 OTUs shared by
the bacteria of four varieties wheat, 1824 OTUs shared by
SM3 and YM16, and 1750 OTUs shared by ZM9023 and
ZM20. There are only 1 unique OTU in YM3, 52 unique
OTU in ZM20, and no unique OTU in SM3 and ZM9023
(Figure 1(a)).

A total of 543,495 pairs of reads were obtained from 12
bacterial and fungi samples of four wheat varieties, each with
three biological replicates. A total of 469,498 clean tags were
generated by quality control and double-end splicing. Each
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Figure 1: Veen and OTU analysis of different resistant wheat varieties: (a, b) bacteria; (c, d) fungi.
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sample included at least 29,408 clean tags, with an average of
39,125 clean tags. The fungus has a total of 802 OTUs. We
found that the four varieties share 318 OTUs, 1824 common
OTUs in the two FHB-resistant varieties SM3 and YM16
and 436 common OTUs in the susceptible varieties
ZM9023 and ZM20. SM3, YM16, ZM9023, and ZM20 have
20, 21, 16, and 66 unique OTUs, respectively (Figure 1(c)).
The quality assessment of sequencing data is shown in Sup-
plement Table 1 and 2.

3.2. The Bacterial Diversity of Resistant Varieties Was Higher
than That of Susceptible Varieties, and the Fungal Diversity
Was Lower than That of Susceptible Varieties. The species
diversity and abundance of different wheat varieties with
rhizosphere microorganisms were assessed using the ACE
index, Chao1 index, Shannon index, and Simpson index.
Bacterial ACE index and Chao1 index presented ZM9023
> SM3 > YM16 > ZM20, but there was no significant differ-
ence (PACE = 0 077, PChao1 = 0 064) (Figure 2). The Shannon
index presented SM3 > YM16 > ZM9023 > ZM20. Besides,
the Shannon index of resistant varieties was significantly
higher than that of susceptible varieties (PShannon = 0 005),
which was consistent with the results of Li et al. [30]. Wu
et al.’s study also showed that the bacterial α-diversity of
Chinese wheat yellow mosaic virus- (CWMV-) resistant
varieties (FRW) was higher than that of susceptible varieties
(FSW) [31]. The Simpson index was YM16 > SM3 > ZM20
> ZM9023, in which there was also no significant difference

(PSimpson = 0 072). The bacterial diversity of the resistant vari-
eties SM3 and YM16 was higher than that of the susceptible
varieties ZM9023 and ZM20. However, the highest bacterial
abundance among the four varieties was ZM9023, followed
by SM3, YM16, and ZM20 (Figure 2(a)). The fungal α-diver-
sity indices in four varieties are shown in Figure 2(b), with
the greatest species diversity in ZM20 and the highest fungal
abundance in YM16 (PACE = 0 67, PChao1 = 0 64, PShannon =
0 67, and PSimpson = 0 49, Figure 2(b)).

3.3. The Microbial Community Structure of the Highly
Susceptible Cultivar ZM20 Was Significantly Different from
That of the Other Three Cultivars. We conducted PCoA
analysis on the bacterial and fungal community structure
in the rhizosphere soil of resistant wheat cultivars, and the
result showed that both bacterial and fungal communities
were primarily clustered by resistant varieties. The resistance
varieties SM3 and YM16 and moderately susceptible variety
ZM9023 had similar microbial community structure, while
the highly susceptible variety ZM20 differed significantly to
others (Figures 3(a) and 3(b)). We analyzed different wheat
rhizosphere for bacterial and fungal PCoA based on
binary-Jaccard algorithm. The samples were closer, and the
similarity was greater. As shown in Figure 3, the cumulative
contribution of the variance on the first three principal com-
ponents for soil bacteria and fungi was 74.53% and 50.43%,
respectively, while the remaining principal components
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Figure 2: The α-diversity analysis on bacterial (a) and fungal (b) in four wheat varieties. ∗P < 0 05; ∗∗P < 0 01.
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Figure 3: Continued.
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Figure 3: The β-diversity analysis (a, b) on different wheat varieties and species distribution (c, d). PCoA analysis on rhizosphere bacteria
(a) and fungi (b) in wheat. Species distributions of four wheat rhizosphere bacteria (c) and fungi (d) are plotted from left to right with the top
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contributed less and were ignored. Therefore, the first three
principal components (PC1, PC2, and PC3) were regarded
as the main factors exploring the mycota differences. SM3,
YM16, and ZM9023 were clustered together; ZM20 were
also clustered together. The results showed that SM3,
YM16, and ZM9023 had similar community structure, and
there were significant differences between them and ZM20
(Figure 3(a)). The PCoA analysis on soil fungal showed that
the composition and structure of SM3 and YM16 soil fungi
overlapped and their microbial community structure was
similar to some degree. Furthermore, PC3 and PC2 were
considered the significant factors leading to the difference
in fungal communities between ZM9023 and resistant varie-
ties. PC1 and PC3 were considered the key factors causing
the difference in fungal communities between ZM20 and
resistant varieties (Figure 3(b)). Kopecky et al. found that
both resistant and sensitive species had the differences on
the diversity, structure, and composition of soil bacterial
communities [32–34]. Differences in rhizosphere soil micro-
organisms of different wheat cultivars may be caused by dif-
ferent plant genotypes, which may affect the composition
and abundance of annual plant microbial communities.
The study of El Arab et al. showed that under controlled
conditions, the population structure of two different geno-
types of wheat root soil microorganisms was different [35].
Genotypic effects were also found in soil rhizosphere micro-
bial community composition of different soybean varieties
[36]. The composition, diversity, and abundance of bacteria
and fungi in the rhizosphere of chickpea with different geno-
types were also significantly different [37]. At different stages
of potato development, different varieties also affect the
abundance of rhizosphere microflora [38].

3.4. Differences in Rhizosphere Soil Microbial Composition of
Different Wheat Varieties. Different resistant wheat varieties
with top 10 community composition of rhizosphere microor-
ganisms at the phylum, class, and genus taxonomic levels are
shown in Figures 3(c) and 3(d). Other species were regarded
as others. Unclassified indicated species that did not have tax-
onomic annotation. The major interrhizosphere bacteria in
different wheat varieties were Acidobacteria (27.4%) and Pro-
teobacteria (33.9%), followed by Chloroflexi, Bacteroidetes,
Gemmatimonadetes, Actinobacteria, Nitrospirae, Verrucomi-
crobia, Latescibacteria, and Planctomycetes at the phylum tax-
onomic level. Proteobacteria play a vital role in plant growth
and development, such as in hormone synthesis, ferritin pro-
duction, dissolved phosphate, and nitrogen fixation [39–41].
Acidobacteria are mainly involved in carbon [42], nitrogen
[43], and sulfur [44] circulation in plant metabolism, promot-
ing plant growth and development [45], establishment of bio-
films [46, 47], production of extracellular polysaccharides
[48], synthesis of secondary metabolites [49–51], and improv-
ing plant stress resistance [52–56].

The bacteria top 1 in SM3, YM16, and ZM9023 was
subgroup 6, and in high-resistance species, SM3 was
Alphaproteobacteria at the phylum taxonomic level.
Proteobacteria are involved in the biosynthesis of plant hor-
mones and polyamines, phosphate dissolution, and nitro-
gen fixation [9, 20, 22].

Species in the genus taxonomic level top 10 followed
Nitrosomonadaceae, Gemmatimonadaceae, Anaerolineaceae,
Sphingomonas, Haliangium, and Nitrospira, but most of them
were nonculturable bacteria (Figure 3(c)). The enrichment of
Nitrosomonadaceae, the restoration of the rhizosphere envi-
ronment [57], and the nitrification and use of soil micronutri-
ent by plants [58, 59] are discussed of Lovley et al.

High-resistant varieties with microbial abundance were
less than that of other varieties, while high-susceptible
varieties ZM20 uncultured bacterium Latescibacteria and
uncultured bacterium of Gemmatimonadaceae, Haliangium,
Sphingomonas, and Gemmatimonas were higher than other
varieties (Figure 4(a)).

The top 10 of the phylum fungi were Basidiomycota,
Ascomycota, Mortierellomycota, Glomeromycota, Olpidio-
mycota, Cercozoa, Chytridiomycota, Kickxellomycota, and
Blastocladiomycota. Sordariomycetes dominated in the phy-
lum taxonomic level. Ascomycota shows positive effects on
facilitating plants nitrogen assimilation and participating in
the decomposition of plant residues [60]. Basidiomycota also
rapidly metabolizes organic substrates in the rhizosphere
soil, and its abundance is affected by the degradation of plant
residues [61].

Agaricomycetes and Sordariomycetes dominated in the
class interrhizosphere fungi. The biodegradability of Agari-
comycetes has a profound effect on alleviating soil organic
compound pollution [62].

The dominant genus in the high-resistant species SM3 was
Agrocybe (26.6%) (Figure 3(d)). In addition, the microbial
abundance of SM3 and ZM20 was relatively low (Figure 4(b)).

4. Conclusions

The α-diversity analysis showed that the bacterial diversity
of resistant varieties was higher than that of susceptible
varieties. The highest abundance of moderately susceptible
varieties was ZM9023, followed by SM3 and YM16. The
lowest abundance of highly susceptible varieties was ZM20.
The Shannon index of rhizosphere bacteria in resistant
varieties was significantly higher than that in susceptible
varieties. The rhizosphere fungal diversity in resistant varie-
ties was lower than that in susceptible varieties, but their
abundance was higher than that in susceptible varieties
(Figure 2(b)). We analyzed the differences of rhizosphere
microorganisms in different wheat varieties via OTU and
binary algorithm. The results showed that moderately sus-
ceptible varieties SM3, YM16, and ZM9023 had similar
microbial community structure, while the highly susceptible
variety ZM20 was significantly different to that of moder-
ately susceptible varieties (Figures 4(a) and 4(b)). The
principal component analysis (PCoA) on microbial commu-
nity showed that resistant varieties changed the quantity and
composition of wheat rhizosphere with bacterial and fungal
communities.

In this study, the differences of rhizosphere microbial
communities of different resistant varieties of wheat were
analyzed. In the next step, we will isolate and identify the
microorganisms in these soils to determine which kind of
microorganisms regulate the resistance to FHB in wheat.
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