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This paper mainly deals on the issue of a chaotic synchronization of a master and slave systems. It is generally the requirement of
the synchronization that someone needs at least one to one master and slave systems. In the current study, the authors introduce
the concept of a synchronization in which there is no need of slave/response system externally. Furthermore, the synchronization
has been demonstrated here within a system among the subsystems of different orders. In addition, adaptive control is chosen for
the synchronization among various combinations in multiswitching manner. For demonstration purpose, Lorenz Six Dimensional
Hyper Chaotic System (L6DHCS) is chosen. There are three different kinds of possible switches presented by the authors formed
within the considered system. The numerical simulations are carried out to validate the effectiveness of the analytical technique
using Mathematica.

1. Introduction

Chaos synchronization is one of the widely studied phenom-
ena of nonlinear science that has greatly expanded people’s
perception from all across the world. Because of the wide-
spread presence of chaos in many systems, researchers have
been seriously interested in studying chaotic systems for
over three decades [1–3]. Chaos causes unpredictable and
inappropriate system behavior and leads to irreparable
losses. This is the reason why chaos synchronization has
drawn the attention of scholars from all across. Various as
well as numerous methods have been presented for synchro-
nization of chaotic systems, such as active control [4–7],
backstepping control [8, 9], fuzzy control [10, 11], impulsive
control [12–14], event-triggered-based neural network [15,
16], output feedback control [17, 18], projective synchroni-
zation [19], and sliding mode control [20–22]. It is worth
mentioning the recent contribution of various synchroniza-
tion techniques that have been proposed. Its all aforemen-
tioned or therein were either based on a master and a slave
system were synchronized or many generalized forms of
synchronization formed from combining one or more tech-
niques operating on a number of chaotic systems were

formed. Among numerous, here we would like to share
some of the worthwhile contributions read by the authors
based on different adaptive approaches.

Shahzad [23] studied the issue of multiswitching syn-
chronization (MSS) of chaotic systems using the adaptive
sliding mode approach, and it has been shown that MSS is
a general case of reduced/increased order of synchroniza-
tion. For demonstration purposes, circular restricted three-
body problem and the Lorenz system were used as a master
and slave system, respectively. Shahzad [24] has investigated
the improved results with Mathematica and further studied
the effects of external uncertainty and disturbances on stabil-
ity using adaptive sliding mode control. It has been seen that
the synchronization of chaotic systems with unknown
parameters is an issue. Adaptive control can be used to
achieve synchronization to deal with uncertainty [20, 21].
Khan and Shikha [19] have studied the hybrid function pro-
jective synchronization using the adaptive control technique
for unknown system parameters. In their study, both the
master and slave systems are chosen in such a way that none
of them can be derived from the members of the unified cha-
otic system. Chen et al. [25] studied the synchronization of
multiple chaotic systems with unknown parameters using
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an adaptive control method, and two kinds of different syn-
chronization modes were considered. In the first one, more
response systems were synchronized with one drive system,
and the second one is based on ring transmission synchroni-
zation that guarantees that all the chaotic systems can syn-
chronize with each other. Zare et al. [26] proposed a
robust adaptive control strategy to synchronize a class of
uncertain chaotic systems with unknown time delays. Using
Lyapunov theory and Lipschitz conditions in chaotic sys-
tems, the necessary adaptation rules for estimating uncertain
parameters and unknown time delays are determined.
Mobayen et al. [27] suggested a novel barrier function-
based adaptive nonsingular terminal sliding mode control
methodology for robust stability of disturbed nonlinear sys-
tems. It was proved that the barrier function-based control
method can force the state trajectories to converge to a
region near origin in the finite time. Moreover, a sufficient
criterion was derived to satisfy the asymptotic stability of
state trajectories. Alattas et al. [28] proposed an integral-
type dynamic sliding mode control scheme to synchronize
the hyperchaotic systems in the existence of uncertainty as
quickly as possible that can be used for an extensive range
of identical/nonidentical master-slave structures. Further-
more, for a new six-dimensional hyperchaotic system, it
was exposed that the synchronization errors are completely
compensated for by the new control scheme which has a bet-
ter response compared to a similar controller. Mobayen et al.
[29] constructed a family of nine new chameleon chaotic
systems by introducing two parameters to the 3D chaotic
systems with quadratic nonlinearities and exhibiting line
equilibrium points. During analysis, three categories of hid-
den attractors (no equilibria, line of equilibria, and one sta-
ble equilibrium) and a self-excited attractor have been
seen. The study motivates on the adaptive finite time sliding
mode control of one category of these chameleon chaotic
systems subjected to uncertainties and disturbances.

All the aforementioned studies are somehow based on
two or more systems called drive-response or master-slave
combination required for synchronization. Here in the cur-
rent study, the authors aim to study the internal synchroni-
zation in which the subsystems of a chaotic dynamical
system have been synchronized among each other in a mul-
tiswitching style. In addition to show the existence of inter-
nal synchronization, the authors have combined the idea of
internal synchronization in multiswitching style with the
adaptive control scheme and L6DHCS has been chosen for
demonstration purposes. The adaptive control technique is
one of the oldest and frequently used methods [30–33].
There is no other particular reason behind the selection of
adaptive control for internal synchronization. Also, the
authors have not found any issues in the implementation
of the selected technique during internal synchronization.
As it has been mentioned above that in internal synchroni-
zation, the part dynamics of a certain chaotic system repre-
sented by a single or more state variables are synchronized
with other part dynamics represented by other different sets
of the same number of state variables within the same sys-
tem. This itself is the novelty of our proposed study. This
is a kind of a unique way of synchronizing a selected subsys-

tem that gives someone the freedom to synchronize without
an external slave system. As far as the best author’s informa-
tion, the kind of synchronization has never been studied
before in the past. The rest of the contents of the article
are arranged as follows. In Section 2, a problem statement
is presented. In Section 3, the IMSS for L6DHCS has been
discussed that has three kinds of switches. Finally, some con-
cluding remarks on the presented study can be seen in Sec-
tion 4.

2. Problem Statement

As in the IMSS, the part dynamics of a certain system repre-
sented by a single or more state variables with other part
dynamics represented by another set of the same number
of state variables within the same system are synchronized,
and moreover, there can be different kinds of switches
depending on the error.

Let

_x tð Þ = f xð Þ + F xð Þα, ð1Þ

be any chaotic system in which x ∈ ½x1, x2, x3,⋯, xn�T ∈ Rn

are the state vector, α ∈ Rm is the unknown constant param-
eter vector of the system, f ðxÞ is an n × 1 matrix, FðxÞ is an
n ×m matrix, and the elements FijðxÞ ∈ L∞ for x ∈ Rn in
matrix FðxÞ.

Now break the system into two subsystems as follows:

Master subsystem : _x1 tð Þ = f1 xð Þ + F1 xð Þα1, ð2Þ

Slave subsystem : _x2 tð Þ = f2 xð Þ + F2 xð Þα2 + u tð Þ, ð3Þ
where x1, x2 ⊂ x such that x1 ∩ x2 = ϕ and uðtÞ ∈ Rn1 is con-
trolling vector, x1, x2 ∈ Rn1 is the state vector, α1, α2 ⊂ α ∈
Rn1 is the unknown constant parameter vector of the system,
f1ðxÞ and f2ðxÞ are the n1 × 1 matrices, F1ðxÞ and F2ðxÞ are
the n1 ×m1 (n1 ≤ n/2 and m1 ≤m/2) matrices, and the ele-
ments FijðxÞ ∈ L∞ for x1, x2 ∈ Rn1 in the matrices FðxÞ.

The IMSS problem can be transformed to the equivalent
problem of stabilizing the error system from drive-response
subsystems with the unknown parameters, and a suitable
feedback control law uðtÞ is designed such that the stability
of the error subsystems can be achieved in the sense that
lim

t⟶∞
kxjðtÞ − xiðtÞk⟶ 0 for xi ∈ x1 and xj ∈ x2.

Theorem 1. Let the control function be

u tð Þ = −f1 xð Þ − f2 xð Þ − F1 xð Þbα 1 − F2 xð Þbα2 − ke tð Þ, ð4Þ

where the adaptive laws of parameters are defined as

_bα1 = F1 xð Þ½ �Te,
_bα2 = F2 xð Þ½ �Te,

ð5Þ

in which, bα1 and bα2 are the estimations of the unknown
parameters of α1 and α2, respectively. Then, the response
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subsystem (3) can synchronize the drive subsystem (2) for
k > 0, where k is the gain constant vector and it has been
chosen positive.

Proof. The error dynamics from (2) and (3) can be written as
follows:

_e tð Þ = F1 xð Þ α1 − bα1ð Þ + F2 xð Þ α2 − bα2ð Þ − ke: ð6Þ

Let us have a positive definite Lyapunov function
(PDLF)

V tð Þ = 1
2 eTe + eTα1eα1 + eTα2eα2

h i
, ð7Þ

where eα1 = α1 − bα1 and eα2 = α2 − bα2.

_V tð Þ = eT _e + eTα1 _eα1 + eTα2 _eα2 ,

_V tð Þ = eT F1 xð Þ α1 − bα1ð Þ + F2 xð Þ α2 − bα2ð Þ − ke½ �
− eTα1 F1 xð Þ½ �Te − eTα2 F2 xð Þ½ �Te,

_V tð Þ = −keTe < 0: ð8Þ

3. IMSS in L6DHCS

As discussed above, in L6DHCS [34], there will be three
types of switches, i.e., the switches based on single, double,
and triple errors. In order to design the different kinds of
switches which is based on the error, the dimensionless
L6DHCS has been chosen.

L6DHCS =

_x1 = a x2 − x1ð Þ + x4,
_x2 = cx1 − x1x3 − x2 + x5,
_x3 = x1x2 − bx3,
_x4 = dx4 − x1x3,
_x5 = −kx2,
_x6 = lx2 + hx6,

8>>>>>>>>>>><>>>>>>>>>>>:
ð9Þ

where xi (for i = 1, 2, 3, 4, 5, 6) is the state variable; a, b, c,
h, k, and l are the parameters involved in the system used for
demonstration and have been fixed at a = 10; b = 8/3; c = 28;
d = 2; k = 8:4; l = 1; h = 1 for all the types of switches.

In the proposed study, the IMSS has been demonstrated
through L6DHCS that has three kinds of internal synchroni-
zation characteristics, i.e., three kinds of switches as follows:

(1) Single error-based switches

S1

S2

:

:

:

S30

2666666666664

3777777777775
⟶

e11

e21

:

:

:

e301

2666666666664

3777777777775
=

x1 − x2

x1 − x3

:

:

:

x3 − x4

2666666666664

3777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Switches based on single error

: ð10Þ

(2) Double error-based switches

S1

S2

:

:

:
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2666666666664
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e11

e21

:

:

:
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e22

:

:

:
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3777777777775
=

x1 − x3

x1 − x4

:

:

:

x3 − x1

x2 − x4

x2 − x3

:

:

:

x4 − x2
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3777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Switches based on 2 errors

: ð11Þ

(3)Triple error-based switches
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:
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x5 − x2

:

:
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x4 − x2

x6 − x3

x6 − x4

:

:
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x5 − x6

2666666666664

3777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Switches based on 3 errors

:

ð12Þ

3.1. IMSS Based on Single Error. In this subsection, it has
been discussed that only first three switches are based on
the single error and the rest of the switches can be carried
out in the same way.

Switch-1: In order to synchronize x1 and x2, let us design
the two subsystems from (9) representing the dynamics of x1
and x2:

Master subsystem :   _x1 = −ax1 + ax2 + x4, ð13Þ

Slave subsystem :   _x2 = cx1 − x2 − x1x3 + x5 + u11:

ð14Þ
From (10), (13) and (14), the error dynamics for switch-

1 can be written as

_e11 = − a + cð Þe11 − x1x3 + x5 − x4 + cx2 − x2 + u11, ð15Þ

3Computational and Mathematical Methods



where

u11 = â + ĉð Þe11 + x1x3 − x5 + x4 − cx2 + x2 − k11e11, ð16Þ

Now, (15) can be written as

_e11 = − a − âð Þe11 − c − ĉð Þe11 − k11e11: ð17Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e211 + e2a + e2c
� �

, ð18Þ

_V tð Þ = e11 _e11 + ea _ea + ec _ec,
_V tð Þ = −k11e

2
11 − k12e

2
a − k13e

2
c , for k1j > 0 for j = 1, 2, 3,

ð19Þ

where _̂a = −e211 + k12ea and _̂c = −e211 + k13ec.
Switch-2: In order to synchronize x1 and x4, let us design

the two subsystems from (9) representing the dynamics of x1
and x4:

Master subsystem :   _x1 = −ax1 + ax2 + x4, ð20Þ

Slave subsystem :   _x4 = dx4 − x1x3 + u21: ð21Þ
From (10), (20) and (21), the error dynamics for switch-

2 can be written as

_e21 = d − að Þe21 − x1x3 − ax2 − x4 + dx1 + ax4 + u21, ð22Þ

where

u21 = − d̂ − â
� �

e21 + x1x3 + ax2 + x4 − dx1 − ax4 − k21e21,

ð23Þ

Now, (22) can be written as

_e21 = − a − âð Þe21 + d − d̂
� �

e21 − k21e21: ð24Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e221 + e2a + e2d
� �

, ð25Þ

_V tð Þ = e21 _e21 + ea _ea + ed _ed ,
_V tð Þ = −k21e

2
21 − k22e

2
a − k23e

2
d , for k2j > 0 for j = 1, 2, 3,

ð26Þ

where _̂a = −e221 + k22ea and
_̂d = e221 + k23ed .

Switch-3: In order to synchronize x1 and x5, let us design
the two subsystems from (9) representing the dynamics of x1
and x5:

Master subsystem :   _x1 = −ax1 + ax2 + x4, ð27Þ

Slave subsystem :   _x5 = −kx2 + u31: ð28Þ

From (10), (27) and (28), the error dynamics for switch-
3 can be written as

_e31 = −ae31 − kx2 − ax2 − x4 + ax5 + u31, ð29Þ

where

u31 = âe31 + kx2 + ax2 + x4 − ax5 − k31e31: ð30Þ

Now, (29) can be written as

_e31 = − a − âð Þe31 − k31e31: ð31Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e231 + e2a
� �

, ð32Þ

_V tð Þ = e31 _e31 + ea _ea,
_V tð Þ = −k31e

2
31 − k32e

2
a, for k3j > 0 for j = 1, 2,

ð33Þ

where _̂a = −e231 + k32ea.
In this subsection, IMSS has been demonstrated for

L6DHCS having the switches based on a single error. How-
ever, there will be such 30 switches (see equation (10)) but it
has been discussed only first three switches. In the proposed
study, for the simulation of three switches, the initial condi-
tions x1ð0Þ = −1, x2ð0Þ = 2, x3ð0Þ = 1, x4ð0Þ = −1, x5ð0Þ = −
6:45, and x6ð0Þ = 1 and parameters in the chosen controlling
technique k11 = 1, k12 = 1, k13 = 1, k21 = 0:21, k22 = 0:63, k23
= 1:001, k31 = 1, k32 = 1, k33 = 1, k41 = 1, and k42 = 1 are cho-
sen for simulation on Mathematica. The dynamics of the
errors as well as state variables have been plotted (see
Figures 1–4). All figures confirm that all the switches under
study achieved internal synchronization. Furthermore, the
time series of _VðtÞ is smaller than or equal to zero for t ≥ 0
(see Figure 5), a clear indication that stability is achieved
for all the switches during synchronization internally.

3.2. IMSS Based on Two Errors. In this part, the authors dis-
cuss the IMSS between the two subsystems having two state
variables of L6DHCS. It has been discussed that only the first
two switches are based on two errors, and the rest of the
switches can be carried out in the same way.

Switch-1: In the switch-1, let us design the two subsys-
tems having two state variables from (9) in which e11 = x3
− x1 and e12 = x4 − x2:

Master subsystem :  
_x1

_x2

" #
=

−ax1 + ax2 + x4

cx1 − x2 − x1x3 + x5

" #
,

ð34Þ
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Slave subsystem :  
_x3

_x4

" #
=

−bx3 + x1x2

dx4 − x1x3

" #
+

u11

u12

" #
:

ð35Þ
From (11), (34) and (35), the error dynamics for switch-

1 can be written as

_e11 = − a + bð Þe11 + x1x2 − ax2 − x4 − bx1 + ax3 + u11, ð36Þ

_e12 = de12 − cx1 + 1 + dð Þx2 − x5 + u12, ð37Þ
where

u11 = â + b̂
� �

e11 − x1x2 + ax2 + x4 + bx1 − ax3 − k11e11,

u12 = −d̂e12 + cx1 − 1 + dð Þx2 + x5 − k12e12:

ð38Þ

Now, (36) and (37) can be written as

_e11 = − a + b − â − b̂
� �

e11 − k11e11,

_e12 = d − d̂
� �

e12 − k12e12:
ð39Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e211 + e212 + e2a + e2b + e2d
� �

, ð40Þ

_V tð Þ = e11 _e11 + e12 _e12 + ea _ea + eb _eb + ed _ed ,

_V tð Þ = −k11e
2
11 − k12e

2
12 − k13e

2
a − k14e

2
b − k15e

2
d , for k1j > 0 for j

= 1, 2,⋯, 5,
ð41Þ

0.0 0.5 1.0 1.5 2.0

–4

–2

0

2

Switch–1
Switch–2
Switch–3

Figure 1: Time series of errors.

0 1 2 3 4 5

–200

–100

0

100

200

x1
x2 with control
x2 without control

Figure 2: Time series of x1 and x2 for switch-1.
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where _̂a = −e211 + k13ea,
_̂b = −e211 + k14eb, and _̂d = e212 +

k15ed .
Switch-2: In the switch-2, let us design the two subsys-

tems having two state variables from (9) in which e21 = x4
− x1 and e22 = x5 − x2:

Master subsystem :  
_x1

_x2

" #
=

−ax1 + ax2 + x4

cx1 − x2 − x1x3 + x5

" #
,

ð42Þ

Slave subsystem :  
_x4

_x5

" #
=

dx4 − x1x3

−kx2

" #
+

u21

u22

" #
:

ð43Þ
From (11), (42) and (43), the error dynamics for switch-

2 can be written as

_e21 = d − að Þe21 − x1x3 − ax2 + dx1 + a − 1ð Þx4 + u21, ð44Þ

_e22 = k − 1ð Þe22 − cx1 + x1x3 − kx5 + u22, ð45Þ

where

u21 = − d̂ − â
� �

e21 + x1x3 + ax2 − dx1 − a − 1ð Þx4 − k21e21,

u22 = − k̂ − 1
� �

e22 + cx1 − x1x3 + kx5 − k22e22:

ð46Þ

0 1 2 3 4 5

–100

–50

0

50

100

150

x1
x4 with control
x4 without control

Figure 3: Time series of x1 and x4 for switch-3.

0 1 2 3 4 5

–30

–20

–10

0

10

20

30

x1
x5 with control
x5 without control

Figure 4: Time series of x1 and x5 for switch-4.

6 Computational and Mathematical Methods



Now, (44) and (45) can be written as

_e21 = d − a − d̂ + â
� �

e21 − k21e21,

_e22 = k − k̂
� �

e22 − k22e22:
ð47Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e221 + e222 + e2a + e2d + e2k
� �

, ð48Þ

_V tð Þ = e21 _e21 + e22 _e22 + ea _ea + ed _ed + ek _ek,

_V tð Þ = −k21e
2
21 − k22e

2
22 − k23e

2
a − k24e

2
d − k25e

2
k, for k2j > 0 for j = 1, 2,⋯, 5,

ð49Þ

where _̂a = −e221 + k23ea,
_̂d = e221 + k24ed, and

_̂k = e222 + k25ek.

In this subsection, IMSS is presented for L6DHCS based
on two errors for all switches, i.e., the master-slave subsys-
tems both will have two state variables. However, there will
be a total 90 of such kinds of switches (see equation (11))
but it has been discussed only two switches and the rest
can be studied in the same way. In the proposed study, for
the simulation of three switches, the initial conditions x1ð0
Þ = −2, x2ð0Þ = 2, x3ð0Þ = −2:2, x4ð0Þ = 4, x5ð0Þ = 5, and x6ð
0Þ = 1 and parameters in the chosen controlling technique
k11 = 1, k12 = 1, k13 = 0:01, k14 = 2, k15 = 1, k21 = 1, k22 = 1,
k23 = 1, k24 = 1, and k25 = 1 are chosen for simulation on
Mathematica. The dynamics of the error systems and state
vectors for the switches under study have been plotted in
order to show the achievement of IMSS (see Figures 6–10).
From all figures (Figures 6–10), it is very well clear that the
IMSS is robust. Furthermore, from the time series of _VðtÞ
(see Figure 11), it is very well clear that there is robust stabil-
ity for the switches under investigation.

0 1 2 3 4 5

–800

–600

–400

–200

0

Switch–1
Switch–2
Switch–3

Figure 5: Time series of VðtÞ.

0 1 2 3 4 5

0

1

2

3

4

5

6

Switch–1
Switch–1

Switch–2
Switch–2

Figure 6: Time series of errors.
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3.3. IMSS Based on Three Errors. In this part, the authors
discuss the IMSS between the two subsystems having three
state variables of L6DHCS. It has been discussed that only
one switch is based on three errors, and the rest of the
switches can be carried out in a same way.

Switch-1: In the switch-1, let us design the two subsys-
tems having three state variables from (9) in which e11 = x4
− x1, e12 = x5 − x2, and e13 = x6 − x3:

Master subsystem :  

_x1

_x2

_x3

264
375 =

−ax1 + ax2 + x4

cx1 − x2 − x1x3 + x5

−bx1 + x1x2

264
375,
ð50Þ

Slave subsystem :  

_x4

_x5

_x6

264
375 =

dx4 − x1x3

−kx2
lx2 + hx6

264
375 +

u11

u12

u13

264
375:
ð51Þ

From (12), (50) and (51), the error dynamics for switch-
1 can be written as

_e11 = d − að Þe11 − x1x3 − ax2 − x4 + dx1 + ax4 + u11, ð52Þ

_e12 = ke12 − cx1 + x2 + x1x3 − 1 + kð Þx5 + u12, ð53Þ

_e13 = h − bð Þe13 + lx2 − x1x2 + hx3 + bx6 + u13, ð54Þ

0.0 0.5 1.0 1.5 2.0 2.5

0

10

20

30

40

x1
x3 with control
x3 without control

Figure 7: Time series of x1 and x3.
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Figure 8: Time series of x2 and x4.
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Figure 9: Time series of x1 and x4.
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Figure 10: Time series of x2 and x5.
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Figure 11: Time series of VðtÞ.
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where

u11 = − d̂ − â
� �

e11 + x1x3 + ax2 + x4 − dx1 − ax4 − k11e11,

u12 = −k̂e12 + cx1 − x2 − x1x3 + 1 + kð Þx5 − k12e12,

u13 = − ĥ − b̂
� �

e13 − lx2 + x1x2 − hx3 − bx6 − k13e13:

ð55Þ

Now, (52), (53) and (54) can be written as

_e11 = ed − eað Þe11 − k11e11,
_e12 = eke12 − k12e12,

_e13 = eh − ebð Þe13 + k13e13:

ð56Þ

In order to describe the stability, let us have a PDLF

V tð Þ = 1
2 e211 + e212 + e213 + e2a + e2b + e2d + e2h + e2k
� �

, ð57Þ

_V tð Þ = e11 _e11 + e12 _e12 + e13 _e13 + ea _ea + eb _eb + ed _ed + eh _eh + ek _ek,

_V tð Þ = −k11e
2
11 − k12e

2
12 − k13e

2
13 − k14e

2
a − k15e

2
b − k16e

2
d

− k17e
2
h − k18e

2
k, for k1j > 0 for j = 1, 2,⋯, 8,

ð58Þ

where _̂a = −e211 + k14ea,
_̂b = −e213 + k15eb,

_̂d = e211 + k16ed ,
_̂h = e213 + k17eh, and

_̂k = e212 + k18ek.
In this subsection, IMSS is presented for L6DHCS based

on three errors for all switches, i.e., the drive-response sub-
systems both will have three state variables. However, there
will be total 20 of such kind of switches (see equation (12))

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

6

e11
e12
e13

Figure 12: Time series of errors.
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Figure 13: Time series of x1 and x4 for S1.
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Figure 14: Time series of x2 and x5 for S1.
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Figure 15: Time series of x3 and x6 for S1.
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Figure 16: Time series of VðtÞ for switch-1.
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but it has been discussed that only one switch and the rest
can be studied in the same way. In the proposed study, for
the simulation of three switches, the initial conditions x1ð0
Þ = −2, x2ð0Þ = 2, x3ð0Þ = −2:2, x4ð0Þ = 4, x5ð0Þ = 5, and x6ð
0Þ = 1 and parameters in the chosen controlling technique
k11 = 1, k12 = 1, k13 = 1, k14 = 1, k15 = 1, k16 = 1, k17 = 1, k18
= 1, k21 = 0:01, k22 = 0:03, k23 = 0:004, k24 = 0:01, k25 = 0:01
, k26 = 0:001, k27 = 0:001, and k28 = 0:004 are chosen for sim-
ulation on Mathematica. The dynamics of the error systems
and state vectors for the switch under study have been plot-
ted in order to show the achievement of IMSS (see
Figures 12–15). From all figures (Figures 12–15), it is very
well clear that IMSS is achieved. Furthermore, from the time
series of _VðtÞ (see Figure 16), it is very well clear that there is
a stability for the switch under investigation.

Remark 2. The gain constant vector (k) is however chosen
positive but it is not affecting the time response for stability
if we chose any positive number in the current study.

4. Conclusions

In this paper, the authors have presented the various possi-
ble subdynamics of a chaotic dynamical system that are syn-
chronized with each other providing some multiswitches of
different orders within the system. There are many different
types of switches that can be designed on the basis of the
error(s) involved during IMSS. The successful implementa-
tion of IMSS has been demonstrated through L6DHCS,
which has three kinds of switches based on the error. For
all the three types of designed switches, all computational
work is carried out using Mathematica to validate the exis-
tence and achievement of IMSS. Below are the remarkable
features of our proposed study:

(i) IMSS removes the external dependency from slave
system, i.e., someone can break a system internally
into master and slave systems as per the
requirement

(ii) It can give less cost as someone can choose the
appropriate type of switch as per the requirement

(iii) It can enhance the security level during secure
communication

The current study opens the doors for the researchers as
it gives the directions to synchronize the chaotic system
without the external slave system.
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