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In recent years, the developments of new families of probability distributions have received greater attention as a result of desirable
properties they exhibit in the modelling of data sets. The Harmonic Mixture Weibull-G family of distributions was developed in
this study. The statistical properties were comprehensively presented and five special distributions developed from the family. The
hazard functions of the special distributions were shown to exhibit various forms of monotone and nonmonotone shapes. The
applications of the developed family to real data sets in medical studies revealed that the special distribution (Harmonic mixture
Weibul Weibull distribution) provided a better fit to the data sets than other competitive models. A location-scale regression model
was developed from the family and its application demonstrated using survival time data of hypertensive patients.

1. Introduction

Advances in the field of medicine are critical to the well-
being of humankind. To this end, the need for the use of
appropriate and very efficient probability distributions in
the modelling of medical data is fundamentally important.
The efficient modelling of medical data is useful in providing
good understanding of the distribution of disease incidence
and prevalence in medical studies.

In medical and biological studies, several phenotypic traits
including chronic conditions such as cancer, diabetes, hyper-
tension, and cardiovascular diseases among others are usually
encountered. Appropriate knowledge about the distribution of
disease incidence and prevalence in a population enhances the
development of appropriate hypotheses about underlying
mechanisms of health and disease [1]. This is profoundly
important in advancing the course of medicine.

In medical and biological studies, the Weibull distribu-
tion among numerous classical distributions is a widely

applied model for analyzing data with monotone hazard rate
shapes. For complex biological phenotypic traits with non-
monotone hazard rate shapes, the Weibull distribution does
not have the flexibility to model such data. Consequently,
new families of distributions in the form of extended or mod-
ified versions of theWeibull distribution have been introduced
in literature with the attempt of increasing its flexibility. Some
examples include the following: Marshall-Olkin Weibull gen-
erated family [2], exponentiated power generalized Weibull
power series family of distributions [3], complementary gener-
alized power Weibull power series family of distributions [4],
the Burr-Weibull power series family [5], extended Weibull-
G family [6], Weibull Burr X–G family of distributions [7],
the Weibull Marshall–Olkin family [8], the gamma-Weibull-
G family [9], generalized odd Weibull generated family [10],
the beta Weibull-G family [11], Kumaraswamy Weibull-
generated family [12], generalized extended Weibull power
series family of distributions [13], the inverse Weibull power
series family [14], the Marshall-Olkin extended Weibull
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family of distributions, [15] and the extended Weibull power
series family [16].

In this study, we proposed a novel generalization for the
Weibull-G family, called the Harmonic mixture Weibull-G
family by combining the Harmonic mixture-G [17] and
the Weibull-G [18] families. The major motivations behind
generating this family include the following: to develop spe-
cial distributions capable of modelling medical data that are
characterized with bimodality; to generate distributions with
the capability of modelling medical data that are character-
ized with both monotone and nonmonotone hazard rate
shapes; to produce special distributions that can generalize
some well-known models in the literature; to generate more
flexible distributions that take into consideration skewness,
kurtosis, and tail variations in the modelling of medical data;
to develop alternative distributions with superior parametric
fits to data in medical studies than existing classical distribu-
tions; and to develop a location-scale regression model for
studying the relationship between a response variable and
a set of covariates.

The remainder of the article is structured as follows: Sec-
tion 2 presents the development of the new family. Section 3
presents some statistical properties of the family. Section 4
presents the maximum likelihood estimation of the parame-
ters. Section 5 presents some special distributions. Section 6
presents the location-scale regression model. Section 7 pre-
sents simulation results. Section 8 presents the applications
of the developed family. Section 9 finally presents the con-
clusions of the study.

2. Development of the Harmonic Mixture
Weibull-G Family

Suppose that the continuous random variable X follows the
Weibull-G family of distributions. Then, according to Bour-
guignon et al. [18], the cumulative distribution function
(CDF) and probability density function (PDF) are, respec-
tively, given by

F xð Þ = 1 − exp −α
G x ; ξð Þ
�G x ; ξð Þ

� �β
" #

, x ∈D ⊆ℝ ; α, β > 0, ð1Þ

and

f x ; α, β, ξð Þ = αβg x ; ξð ÞG x ; ξð Þβ−1
�G x ; ξð Þβ+1

exp −α
G x ; ξð Þ
�G x ; ξð Þ

� �β
" #

:

ð2Þ

If the random variable X follows the Harmonic mixture-
G (HM-G) family, then according to Kharazmi et al. [17],
the CDF and PDF are, respectively, given by

H xð Þ = 1 −
�Gα xð Þ

1 − θ 1 − �Gα−1 xð Þ
� � , x ∈ℝ, α ≥ 0, 0 < θ < 1, ð3Þ

and

h xð Þ = g xð Þ�Gα−1 xð Þ α 1 − θð Þ + θ�Gα−1 xð Þ
1 − θ 1 − �Gα−1 xð Þ

� �h i2 , x ∈ℝ: ð4Þ

The Harmonic mixture Weibull generated (HMW-G)
family of distributions is developed in this section by com-
bining the CDFs of the HM-G and Weibull-G families. Sup-
pose that the random variable X follows the HMW-G family
of distributions, the CDF of the HMW-G family is given by

FX xð Þ = 1 −
exp −α G x ;φð Þ/�G x ;φð ÞÀ Áβh i

1 − θ 1 − exp − α − 1ð Þ G x ;φð Þ/�G x ;φð ÞÀ Áβ� �h in o , x ∈ℝ,

ð5Þ

where α > 0 and 0 < θ < 1 are scale parameters, β > 0 is a
shape parameter, and φ is a p × 1 vector of parameters.
When α = 0, the HMW-G family reduces to the Marshall-
Olkin Weibull-G family of distributions. The corresponding
PDF of the HMW-G family is the first derivative of its CDF.
Thus, the PDF is given by

The hazard rate function of the family is given by

rX xð Þ = βg x ; φð ÞG x ; φð Þβ−1
�G x ; φð Þβ+1

α 1 − θð Þ + θ exp − α − 1ð Þ G x ;φð Þ/�G x ;φð ÞÀ Áβh i
1 − θ 1 − exp − α − 1ð Þ G x ;φð Þ/�G x ;φð ÞÀ Áβ� �h i , x ∈ℝ:

ð7Þ

Lemma 1. The mixture representation of the density function
of the HMW-G family is

f X xð Þ = β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm + ωijkm

À Á
g x ; φð ÞG x ; φð Þβ k+1ð Þ+m−1,

ð8Þ

f X xð Þ = βg x ;φð ÞG x ;φð Þβ−1
�G x ;φð Þβ+1

exp −α
G x ;φð Þ
�G x ;φð Þ

� �β
" #

α 1 − θð Þ + θ exp − α − 1ð Þ G x ;φð Þ/�G x ;φð ÞÀ Áβh i
1 − θ 1 − exp − α − 1ð Þ G x ;φð Þ/�G x ;φð ÞÀ Áβ� �h in o2 , x ∈ℝ: ð6Þ
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where

�ωijkm = −1ð Þj+k i + 1ð Þ α + j α − 1ð Þ½ �kθiα 1 − θð Þ
k!

β k + 1ð Þ +m

m

 !
,

ωijkm = −1ð Þj+k i + 1ð Þθi+1 2α + j α − 1ð Þ − 1½ �k
k!

β k + 1ð Þ +m

m

 !
:

ð9Þ

Proof. Using the binomial series expansion ð1 − zÞ−n =∑∞
i=0

n + i − 1
i

 !
zi, jzj < 1,

1 − θ 1 − e
− α−1ð Þ G x;φð Þ

�G x;φð Þ

� �β24 358<:
9=;

−2

= 〠
∞

i=0
〠
i

j=0
−1ð Þi i + 1ð Þθie−j α−1ð Þ G x;φð Þ

�G x;φð Þ

� �β

:

ð10Þ

Thus, the PDF of the HMW-G family can be written as

f X xð Þ = βg x ;φð ÞG x ;φð Þβ−1
�G x ;φð Þβ+1

〠
∞

i=0
〠
i

j=0
−1ð Þj i + 1ð Þ θiα 1 − θð Þe− α+j α−1ð Þ½ � G x;φð Þ

�G x;φð Þ

� �β

+ βg x ;φð ÞG x ;φð Þβ−1
�G x ;φð Þβ+1

〠
∞

i=0
〠
i

j=0
−1ð Þj i + 1ð Þθi+1e− 2α+j α−1ð Þ−1½ � G x;φð Þ

�G x;φð Þ

� �β

:

ð11Þ

Using the Taylor series, we have

f X xð Þ = βg x ;φð Þ〠
∞

i=0
〠
i

j=0
〠
∞

k=0

−1ð Þj+k i + 1ð Þ α + j α − 1ð Þ½ �kθiα 1 − θð Þ
k!

G x ;φð Þβ k+1ð Þ−1

�G x ;φð Þβ k+1ð Þ+1

+ βg x ;φð Þ〠
∞

i=0
〠
i

j=0
〠
∞

k=0

−1ð Þj+k i + 1ð Þ 2α + j α − 1ð Þ − 1½ �kθi+1
k!

G x ;φð Þβ k+1ð Þ−1

�G x ;φð Þβ k+1ð Þ+1 :

ð12Þ

Applying the binomial series expansion,

f X xð Þ = βg x ;φð Þ〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0

−1ð Þj+k i + 1ð Þ α + j α − 1ð Þ½ �kθiα 1 − θð Þ
k!

Á
β k + 1ð Þ +m

m

 !
G x ;φð Þβ k+1ð Þ+m−1

+ βg x ;φð Þ〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0

−1ð Þj+k i + 1ð Þ 2α + j α − 1ð Þ − 1½ �kθi+1
k!

Á
β k + 1ð Þ +m

m

 !
G x ;φð Þβ k+1ð Þ+m−1:

ð13Þ

Thus,

f X xð Þ = β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm + ωijkm

À Á
g x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1:

ð14Þ

This completes the proof.

3. Statistical Properties

In this section, statistical properties of the HMW-G family
of distributions are presented.

3.1. Quantile Function. The quantile function plays an
important role in simulating random samples from a given
distribution. For a given distribution, the characteristics such
as median, kurtosis, and skewness can also be described
using the quantile function.

Proposition 2. The quantile function of the HMW-G family
for u ∈ ½0, 1� is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ G x ; φð Þ
�G x ; φð Þ

� �β
 !" #( )

− exp −α
G x ; φð Þ
�G x ; φð Þ

� �β
" #

= 0:

ð15Þ

Proof. Using the CDF of the HMW-G family defined in
equation (5), let U be a random variable having the uniform
distribution on the interval [0, 1]. Then, the uth quantile,
denoted by xu is obtained such that,

1 −
exp −α G x ; φð Þ/�G x ; φð ÞÀ Áβh i

1 − θ 1 − exp − α − 1ð Þ G x ; φð Þ/�G x ; φð ÞÀ Áβ� �h in o = u:

ð16Þ

This implies that

1 − θ 1 − exp − α − 1ð Þ G x ; φð Þ
�G x ; φð Þ

� �β
 !" #( )

− exp −α
G x ;φð Þ
�G x ;φð Þ
� �β( )

= u

1 − θ 1 − exp − α − 1ð Þ G x ; φð Þ
�G x ; φð Þ

� �β
 ! !" #( )

:

ð17Þ
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Hence, the quantile is obtained as the solution of

1 − uð Þ 1 − θ 1 − exp − α − 1ð Þ G x ; φð Þ
�G x ; φð Þ

� �β
 ! !" #( )

− exp −α
G x ; φð Þ
�G x ; φð Þ

� �β
" #

= 0:

ð18Þ

This completes the proof.

3.2. Moments. In this section, the expression for the rth order
moment of the HMW-G family of distributions is derived. It
can be used to compute measures of dispersion, kurtosis,
and skewness of data sets in medical studies.

Proposition 3. The rth noncentral moment of the HMW-G
family of distributions is

μr′= β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm+ωijkm

À Áð∞
−∞

xrg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð19Þ

Proof. The rth noncentral moment is defined as

μr′=
ð∞
−∞

xr f X xð Þdx: ð20Þ

Substituting the mixture representation of the density
function into the definition, we have

μr′ =
ð∞
−∞

xrβ〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm + ωijkm

À Á
g x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx:

ð21Þ

This implies that

μr′= β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm+ωijkm
À Áð∞

−∞
xrg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð22Þ

This completes the proof.

3.3. Incomplete Moment. In this section, the expression for
the rth incomplete moment of the HMW-G family of distri-
butions is derived. It can be used to determine the mean
deviation or median deviation of data sets in medical studies.

Proposition 4. The rth incomplete moment of the HMW-G
family of distributions is

ψr yð Þ = β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωi jkm+ωi jkm

À Áðy
−∞

xrg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð23Þ

Proof. By definition, the rth incomplete moment is given by

ψr yð Þ = E XjX < Yð Þ =
ðy
−∞

xr f X xð Þdx: ð24Þ

Substituting the mixture representation of the density
function into the definition, we have

ψr yð Þ =
ðy
−∞

xrβ〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm + ωijkm

À Á
g x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx:

ð25Þ

This implies that

ψr yð Þ = β〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm+ωijkm

À Áðy
−∞

xrg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð26Þ

3.4. Moment Generating Function. In this section, the
expression for the moment generating function (MGF) of
the HMW-G family of distributions is presented. The MGF
is useful in finding the moments of a random variable. The
MGF of a random variable X having the HMW-G distribu-
tion if it exists is given by the following proposition.

Proposition 5. The MGF of the HMW-G family of distribu-
tion is given by

MX tð Þ = β〠
∞

r=0
〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm+ωijkm

À Á tr
r!

ð∞
−∞

g x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð27Þ

Proof. By definition, the MGF is given by

MX tð Þ = E etX
À Á

=
ð∞
−∞

etx f X xð Þdx: ð28Þ

Using the Taylor series expansion,

etX = 〠
∞

r=0

trXr

r!
: ð29Þ

This implies that

MX tð Þ = E 〠
∞

r=0

trXr

r!

 !
= 〠

∞

r=0

tr

r!
E Xrð Þ = 〠

∞

r=0

tr

r!
μr′: ð30Þ
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Substituting μr′ into equation (30) gives

MX tð Þ = β〠
∞

r=0
〠
∞

i=0
〠
i

j=0
〠
∞

k=0
〠
∞

m=0
�ωijkm+ωijkm

À Á tr
r!

ð∞
−∞

g x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx, r = 1, 2,:⋯

ð31Þ

This completes the proof.

3.5. Mean Residual Life. The Mean Residual Life (MRL)
function mðyÞ, is a function that characterizes the distribu-
tion function FðyÞ, uniquely [19]. It describes the average
survival time of a component after it exceeds a specific
timey. The MRL function plays a key role in survival analysis
when analyzing the event time of a given phenotypic trait in
medical studies.

Proposition 6. If Y is a random variable representing the life
time of a component with distribution function FðyÞ, then the
MRL of the HMW-G family of distributions is

m yð Þ = μ − β∑∞
i=0∑

i
j=0∑

∞
k=0∑

∞
m=0 �ωijkm+ωijkm

À ÁÐ y
−∞xg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx

1 − FX yð Þ − y,

ð32Þ

where μ = μ1′:.

Proof. By definition, the MRL is given by

m yð Þ = E X − yjX > yð Þ = 1
1 − FX yð Þ

ð∞
y

x − yð Þf xð Þdx

= μ1′−
Ð y
−∞xf X xð Þdx
1 − FX yð Þ − y:

ð33Þ

Hence, substituting the first incomplete
moment

Ð y
−∞xf XðxÞdx, into equation (33) gives

m yð Þ = μ − β∑∞
i=0∑

i
i=0∑

∞
k=0∑

∞
m=0 �ωi jkm+ωijkm

À ÁÐ y
−∞

Ð y
−∞xg x ;φð ÞG x ;φð Þβ k+1ð Þ+m−1dx

1 − FX yð Þ − y:

ð34Þ

This completes the proof.

3.6. Identifiability. The identifiability property of the HMW-
G family is studied in this section. The identifiability prop-
erty of the model is essential to ensure that precise inferences
are possible.

Proposition 7. Let X1 be HMW-G family random variable
with CDF FXðx ; α1, β1, θ1,φ1Þ and X2 be HMW-G family
random variable with CDF FXðx ; α2, β2, θ2,φ2Þ. Then, the
HMW-G family is identifiable if α1 = α2, β1 = β2, θ1 = θ2
and φ1 =φ2.

Proof. For the HMW-G family of distributions to be
identifiable,FXðx ; α1, β1, θ1,φ1Þ = FXðx ; α2, β2, θ2,φ2Þ.

Hence,

1 −
exp −α1 G x ;φ1ð Þ/�G x ;φ1ð ÞÀ Áβ1

h i
1 − θ1 1 − exp − α1 − 1ð Þ G x ;φ1ð Þ/�G x ;φ1ð ÞÀ Áβ1

� �h in o
= 1 −

exp −α2 G x ;φ2ð Þ/�G x ;φ2ð ÞÀ Áβ2
h i

1 − θ2 1 − exp − α2 − 1ð Þ G x ;φ2ð Þ/�G x ;φ2ð ÞÀ Áβ2
� �h in o :

ð35Þ

If α1 = α2, β1 = β2, θ1 = θ2 and φ1 =φ2,

exp −α2 G x ;φ2ð Þ/�G x ;φ2ð ÞÀ Áβ2h i
1 − θ2 1 − exp − α2 − 1ð Þ G x ;φ2ð Þ/�G x ;φ2ð ÞÀ Áβ2

� �h in o
−

exp −α1 G x ;φ1ð Þ/�G x ;φ1ð ÞÀ Áβ1
h i

1 − θ1 1 − exp − α1 − 1ð Þ G x ;φ1ð Þ/�G x ;φ1ð ÞÀ Áβ1� �h in o = 0:

ð36Þ

Hence, the identifiability condition is satisfied. This
completes the proof.

4. Parameter Estimation

In this section, the maximum likelihood estimation (MLE)
procedure is presented for the estimation of the unknown
parameters of the HMW-G family. Let x1, x2,⋯, xn be a ran-
dom sample of size n from the HMW-G family of distribu-
tions with Ψ = ðα, β, ϕ, φÞ′ an unknown parameter vector
where φ is a p × 1 parameter vector for the baseline distribu-
tion. Under these settings, the total log-likelihood function is

ℓ = n log βð Þ + 〠
n

i=1
logg xi ; φð Þ + β − 1ð Þ〠

n

i=1
logG xi ; φð Þ

− β + 1ð Þ〠
n

i=1
log�G xi ; φð Þ − α〠

n

i=1

G x ;φð Þ
�G x ;φð Þ

� �β

+ 〠
n

i=1
log α 1 − θð Þ + θ exp − α − 1ð Þ G x ;φð Þ

�G x ;φð Þ
� �β

" #( )

− 2〠
n

i=1
log 1 − θ 1 − exp − α − 1ð Þ G x ;φð Þ

�G x ;φð Þ

� �β
 !" #( )

:

ð37Þ

The score vectors UðΨÞ of the likelihood function are
obtained by taking partial derivatives of (35) with respect
to the parameters α, β, θ andφ as

U Ψð Þ = ∂ℓ
∂Ψ

= ∂ℓ
∂α

, ∂ℓ
∂β

, ∂ℓ
∂θ

, ∂ℓ
∂φ

� �
′: ð38Þ

By setting the score vectors to zero, the simultaneous
solution of the system of nonlinear equations gives the max-
imum likelihood estimates of the parameters. However, this
nonlinear system of equations does not have a closed form.
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Thus, we apply numerical optimization to maximize the log-
likelihood function directly using R software.

5. Special Distributions

In this section, some special cases of the HMW-G family of
distributions are developed and studied.

5.1. Harmonic Mixture Weibull Burr III Distribution. Sup-
pose that the baseline model of the HMW-G family is the
Burr III distribution with CDF and PDF, respectively,
defined by Burr [20] as GðxÞ = ð1 + x−aÞ−b and gðxÞ =
abx−a−1ð1 + x−aÞ−b−1,x > 0, a > 0, b > 0. Then, the PDF and
hazard function of the HMW-Burr III (HMWBIII) distribu-
tion are given, respectively, by

f X xð Þ =
βabx−a−1 1 + x−að Þ− bβ+1ð Þ exp −α 1 + x−að Þb − 1

h i−β� �
1 − 1 + x−að Þ−b
h iβ+1

×
α 1 − θð Þ + θ exp − α − 1ð Þ 1 + x−að Þb − 1

h i−β� �
1 − θ 1 − exp − α − 1ð Þ 1 + x−að Þb − 1

� �−β� �� �� �2 ,

ð39Þ

where x > 0, α > 0, β > 0, 0 < θ < 1, a > 0 and b > 0, and

r xð Þ =
βabx−a−1 1 + x−að Þ− bβ+1ð Þ α 1 − θð Þ + θ exp − α − 1ð Þ 1 + x−að Þb − 1

� �−β� �� �
1 − 1 + x−að Þ−b
h iβ+1

1 − θ 1 − exp − α − 1ð Þ 1 + x−að Þb − 1
� �−β� �� �� � , x > 0:

ð40Þ

The density plot of the HMWBIII distribution exhibited
a variety of shapes such as; reverse J-shape, J-shape, right
skewed, various forms of symmetric, and left skewed shapes
as shown in Figure 1. The hazard rate function also showed
varied shapes such as; upside-down bathtub, monotone
decreasing, and various forms of monotone increasing fail-
ure rates for some selected values.

The quantile function QGðuÞ for the HMWBIII distribu-
tion is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ 1 + x−að Þb − 1
� �−β� �� �� �

− exp −α 1 + x−að Þb − 1
h i−β� �

= 0, u ∈ 0, 1½ �:

ð41Þ

5.2. Harmonic Mixture Weibull Lomax Distribution. Consid-
ering the Lomax distribution as the baseline model with
CDF and PDF, respectively, defined by Lomax [21] as GðxÞ
= 1 − ð1 + axÞ−b and gðxÞ = abð1 + axÞ−ðb+1Þ,x > 0, a > 0,
b > 0, the PDF of the Harmonic mixture Weibull Lomax
(HMWL) distribution is given by

f X xð Þ = βab 1 + axð Þbβ−1 1 − 1 + axð Þ−b
h iβ−1

exp −α 1 + axð Þb − 1
h iβ� �

×
α 1 − θð Þ + θ exp − α − 1ð Þ 1 + axð Þb − 1

h iβ� �
1 − θ 1 − exp − α − 1ð Þ 1 + axð Þb − 1

� �β� �� �� �2 , x > 0,

ð42Þ
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Figure 1: Plots of density and hazard rate functions of the HMWBIII distribution.

6 Computational and Mathematical Methods



0 10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

x

f (
x)

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

x

r (
x)

a = 0.01, b = 1.2, 𝛼 = 4.7, 𝛽 = 1, 𝜃 = 0.01
a = 0.01, b = 1.3, 𝛼 = 1.05, 𝛽 = 2.5, 𝜃 = 0.01
a = 0.01, b = 1.3, 𝛼 = 0.05, 𝛽 = 1.1, 𝜃 = 0.01
a = 0.01, b = 1.3, 𝛼 = 0.01, 𝛽 = 2.15, 𝜃 = 1
a = 0.01, b = 1.3, 𝛼 = 0.5, 𝛽 = 1.6, 𝜃 = 0.701
a = 0.01, b = 1.3, 𝛼 = 2.1, 𝛽 = 0.5, 𝜃 = 0.01
a = 0.01, b = 2.6, 𝛼 = 0.8, 𝛽 = 0.01, 𝜃 = 0.01
a = 0.01, b = 1.3, 𝛼 = 0.2, 𝛽 = 1.6, 𝜃 = 0.05

a = 0.01, b = 1, 𝛼 = 47.6, 𝛽 = 2.9, 𝜃 = 0.01
a = 0.01, b = 1, 𝛼 = 50, 𝛽 = 1, 𝜃 = 0.916
a = 0.01, b = 1, 𝛼 = 37.3, 𝛽 = 0.5, 𝜃 = 0.994
a = 0.01, b = 1, 𝛼 = 50, 𝛽 = 1.7, 𝜃 = 0.275
a = 21.3, b = 0.01, 𝛼 = 0.01, 𝛽 = 0.2, 𝜃 = 0.801
a = 0.01, b = 1.8, 𝛼 = 0.8, 𝛽 = 0.2, 𝜃 = 0.429
a = 0.01, b = 1.98, 𝛼 = 50, 𝛽 = 0.01, 𝜃 = 0.9

Figure 3: Plots of density and hazard rate functions of the HMWW distribution.
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Figure 2: Plots of density and hazard rate functions of the HMWL distribution.
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Figure 5: Plots of density function of the HMWN distribution.
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Figure 4: Plots of density and hazard rate functions of the HMWF distribution.
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Figure 7: Density plot of the LHMWW distribution.
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Figure 6: Plots of hazard rate function of the HMWN distribution.
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where x > 0, α > 0, β > 0, 0 < θ < 1, a > 0 and b > 0. The hazard
function is given by

The density function of HMWL distribution exhibited a
wide variety shapeswhich include J-shape, reverse J-shape, right
skewed, left skewed, and different forms of symmetric shapes as

shown inFigure 2. Thehazard rate function also exhibited varied
shapes such as, upside downbathtub,monotone decreasing, and
different forms of monotone increasing failure rates.

Table 1: Simulation results for HMWBIII distribution.

Parameter n
I: (0.8, 0.3, 0.7, 0.5, 0.1) II: (0.9, 0.2, 0.6, 0.5, 0.2)

AE AB RMSE CP AE AB RMSE CP

a

25 1.8983 1.0983 2.3641 0.9750 2.0418 1.1418 2.4643 0.9750

50 1.4282 0.6282 1.2945 0.9430 1.2953 0.3953 1.1303 0.9230

100 1.0523 0.2523 0.7843 0.8910 1.0534 0.1534 0.5693 0.9070

200 0.8651 0.0651 0.4136 0.9870 0.9442 0.0442 0.3715 0.8870

300 0.8251 0.0251 0.3642 0.8960 0.9224 0.0224 0.2989 0.9100

600 0.7961 −0:0039 0.2160 0.9730 0.9104 0.0204 0.2101 0.9480

b

25 0.3644 0.0644 0.3412 0.9610 0.2132 0.0132 0.1759 0.9040

50 0.3163 0.0163 0.1211 0.9570 0.2021 0.0021 0.0746 0.9420

100 0.3036 0.0036 0.0804 0.9700 0.1940 -0.0020 0.0479 0.9570

200 0.2960 −0:0030 0.0591 0.9730 0.1947 -0.0017 0.0336 0.9680

300 0.2936 −0:0026 0.0455 0.9710 0.1952 -0.0014 0.0291 0.9670

600 0.2966 −0:0020 0.0336 0.9770 0.1955 -0.0010 0.0207 0.9720

α

25 1.3657 0.6657 4.6704 0.9500 1.0016 0.4016 3.6428 0.9530

50 0.8532 0.1532 0.5086 0.9620 0.6866 0.0866 0.5260 0.9060

100 0.7318 0.0318 0.3922 0.9760 0.5595 -0.0825 0.3987 0.9000

200 0.6588 −0:0312 0.2796 0.9880 0.5168 -0.0802 0.3115 0.8950

300 0.6438 −0:0304 0.2159 0.8980 0.5202 -0.0798 0.2803 0.9180

600 0.6540 −0:0204 0.1551 0.9370 0.5154 -0.0646 0.2561 0.9640

β

25 0.3969 −0:1031 0.3037 0.8480 0.4180 -0.0820 0.2459 0.9850

50 0.4407 −0:0593 0.2840 0.8700 0.4972 -0.0283 0.2477 0.9630

100 0.5288 0.0294 0.2944 0.9740 0.5284 0.0284 0.2249 0.9160

200 0.5606 0.0206 0.2634 0.9670 0.5427 0.0227 0.2027 0.8960

300 0.5579 0.0179 0.2227 0.9060 0.5370 0.0170 0.1758 0.9550

600 0.5384 0.0104 0.1632 0.9220 0.5107 0.0107 0.1106 0.9350

θ

25 0.1717 0.0717 0.0084 0.9560 0.1991 -0.0009 0.0078 0.9200

50 0.1843 0.0843 0.0088 0.9420 0.2296 0.0296 0.0083 0.9860

100 0.1673 0.0673 0.0081 0.9750 0.2219 0.0219 0.0078 0.9950

200 0.1507 0.0507 0.0074 0.8730 0.2140 0.0140 0.0075 0.7870

300 0.1371 0.0371 0.0066 0.7360 0.2110 0.0110 0.0071 0.8020

600 0.1493 0.0493 0.0066 0.7640 0.2262 0.0262 0.0071 0.8090

r xð Þ =
βab 1 + axð Þbβ−1 1 − 1 + axð Þ−b

h iβ−1
α 1 − θð Þ + θ exp − α − 1ð Þ 1 + axð Þb − 1

h iβ� �� �
1 − θ 1 − exp − α − 1ð Þ 1 + axð Þb − 1

� �β� �� � , x > 0: ð43Þ
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The quantile function QGðuÞ for the HMWL distribution
is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ 1 + axð Þb − 1
� �β� �� �� �

− exp −α 1 + axð Þb − 1
h iβ� �

= 0:
ð44Þ

5.3. Harmonic Mixture Weibull Weibull Distribution. Con-
sider that the Weibull distribution is a baseline model with
CDF and PDF, respectively, defined by Weibull [22] as
GðxÞ = 1 − e−ax

−b
and gðxÞ = abxb−1e−axb , x > 0, a > 0, b > 0.

Then, the PDF of the Harmonic mixture Weibull Weibull
(HMWW) distribution is given by

Table 2: Simulation results for HMWBIII distribution.

Parameter n
III: (0.1, 0.3, 0.8, 1.2, 0.3) IV: (0.9, 0.2, 0.5, 0.9, 0.1)

AE AB RMSE CP AE AB RMSE CP

a

25 2.4464 1.4464 5.9733 0.9820 3.0165 2.1165 6.3116 0.9680

50 2.0876 1.0876 4.1541 0.9660 1.8799 0.9799 3.2470 0.9320

100 1.7410 0.7410 2.7987 0.9420 1.3400 0.4400 1.5736 0.8840

200 1.4960 0.4960 2.1137 0.8900 1.0539 0.1539 0.6316 0.9860

300 1.3042 0.3041 1.1947 0.8640 0.9674 0.0674 0.4545 0.8440

600 1.0988 0.0988 0.7268 0.8200 0.9227 0.0227 0.3366 0.8440

b

25 0.4941 0.1941 0.9209 0.9820 0.2764 0.0764 0.8792 0.9700

50 0.3591 0.0591 0.4413 0.9840 0.2123 0.0122 0.1056 0.9570

100 0.3249 0.0249 0.1522 0.9850 0.2022 0.0022 0.0676 0.9620

200 0.3380 0.0210 0.1270 0.9850 0.1988 −0:0012 0.0499 0.9660

300 0.3386 0.0206 0.1090 0.9860 0.2011 0.0011 0.0440 0.9660

600 0.3230 0.0130 0.1029 0.9810 0.1973 −0:0027 0.0337 0.9580

α

25 8.4405 7.6405 35.9691 0.8560 2.5174 2.0174 13.0567 0.9860

50 3.6291 2.8291 19.3526 0.9060 0.8517 0.3517 0.9807 0.9570

100 1.5109 0.7109 1.9017 0.8040 0.6049 0.1049 0.7391 0.9020

200 1.5435 0.7035 1.8181 0.9770 0.5649 −0:0351 0.5147 0.8940

300 1.4091 0.6091 1.6582 0.9470 0.4603 −0:0247 0.4125 0.7870

600 1.2497 0.4497 1.5467 0.7410 0.4902 −0:0198 0.2668 0.8130

β

25 1.0983 −0:1017 1.4814 0.9740 0.7450 −0:1550 0.4456 0.9030

50 1.1163 −0:0837 1.0444 0.9760 0.8046 −0:0954 0.4060 0.9190

100 1.0757 −0:7843 0.5480 0.9720 0.8924 −0:0076 0.3739 0.9580

200 1.2820 −0:0718 0.5940 0.9580 0.9329 0.0329 0.2883 0.9410

300 1.1665 −0:0335 0.5549 0.9510 0.9276 0.0276 0.0265 0.9150

600 1.2016 0.0016 0.4529 0.9080 0.9168 0.0268 0.2039 0.8810

θ

25 0.2493 −0:2507 0.0120 0.9040 0.1706 0.0706 0.0078 0.9770

50 0.2592 −0:2408 0.0192 0.8270 0.1887 0.0887 0.0083 0.8180

100 0.2953 −0:2047 0.0124 0.8230 0.2055 0.0755 0.0086 0.9720

200 0.2961 −0:2039 0.0122 0.7680 0.1869 0.0729 0.0080 0.6440

300 0.2768 −0:2032 0.0122 0.7230 0.1786 0.0686 0.0084 0.6430

600 0.2903 −0:1097 0.0120 0.6770 0.1689 0.0682 0.0075 0.6150

f xð Þ =
βabxb−1 1 − e−ax

b
� �β−1

exp βaxb − α eax
b − 1

� �β� �
α 1 − θð Þ + θ exp − α − 1ð Þ eax

b − 1
� �β� �� �

1 − θ 1 − exp − α − 1ð Þ eaxb − 1
À Áβ� �h in o2 , ð45Þ
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where x > 0, α > 0, β > 0, 0 < θ < 1, a > 0 and b > 0. The haz-
ard function is given by

r xð Þ =
βabxb−1eβax

b 1 − e−ax
b

� �β−1
α 1 − θð Þ + θ exp − α − 1ð Þ eax

b − 1
� �β� �� �

1 − θ 1 − exp − α − 1ð Þ eaxb − 1
À Áβh in o , x > 0:

ð46Þ

The density plot of the HMWW distribution showed a
wide variety of shapes such as; reverse J-shape, J-shape, right
skewed, left skewed, and symmetric (with various levels of
kurtosis) as shown in Figure 3. The hazard rate function also
showed varying shapes such as, bathtub, upside-down bath-
tub, monotone decreasing, and various forms of monotone
increasing failure rates for some selected parameter values.

The quantile function QGðuÞ for the Harmonic mixture
Weibull Weibull distribution is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ eax
b
− 1

h iβ� �� �� �
− exp −α eax

b
− 1

h iβ� �
= 0, u ∈ 0, 1½ �:

ð47Þ

5.4. Harmonic Mixture Weibull Fréchet Distribution. Con-
sidering the Fréchet distribution as a baseline model with
CDF and PDF, respectively, defined by Fréchet [23] as GðxÞ
= e−ax

−b
and gðxÞ = abx−b−1e−ax

−b , x > 0, a > 0, b > 0, the PDF
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Figure 8: TTT plot for the blood cancer data.

Table 3: Ordered survival times of blood cancer patients.

115 461 807 1062 1251 1408 1578 1696

181 516 865 1063 1277 1455 1578 1735

255 739 924 1165 1290 1478 1599 1799

418 743 983 1181 1357 1222 1603 1815

441 789 1024 1222 1369 1549 1605 1852
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of the Harmonic mixture Weibull Fréchet (HMWF) distribu-
tion is given by

Table 4: Parameter estimates of the fitted models on the blood cancer data.

Distribution Parameter Standard error Z value P value

HMWL

â = 9:5631 × 101 2:9142 × 10−5 3:2815 × 106 <2:2000 × 10−16∗∗∗

b̂ = 4:5590 × 10−2 4:5879 × 10−4 9:9371 × 101 <2:2000 × 10−16∗∗∗bα = 4:2570 × 102 6:2717 × 10−7 6:7877 × 108 <2:2000 × 10−16∗∗∗bβ = 1:4647 × 101 2:2093 × 10−3 6:6297 × 103 <2:2000 × 10−16∗∗∗bθ = 8:7947 × 10−1 7:2549 × 10−2 1:2122 × 101 <2:2000 × 10−16∗∗∗

HMWW

â = 1:8287 × 10−2 1:2517 × 10−2 1:4610 0:1440
b̂ = 4:1880 × 10−1 8:0455 × 10−2 5:2054 1:9360 × 10−7∗∗∗bα = 40:9775 3:0664 × 10−2 1336:3478 <2:2000 × 10−16∗∗∗bβ = 3:3397 1:5463 2:1598 3:0790 × 10−2∗bθ = 9:0063 × 10−2 2:2115 × 10−1 4:0725 4:6510 × 10−5∗∗∗

GIW

λ̂ = 20:4052 6.3882 3.1942 1:4000 × 10−3∗

θ̂ = 1:1893 0.1184 10.0464 2:2000 × 10−16∗∗∗

b̂ = 69:0472 1.5874 43.4970 2:2000 × 10−16∗∗∗

OGEW

bα = 2:7776 1:0129 2:7422 6:1020 × 10−3∗∗bβ = 7:5292 × 10−2 5:4895 × 10−2 1:3716 0:1702bγ = 3:7906 × 10−1 3:6964 × 10−2 10:2548 <2:0000 × 10−16∗∗∗bθ = 2:1594 × 10−1 5:3592 × 10−2 4:0294 5:5930 × 10−5∗∗∗

GOIEW

bα = 1:7676 0.5999 2.9467 3:2000 × 10−3∗bβ = 42:2469 0.0143 2957.5338 2:2000 × 10−16∗∗∗bγ = 0:0079 0.0078 1.0162 0.3095bθ = 0:8782 0.1352 6.4966 8:2140 × 10−11∗∗∗

GOIEL

bα = 6:7875 1:3537 × 10−1 5:0139 × 101 2:2000 × 10−16∗∗∗bβ = 5:5062 × 102 6:6430 × 10−4 8:2888 × 105 2:2000 × 10−16∗∗∗bγ = 5:2442 × 10−3 1:6279 × 10−3 3:2213 1:3000 × 10−3∗bθ = 3:3683 4:6765 × 10−1 7.2026 5:9070 × 10−13∗∗∗

E-lx

bα = 2:0759 × 102 5:0510 × 10−5 4:1099 × 106 2:2000 × 10−16∗∗∗bλ = 1:0156 × 10−1 4:7377 × 10−2 2:1437 0:0321∗bθ = 1:2399 1:3932 × 10−1 8:899 2:2000 × 10−16∗∗∗

∗means significant at 5% level of significance.

f xð Þ =
βabx−b−1 exp − βax−b + α eax

−b − 1
� �−β� �� �

α 1 − θð Þ + θ exp − α − 1ð Þ eax
−b − 1

� �−β� �� �
1 − e−ax−b
À Áβ+1 1 − θ 1 − exp − α − 1ð Þ eax−b − 1

À Á−β� �h in o2 , ð48Þ
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where x > 0, α > 0, β > 0, 0 < θ < 1, a > 0 and b > 0. The haz-
ard function is given by

r xð Þ =
βabx−b−1e−βax

−b
α 1 − θð Þ + θ exp − α − 1ð Þ eax

−b − 1
� �−β� �� �

1 − e−ax−b
À Áβ+1 1 − θ 1 − exp − α − 1ð Þ eax−b − 1

À Á−β� �h in o , x > 0:

ð49Þ

The density plot of the HMWF distribution exhibited a
wide variety of attractive shapes such as, J-shape, reverse
J-shape, right skewed, left skewed, and various forms of sym-

metric shapes as shown in Figure 4. The hazard rate function
also showed varying shapes such as; upside-down bathtub,
monotone decreasing and different forms of monotone
increasing failure rates for some selected parameter values.

The quantile function QGðuÞ for the Harmonic mixture
Weibull Fréchet distribution is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ eax
−b
− 1

� �−β� �� �� �
− exp −α eax

−b
− 1

� �−β� �
= 0, u ∈ 0, 1½ �

ð50Þ
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Figure 9: Fitted densities and CDFs plots of the blood cancer data.

Table 6: Survival times of diabetes patients.

52 18 69 19 28 74 25 29 56 39 76 26 81 33 34 38 38 34 35

43 45 45 63 47 46 42 42 42 41 46 45 45 43 41 40 49 49 48

53 53 35 54 61 54 55 55 25 73 51 74 37 56 58 58 58 57 50

18 62 62 81 63 47 64 64 65 67 60 36 68 19 69 61 61 61 70

75 83 52 62 33 80 26 76 75 37 29 39 51 35 59 50 82 52 52

71 51 73 24 51 48 48 40 54 36

Table 5: Log-likelihood, goodness-of-fit statistics, and information criteria of the fitted models for the blood cancer data.

Model ℓ AIC AICc BIC AD CVM K-S P value

HMWL -302.8800 615.7588 6007588 624.2032 0.6072 0.0627 0.0890 0.90950

HMWW -301.9300 613.8636 598.8636 622.3080 0.4728 0.0490 0.0859 0.9292

GIW -352.3200 710.6453 711.2607 715.9289 4.2362 0.7650 0.2607 0.0058

OGEW -305.7900 619.5847 606.2514 626.3402 1.0067 0.1282 0.1320 0.4891

GOIEW -330.4800 668.9273 669.9800 675.9721 1.5016 0.2553 0.1583 0.2687

GOIEL -338.7500 685.5067 686.5593 692.5515 0.8518 0.1092 0.2477 0.0102

E-lx -351.9400 709.8701 710.4855 715.1537 4.2210 0.7621 0.2520 0.0085
∗bolded means best based on selection criteria.
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5.5. Harmonic Mixture Weibull Normal Distribution. Con-
sider that the Normal distribution is a baseline model with
the CDF and PDF, respectively, given by GðxÞ =Φððx − μÞ/
σÞ and gðxÞ = 1/ðσ ffiffiffiffiffiffi

2π
p Þe−1/2ððx−μÞ/σÞ2 , −∞ < x <∞, −∞ < μ

<∞, σ > 0. Then, the PDF of the Harmonic mixture
Weibull Normal (HMWN) distribution is given by

where −∞ < x<∞,α > 0, β > 0, 0 < θ < 1,−∞<μ<∞andσ > 0.
The hazard function is given by
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Figure 10: TTT plot for the diabetes data.

f xð Þ = β Φ
x − μ

σ

� �h iβ−1
exp −

1
2

x − μ

σ

� �2
+ α Φ

x − μ

σ

� �� �−1
− 1

� �−β
" #( )

×
α 1 − θð Þ + θ exp − α − 1ð Þ Φ x − μð Þ/σð Þð Þ−1 − 1

Â Ã−βn o
σ
ffiffiffiffiffiffi
2π

p
1 −Φ x − μð Þ/σð Þ½ �β+1 1 − θ 1 − exp − α − 1ð Þ Φ x − μð Þ/σð Þð Þ−1 − 1

À Á−β� �h in o2 ,
ð51Þ

r xð Þ =
βe−1/2 x−μð Þ/σð Þ2 Φ x − μð Þ/σð Þ½ �β−1 α 1 − θð Þ + θ exp − α − 1ð Þ Φ x − μð Þ/σð Þð Þ−1 − 1

À Á−βh in o
σ
ffiffiffiffiffiffi
2π

p
1 −Φ x − μð Þ/σð Þ½ �β+1 1 − θ 1 − exp − α − 1ð Þ Φ x − μð Þ/σð Þð Þ−1 − 1

À Á−β� �h in o ,−∞ < x <∞: ð52Þ
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Table 7: Parameter estimates of the fitted models on the diabetes data.

Distribution Parameter estimate Standard error Z value P value

HMWL

â = 3:7238 × 10−3 1:3636 × 10−3 2:7308 6:3170 × 10−3∗∗

b̂ = 2:2400 7:0116 × 10−1 3:1947 1:4000 × 10−3∗∗bα = 7:3882 2:7030 × 10−2 273:3389 <2:2000 × 10−16∗∗∗bβ = 3:1315 1:5959 × 10−1 19:6221 <2:2000 × 10−16∗∗∗bθ = 8:5928 × 10−2 1:6698 × 10−1 0:5146 0:6068

HMWW

â = 3:2731 × 10−1 3:5914 × 10−2 9:1137 <2:2000 × 10−16∗∗∗

b̂ = 1:3193 × 10−1 2:3472 × 10−2 5:6205 1:9050 × 10−8∗∗∗bα = 4:3077 × 102 2:0874 × 10−5 2:0637 × 107 <2:2000 × 10−16∗∗∗bβ = 2:0680 × 101 1:0524 × 10−2 1:9651 × 103 <2:2000 × 10−16∗∗∗bθ = 3:3286 × 10−3 7:2963 × 10−1 4:6000 × 10−3 0:9964

GIW

bλ = 14:3949 7:8816 × 10−1 18:2640 <2:2000 × 10−16∗∗∗bθ = 2:4880 1:6693 × 10−1 14:9040 <2:2000 × 10−16∗∗∗

b̂ = 12:4789 3:6543 × 10−1 34:1490 <2:2000 × 10−16∗∗∗

OGEW

bα = 6:2007 1:0197 × 10−2 608:0858 <2:0000 × 10−16∗∗∗bβ = 6:2572 3:4785 × 10−3 1798:8481 <2:0000 × 10−16∗∗∗bγ = 1:1785 9:7083 × 10−2 12:1387 <2:0000 × 10−16∗∗∗bθ = 3:1583 × 10−3 1:2296 × 10−3 2:5686 1:0210 × 10−2∗

GOIEW

bα = 3:8264 9:3022 × 10−1 4:1134 3:8990 × 10−5∗∗∗bβ = 45:7623 5:6602 × 10−2 808:4855 <2:2000 × 10−16∗∗∗bγ = 2:7834 × 10−2 1:6309 × 10−2 1:7067 0:0879bθ = 1:2618 1:4195 × 10−1 8:8889 <2:2000 × 10−16∗∗∗

GOIEL

bα = 1:1535 × 101 1:3294 8:6765 <2:2000 × 10−16∗∗∗bβ = 9:9124 × 101 7:1690 × 10−2 1382:6765 <2:2000 × 10−16∗∗∗bγ = 1:1493 × 10−2 6:3054 × 10−4 18:2274 <2:2000 × 10−16∗∗∗bθ = 1:0812 × 101 5:0939 × 10−1 21:2258 <2:2000 × 10−16∗∗∗

E-lx

bα = 1:7112 × 101 4:3906 × 10−8 3:8975 × 108 <2:2000 × 10−16∗∗∗bλ = 7:1402 × 10−3 2:8425 × 10−4 2:5119 × 101 <2:2000 × 10−16∗∗∗bθ = 1:1041 × 101 2:1284 × 10−7 5:1872 × 107 <2:2000 × 10−16∗∗∗

∗means significant at 5% level of significance.

Table 8: Log-likelihood, goodness-of-fit statistics, and information criteria for the Diabetes data.

Model ℓ AIC AICc BIC AD CVM K-S P value

HMWL -438.8100 887.6210 872.6210 900.8908 0.2264 0.0283 0.0431 0.9899

HMWW -438.7500 887.5028 872.5028 900.7726 0.2075 0.0222 0.0424 0.9916

GIW -464.7700 935.5496 923.5496 943.5114 4.3892 0.6870 0.1476 0.0207

OGEW -441.7500 891.5075 878.1742 902.1234 0.6742 0.1044 0.0728 0.6342

GOIEW -442.3900 892.7726 879.4393 903.3885 1.2195 0.1885 0.1111 0.1500

GOIEL -447.9600 903.9159 890.5826 914.5317 3.1652 0.5774 0.1392 0.0342

E-lx -449.8500 905.6986 893.6986 913.6605 1.9525 0.2891 0.1028 0.2174
∗bolded means best based on selection criteria.
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The density plot of the HMWN distribution exhibited a
very wide variety of attractive shapes such as unimodal right
skewed, unimodal left skewed, symmetric (with different levels
of kurtosis), J-shape, reverse J-shape, bimodal (with different
levels of kurtosis), bimodal left skewed, andN-shapes as shown
in Figure 5. The hazard rate function also showed a wide variety
of very flexible shapes such as, bathtub, upside-down bathtub,
various forms of modified upside-down bathtubs, monotone
decreasing, and different forms of monotone increasing failure
rates for some selected values as shown in Figure 6.

The quantile function QGðuÞ for the Harmonic mixture
Weibull Normal distribution is given by

1 − uð Þ 1 − θ exp − α − 1ð Þ Φ
x − μ

σ

� �� �−1
− 1

� �−β
 !" #( )

− exp −α Φ
x − μ

σ

� �� �−1
− 1

� �−β( )
= 0, u ∈ 0, 1½ �:

ð53Þ

6. Log-HMWW Location-Scale Regression

In this section, the log-HMWW regression model is
presented. Suppose the random variable X follows the
HMWW distribution, then Y = log ðXÞ follows the log
Harmonic mixture Weibull Weibull (LHMWW) distribution.
Let a = e−μ/σ and b = 1/σ: Following the given reparameteriza-
tion, the density function of the LHMWW distribution is

f y yð Þ = β

σ
exp y − μ

σ

� �
1 − exp −exp y − μ

σ

� �h in oβ−1
exp

Á β exp y − μ

σ

� �
− α exp exp y − μ

σ

� �� �
− 1

h iβ� �

×
α 1 − θð Þ + θ exp − α − 1ð Þ exp exp x − μð Þ/σð Þð Þ − 1ð Þβ

h in o
1 − θ 1 − exp − α − 1ð Þ exp exp x − μð Þ/σð Þð Þ − 1ð Þβ

� �h in o2 , y ∈ℝ,

ð54Þ
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Figure 11: Plots of fitted densities and CDFs of the diabetes data.

Table 9: Survival times of hypertension patients.

71 5 39 62 52 71 38 56 35 69 34 71 66

70 52 37 35 71 73 19 74 74 75 51 76 49

19 76 78 76 76 49 47 48 48 46 46 46 41

40 43 45 47 47 44 45 46 42 43 42 20 28

26 60 27 24 29 60 25 60 69 36 69 69 68

68 67 67 67 52 35 66 55 66 61 61 64 64

65 65 63 63 62 39 62 62 62 59 59 59 58

58 58 18 57 57 56 56 37 53 53 53 53 54

54 66 17 50 75 51 38 52 66 4 52 55 19

58 73
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where −∞ < μ <∞ is the location parameter, σ > 0, α > 0, and
0 < θ < 1 are the scale parameters and β > 0 is the shape
parameter. The density plot of the LHMWW distribution
exhibited varying shapes such as, J-shape, reverse J-shape,
right skewed, symmetric, and left skewed shapes as shown in
Figure 7. By these properties, the LHMWW distribution is
capable of modelling right skewed, symmetric and left skewed
dependent variable with covariates in medical studies.

The corresponding survival function to (54) is given by

S y ; α, β, σ, μð Þ =
exp −α exp exp x − μð Þ/σð Þð Þ − 1½ �β

n o
1 − θ 1 − exp − α − 1ð Þ exp exp x − μð Þ/σð Þð Þ − 1ð Þβ

h in o , y ∈ℝ:

ð55Þ

Suppose that z = ðy − μÞ/σ is the standardized random
variable, then the PDF is written as

f y yð Þ = β

σ
exp zð Þ 1 − exp −exp zð Þ½ �f gβ−1 exp

Á β exp zð Þ − α exp exp zð Þð Þ − 1½ �β
n o
×

α 1 − θð Þ + θ exp − α − 1ð Þ exp exp zð Þð Þ − 1½ �β
n o

1 − θ 1 − exp − α − 1ð Þ exp exp zð Þð Þ − 1ð Þβ
� �h in o2 , y ∈ℝ:

ð56Þ

By using the LHMWWdensity, we develop the LHMWW

location-scale regression model with the following regression
structure

yj = vTj γ + σzj, i = 1, 2,⋯, n, ð57Þ

where μ = vTj γ is the location parameter which depends

on a particular set of covariates, γ = ðγ1, γ2,⋯, γkÞT is a

k × 1 parameter vector for the regression model, v j =
ðvj1, vj2,⋯, vjkÞT is the set of covariates, and zj is the error
term that follows the LHMWW distribution. The unknown
parameters of the LHMWW regression model are estimated
using the maximum likelihood estimation procedure. The
log-likelihood function of the LHMWW regression model is
given by

ℓ = n log β

σ

� �
+ 〠

n

j=1
zj + β − 1ð Þ〠

n

j=1
1 − exp −exp zj

À ÁÂ ÃÈ É
+ 〠

n

j=1
β exp zj

À Á
− α exp exp zj

À ÁÀ Á
− 1

Â Ãβn o
+ 〠

n

j=1
log α 1 − θð Þ + θ exp − α − 1ð Þ exp exp zj

À ÁÀ Á
− 1

À Áβh in o
− 2〠

n

j=1
log 1 − θ 1 − exp − α − 1ð Þ exp exp zj

À ÁÀ Á
− 1

À Áβ� �h in o
,

ð58Þ

where zj = ðyj − vTj γÞ/σ and n is the number of observations.
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Figure 12: TTT plot for the hypertension data.
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By maximizing the log-likelihood function in (58), the
parameter estimates of the LHMWW regression model
are obtained. The adequacy of the regression model is eval-
uated by using the Cox-Snell residuals [24]. The Cox-Snell
residuals of the LHMWW regression model are given by
rj = −log ðSðyjjα, β, σ, μÞÞ, j = 1, 2,⋯, n, where Sðyjjα, β, σ,
μÞ is defined as in (55). The Cox-Snell residuals plots are
expected to follow the standard exponential distribution
if the LHMWW regression model gives a good fit to a
data set.

7. Simulation

In this section, the finite sample properties of the maximum
likelihood estimators of the parameters are investigated using
Monte Carlo simulations. The Monte Carlo simulations were
performed by using the estimators of the HMWBIII distribu-
tion. The quantile function of the HMWBIII distribution was
used to generate random samples from the HMWBIII distri-
bution. The simulation experiment was replicated 1000 times
for each of the sample sizes n = 25, 50, 100, 200, 300, and

Table 10: Parameter estimates of the fitted models on the hypertension data.

Distribution Parameter estimate Standard error Z-value P value

HMWL

â = 3:0825 × 10−3 2:4265 × 10−4 12:7035 <2:2000 × 10−16∗∗∗

b̂ = 4:3675 1:0806 × 10−1 40:4177 <2:2000 × 10−16∗∗∗bα = 1:0912 × 10−1 1:5700 × 10−1 0:6950 0:4871bβ = 2:9417 3:0333 × 10−1 9:6981 <2:2000 × 10−16∗∗∗bθ = 6:2795 × 10−1 2:0319 × 10−1 3:0905 1:9980 × 10−3∗∗

HMWW

â = 1:2373 × 10−1 4:9012 × 10−2 2:5244 0:0116∗

b̂ = 2:9675 × 10−1 6:8779 × 10−2 4:3146 1:5990 × 10−5∗∗∗bα = 2:0787 × 102 3:6742 × 10−3 56575:9248 <2:2000 × 10−16∗∗∗bβ = 6:4744 1:8346 3:5290 4:1710 × 10−4∗∗∗bθ = 8:9463 × 10−1 9:1076 × 10−2 9:8230 <2:2000 × 10−16∗∗∗

GIW

bλ = 3:9662 × 10−1 9:0450 × 10−2 4:3850 1:1600 × 10−5∗∗∗bθ = 1:3075 7:0211 × 10−2 1:8622 × 101 <2:2000 × 10−16∗∗∗

b̂ = 3:7129 × 102 7:3899 × 10−5 5:0244 × 106 <2:2000 × 10−16∗∗∗

OGEW

bα = 2:1588 1:1590 × 10−1 18:6271 <2:0000 × 10−16∗∗∗bβ = 6:5927 × 10−1 2:5204 × 10−1 2:6157 8:9030 × 10−3∗∗bγ = 1:5725 1:7709 × 10−1 8:8798 <2:0000 × 10−16∗∗∗bθ = 2:0899 × 10−3 1:9202 × 10−3 1:0884 0:2764

GOIEW

bα = 6:0373 × 10−1 1:1470 × 10−1 5:2634 1:4140 × 10−7∗∗∗bβ = 13:6055 1:1507 × 10−2 1182:3470 <2:2000 × 10−16∗∗∗bγ = 4:5046 × 10−3 3:6406 × 10−3 1:2373 0:2160bθ = 1:6297 1:9507 × 10−1 8:3542 <2:2000 × 10−16∗∗∗

GOIEL

bα = 1:9042 2:6522 × 10−1 7:1796 6:9910 × 10−13∗∗∗bβ = 9:8331 × 101 9:2359 × 10−4 1:0647 × 105 <2:2000 × 10−16∗∗∗bγ = 8:7185 × 10−3 2:6638 × 10−4 3:2729 × 101 <2:2000 × 10−16∗∗∗bθ = 1:3273 × 101 5:1568 × 10−3 2:5739 × 103 <2:2000 × 10−16∗∗∗

E-lx

bα = 7:0654 1:1455 6:1680 6:9150 × 10−10∗∗∗bλ = 3:8023 × 10−3 2:9418 × 10−4 12:9250 <2:2000 × 10−16∗∗∗bθ = 1:4008 × 10 8:3986 × 10−2 166:7850 <2:2000 × 10−16∗∗∗

∗means significant at 5% significance level.
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600 with parameter values ða, b, α, β, θÞ = I: (0.8, 0.3, 0.7, 0.5,
0.1), II: (0.9, 0.2, 0.6, 0.5, 0.2), III: (0.1, 0.3, 0.8, 1.2, 0.3), and
IV: (0.9, 0.2, 0.5, 0.9, 0.1). The average estimate (AE), the aver-
age bias (AB), the root mean square error (RMSE), and the
coverage probability (CP) were used to assess the performance
of the estimators of the parameters. Generally, the AE values
converge to the actual parameter values as the sample size
increases and the RMSE also decreases as the sample size
increases. The AB values also converge to zero (0) with increase
in the sample size as shown in Table 1 and Table 2. The CP
values for most of the estimators are also observed to revolve
around the nominal value of 0.975. These characteristics dem-
onstrate that the maximum likelihood method works very
effectively in estimating the parameters of the developed family.
It also shows that the estimators of the developed family are
asymptotically consistent, efficient and unbiased.

8. Applications of the HMW-G Family

The applications of the special distributions (HMWL and
HMWW) of the HMW-G family to real data sets in medical
studies are illustrated in this section. To this end, the special
distributions of the family are fitted to real data sets and their
performances compared to other competing distributions
including generalized inverse Weibull (GIW) distribution
[25], odd generalized exponential Weibull (OGEW) distribu-
tion [26], generalized odd inverse exponential Weibull
(GOIEW), and generalized odd inverse exponential Lomax
(GOIEL) distributions [27, 28], and exponentiated Lomax
(E-Lx) distribution [29]. The total time on test (TTT) plot
due to Aarset [30] is used in assessing the applicability of the
special distributions to the real data sets. Goodness of fit tests
such as Anderson-Darling (AD) test, Cramér-von Mises
(CVM) test, and Kolmogorov-Smirnov (K-S) test as well as
Akaike information criterion (AIC), corrected AIC (AICc),
Bayesian information criterion (BIC), and the log-likelihood
are used to assess the performances of the fitted distributions.
The P values of the K-S test are provided. A model with the
least values of the goodness of fit measures and highest value
of the log-likelihood represents the best fitted model for the
data set.

8.1. First Application. The first data set represents the
ordered survival times of blood cancer patients. The data is
found in Abouammoh et al. [31]. It can also be found in

Amadu [27] and Amadu et al. [28]. The ordered survival
times for 40 patients are given in Table 3.

The TTT plot in Figure 8 indicates that the blood cancer
data exhibit an increasing failure rate and hence, the HMW-G
family is appropriate to fit the data set.

In Table 4, the maximum likelihood parameter estimates
of the fitted distributions is presented.

Table 5 presents the goodness of fit measures of the fitted
distributions on the blood cancer data. The results generally
show that the HMWW and HMWL distributions provide
better fits to the blood cancer data than the other competing
models with the HMWW distribution being the overall best
fitted model.

Figure 9 shows the densities and CDFs plots of the fitted
models. The results give a confirmation that the HMWW
distribution provides a better fit to the data than the other
competing models.

8.2. Second Application. The second data set represents the
survival times (life lengths in years) until onset of diabetes
from a random sample of 105 patients obtained from the
Bolgatanga Regional Hospital in the Upper East region of
Ghana. The data set is shown in Table 6.

The TTT plot in Figure 10 indicates that the diabetes
data exhibit an increasing failure rate and hence, the
HMW-G family is appropriate to fit the data set.

In Table 7, the maximum likelihood estimates of the
parameters of the fitted distributions are presented.

Table 8 presents the goodness of fit measures of the fitted
models. The results show that the special distributions
(HMWW and HMWL) of the HMW-G family generally
provide better fits to the diabetes data than the other com-
peting models with the HMWW distribution being the over-
all best fitted model.

Figure 11 shows the densities and CDFs plots of the
fitted models. The results confirm that the HMWW and
HMWL distributions of the HMW-G family generally pro-
vide better fits to the data than the other competing models.

8.3. Third Application. The third data set represents the sur-
vival times (life lengths in years) until onset of hypertension
from a random sample of 119 patients obtained from the
Bolgatanga Regional Hospital in the Upper East region of
Ghana. The data set is shown in Table 9.

Table 11: Log-likelihood, goodness-of-fit statistics, and information criteria of the fitted models for hypertension data.

Model ℓ AIC AICc BIC AD CVM K-S P value

HMWL −497:9700 1005.9490 990.9490 1019.8450 0.8176 0.0485 0.0536 0.8834

HMWW -496.4200 1002.8500 987.8500 1016.7460 0.6299 0.0575 0.0509 0.9170

GIW −592:6100 1191.2200 1179.2200 1199.5570 15.9110 2.9605 0.3111 1.974 × 10−10

OGEW −499:6900 1007.3730 994.0397 1018.4900 1.1156 0.1211 0.0656 0.6847

GOIEW −513:0200 1034.0340 1020.7010 1045.1510 8.1430 1.5363 0.1966 0.0002

GOIEL −531:9800 1071.9600 1058.6270 1083.0770 14.0020 2.7726 0.2431 1.5620 × 10−6

E-lx −538:1700 1078.3340 1066.3340 1086.6710 7.3446 1.2976 0.1767 0.0012
∗bolded means best based on selection criteria.
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The TTT plot in Figure 12 indicates that the hyperten-
sion data exhibit an increasing failure rate and therefore,
the HMW-G family is appropriate to fit the data set.

Table 10 shows the maximum likelihood estimates of the
parameters of the fitted distributions.

The goodness of fit measures of the fitted models on the
hypertension data are given in Table 11. The results show that
the HMWWandHMWL distributions of the HMW-G family
generally provide better fits to the data than the other compet-
ing models with the HMWW distribution being the overall
best fitted model.

The densities and CDFs plots of the fitted models are
shown in Figure 13. The results give a confirmation that
the HMWW distribution provides a better fit to the data
than the other competing models.

8.4. Fourth Application. In this section, the application of the
LHMWW location-scale regression model is demonstrated
by modelling a real data set. The data set obtained from
the Bolgatanga Regional Hospital in the Upper East Region

of Ghana represents the survival times (life lengths in years)
until onset of hypertension from a random sample of 119
patients with gender as a covariate. The gender (1 =male,
0 = female) is presented in brackets for each survival time.
The data set is given in Table 12.

The dependent variable, time until the onset of hyperten-
sion yj, is modelled with gender xj1 (1 = male, 0 = female) as
the covariate. To this end, the following regression model is
fitted to the data set

yj = γ0 + γ1vj1 + σzj, ð59Þ

where yj follows the LHMWW distribution. The performance
of the LHMWW regression model was assessed by comparing
with the log Marshal-Olkin Weibull Weibull (LMOWW)
regression model. The parameter estimates of the regression
models are presented in Table 13. The goodness of fit mea-
sures of the regressionmodels show that the LHMWWregres-
sion model performs better than the LMOWW regression

Table 12: Hypertension data with covariate (gender).

71(1) 5(1) 39(1) 62(1) 52(0) 71(0) 38(0) 56(1) 35(1) 69(1) 34(1) 71(1) 66(0)

70(1) 52(0) 37(0) 35(0) 71(1) 73(1) 19(0) 74(0) 74(1) 75(1) 51(0) 76(1) 49(0)

19(1) 76(0) 78(1) 76(0) 76(0) 49(1) 47(1) 48(0) 48(0) 46(0) 46(1) 46(1) 41(0)

40(0) 43(1) 45(0) 47(0) 47(0) 44(0) 45(1) 46(1) 42(1) 43(0) 42(0) 20(1) 28(0)

26(0) 60(0) 27(1) 24(0) 29(0) 60(1) 25(1) 60(1) 69(1) 36(1) 69(0) 69(1) 68(0)

68(0) 67(1) 67(0) 67(0) 52(0) 35(0) 66(0) 55(0) 66(1) 61(1) 61(0) 64(0) 64(0)

65(0) 65(0) 63(1) 63(1) 62(0) 39(1) 62(0) 62(0) 62(0) 59(1) 59(0) 59(1) 58(0)

58(0) 58(0) 18(1) 57(0) 57(0) 56(0) 56(0) 37(1) 53(0) 53(0) 53(0) 53(1) 54(1)

54(1) 66(0) 17(0) 50(0) 75(0) 51(0) 38(0) 52(1) 66(0) 4(1) 52(0) 55(0) 19(1)

58(1) 73(0)
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Figure 13: Plots of fitted densities and CDFs of the hypertension data.
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model. From the parameter estimates of the LHMWW regres-
sion model, gender is statistically significant at the 5% level of
significance. Thus, the LHMWWW regression results show
that the time frame for onset of hypertension is not the same
in males and females, and this is evidenced by the significant
influence of gender on the survival times of hypertension. This
is a revelation of gender differences in relation to time until the
onset of hypertension. The finding is useful and consistent
with that of Paresh et al. [32].

The likelihood ratio test (LRT) was also performed to
compare the LHMWW regression model and the LMOWW
regression model. The LRT statistic of 7.8791 with a P value
of 0.0050 showed that the LHMWW regression model per-
forms better than the LMOWW regression model.

The Cox-Snell residuals were used to assess the ade-
quacy of the LHMWW regression model. The P-P plot
results in Figure 14 show that the LHMWW regression
model provides a very good fit to the data set and therefore

can be adequately applied for modelling real life data in
medical studies.

9. Conclusion

A new family of probability distributions called the Har-
monic mixture Weibull-G (HMW-G) family of distributions
is introduced in this work. The statistical properties of the
family including quantile function, moments, incomplete
moment, moment generating function, and mean residual
life were comprehensively derived. Five special distributions
(HMWBIII, HMWL, HMWW, HMWF, and HMWN) of the
family were developed and studied. The density plots of the
special distributions showed a wide variety of very attractive
shapes making them very suitable for modelling bimodal
data sets as well as left skewed, right skewed, and symmetric
data sets in medical studies. The hazard function plots also
showed a wide variety of shapes making the family very suit-
able for modelling data with both monotone and nonmono-
tone failure rates. The maximum likelihood method was
used in estimating the parameters of the HMW-G family.
The performance of the maximum likelihood estimators
was assessed using Monte-Carlo simulation studies. The
LHMWW location-scale regression model was developed
to investigate the effect of covariates on a response variable
that follows the LHMWW distribution. The usefulness of
the HMW-G family was demonstrated with applications to
real data sets in medicine. The applications empirically
showed that the HMWW distribution provides a better
fit to the given data sets than the other competing models.
Finally, the application of the regression model showed
that the LHMWW regression model provided a very good
fit to the given data and hence can be adequately applied
for modelling data in medical studies. As part of our
future studies, sensitivity analysis of the regression model
will be performed.

Table 13: Parameter estimates of the regression models for the hypertension data.

Model Parameter Estimate Standard error Z value P value

LHMWW

σ 4:2404 1:0790 3:9298 8:5010 × 10−5

α 345:2733 2:8976 × 10−1 1191:6015 <2:2000 × 10−16

β 3:2153 × 10−1 9:2454 × 10−2 3:4777 5:0570 × 10−4

θ 2:6481 × 10−2 7:2045 × 10−1 0:0368 0:9707
γ0 136:6681 8:1285 16:8134 <2:2000 × 10−16

γ1 4:1023 × 10−1 7:1629 × 10−2 5:7271 1:0220 × 10−8

ℓ= -493.5100 AIC = 999:0204 BIC = 1015:6950 K − S = 0:0487 0.9407

LMOWW

σ 3:5779 × 102 1:6212 × 10−2 22068:5615 <2:2000 × 10−16

β 7:1405 2:5708 × 10−1 27:7749 <2:2000 × 10−16

θ 2:1458 × 10−2 5:3641 × 10−3 4:0002 6:3280 × 10−5

γ0 1:3834 × 102 5:1886 × 10−2 2666:1188 <2:2000 × 10−16

γ1 9:8022 × 10−1 2:5966 0:3775 0:7058
ℓ = 497:4500 AIC = 1004:9000 BIC = 1018:7950 K − S = 0:9644 <2:2000 × 10−16
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Figure 14: P-P plot of the Cox-Snell Residuals for LHMWW
regression residuals.
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