
Research Article
Convergence Analysis of a Modified Forward-Backward Splitting
Algorithm for Minimization and Application to Image Recovery

Kunrada Kankam , Watcharaporn Cholamjiak , and Prasit Cholamjiak

School of Science, University of Phayao, Phayao 56000, Thailand

Correspondence should be addressed to Prasit Cholamjiak; prasitch2008@yahoo.com

Received 4 August 2022; Revised 16 August 2022; Accepted 8 September 2022; Published 6 October 2022

Academic Editor: Naeem Jan

Copyright © 2022 Kunrada Kankam et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Many applications in applied sciences and engineering can be considered as the convex minimization problem with the sum of
two functions. One of the most popular techniques to solve this problem is the forward-backward algorithm. In this work, we
aim to present a new version of splitting algorithms by adapting with Tseng’s extragradient method and using the linesearch
technique with inertial conditions. We obtain its convergence result under mild assumptions. Moreover, as applications, we
provide numerical experiments to solve image recovery problem. We also compare our algorithm and demonstrate the
efficiency to some known algorithms.

1. Introduction and Preliminaries

In various fields of applied sciences and engineering such as
signal recovery, image restoration and machine learning
[1–9] can be formulated as convex minimization problem
(CMP) in the term of sum of nonsmooth and smooth func-
tions. Let H be a real Hilbert space. CMP is modeled as fol-
lows:

min f kð Þ + g kð Þ: k ∈Hf g, ð1Þ

where f : H ⟶ ð−∞,+∞� and g : H ⟶ℝ are two proper
lower semicontinuous convex functions such that f is differ-
entiable on H. For any λ > 0, it is known that k∗ is an opti-
mal solution to (1) if

0 ∈ λ∇f k∗ð Þ + λ∂g k∗ð Þ⇔ I − λ∇fð Þ k∗ð Þ ∈ I + λ∂gð Þ k∗ð Þ⇔ k∗
= I + λ∂gð Þ−1 k∗ − λ∇f k∗ð Þð Þ,

ð2Þ

where ∇f is the gradient of f is linear function, which is
defined by

∇f kð Þ, yh i = f ′ k, yð Þ, ð3Þ

where the derivative of f at k in the direction y is f ′ðk, yÞ
= ð f ðk + tyÞ − f ðkÞÞ/t and ∂gð·Þ is the classical subdifferen-
tial of g which is given by

∂g ·ð Þ = z ∈H : g uð Þ − g ·ð Þ − z, u − ·ð Þh i ≥ 0,∀u ∈ℝnf g: ð4Þ

It is known that ∂g is maximal monotone and if g is dif-
ferentiable, then ∂g is the gradient of g denoted by ∇g. This
leads to the classical forward-backward splitting algorithm
(FBS) [10, 11] which is defined by k0 ∈H and

kn+1 = proxλng kn − λn∇f knð Þð Þ, ð5Þ

where λn > 0 and proxλng = ðI + λn∂gÞ−1 is the proximal
operator. On the one hand, (5) includes the gradient algo-
rithm kn+1 = kn − λn∇f ðknÞ, where λn > 0 and f is a Lipschitz
continuous gradient. Moreover, (5) includes the proximal
point algorithm kn+1 = proxλngk

n, where λn > 0 and g is a
nondifferentiable function. We know that the proximal
operator is single-valued and is characterized by

k − proxλg kð Þ
λ

∈ ∂g proxλg kð ÞÀ Á
, ð6Þ
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for all k ∈H and λ > 0. The iteration (5) has been attracted
extensively by many researchers. See, for example, [12–18].
One popular method for solving (1) is the modified
forward-backward splitting method (MFBS) or Tseng’s
extragradient method [19]; MFBS is generated by k0 ∈H and

kn+1 = proxαng kn − αn∇f knð Þð Þ − αn ∇f proxαng kn − αn∇f knð Þð Þ
� �

−∇f knð Þ
� �

,

ð7Þ

where ðαnÞ ⊂ ð0,+∞Þ is a real sequence. The convergence
rate is well known for the speed of Oð1/nÞ. Later, various
schemes were proposed to improve the convergence and
accelerate the method. Among them, Lorenz and Pock [20]
have improved the convergence speed of FBS from the stan-
dard Oð1/nÞ to Oð1/n2Þ.

Recently, Beck and Teboulle [21] introduced a fast itera-
tive shrinkage-thresholding algorithm (FISTA-BT) by the
following scheme.

Algorithm 1. FISTA-BT algorithm.
Initialization: t0 = 1 and α = 1/L.
Iterative step: let k0 = k1 ∈H and calculate kn+1 as

follows:
Step 1. Compute the inertial step:

xn = kn + θn kn − kn−1
À Á

, ð8Þ

where tn = ð1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4t2n−1

p
Þ/2 and θn = ðtn−1 − 1Þ/tn:

Step 2. Compute the kn+1 step:

kn+1 = proxαg xn − α∇f xnð Þð Þ: ð9Þ

Set n≔ n + 1 and return to Step 1.

Without the Lipschitz condition on the gradient of func-
tions, Cruz and Nghia [22] proposed a new version of the
forward-backward method (FISTA-CN) based on the line-
search rule.

Algorithm 2. FISTA-CN algorithm.
Initialization: t0 = 1, σ > 0, θ ∈ ð0, 1Þ, and δ ∈ ð0, 1/2Þ.
Iterative step: let k0 = k1 ∈H and calculate kn+1 as

follows:

Step 1. Compute the inertial step:

xn = kn + θn kn − kn−1
À Á

,
yn = PΩ xnð Þ,

ð10Þ

where tn = ð1 + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4t2n−1

p Þ/2 and θn = ðtn−1 − 1Þ/tn:
Step 2. Compute the kn+1 step:

kn+1 = proxαng yn − αn∇f ynð Þð Þ, ð11Þ

where αn = σθmn and mn is the smallest number such
that

σθmn ∇f proxαng yn − αn∇f ynð Þð Þ−∇f ynð Þ
� �

≤δk kproxαng ynð − αn∇f ynð Þ − yn
 :

ð12Þ

Stop criteria if kn+1 = yn, then stop.
If kn+1 ≠ yn, then set n≔ n + 1 and return to Step 1.

In 2017, Verma and Shukla [23] introduced the new
accelerated proximal gradient algorithm (NAGA) which is
generated by the following.

Algorithm 3. NAGA algorithm.
Iterative step: let k0 = k1 ∈H and calculate kn+1 as

follows:
Step 1. Compute the inertial step:

xn = kn + θn kn − kn−1
À Á

: ð13Þ

(a) (b)

Figure 1: (a) The original image size 448 × 2993 and (b) 386 × 608 × 3, respectively.

Table 1: Chosen parameters of each algorithm.

Algorithms
Parameters

γ θ δ σ t1

FISTA-BT 1/ Ak k — — — 1

FISTA-CN — 0.9 0.4 0.2 1

NAGA 1/ Ak k — — — 1

NMFBS — 0.9 0.9 0.2 1
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Step 2. Compute

yn = 1 − αnð Þxn + αnproxαng xn − αn∇f xnð Þð Þ,
kn+1 = proxαng yn − αn∇f ynð Þð Þ,

ð14Þ

where αn ∈ ð0, 2/LÞ. Set n≔ n + 1 and return to Step 1.

This work presents a new splitting method called a new
modified forward-backward splitting algorithm (NMFBS)
for convex minimization problems. Our results extend and
improve the corresponding results of Tseng [19] and Cruz
and Nghia [22]. The step size defined in this work does
not require the Lipschitz condition of the gradient functions.
Finally, we also present the numerical experiments of our
algorithm for solving image recovery problems and show

the comparison of our proposed method to FISTA-BT
[21], FISTA-CN [22], and NAGA [23].

2. Main Theorem

We assume that f : H ⟶ℝ ∪ f+∞g and g : H⟶ℝ ∪ f
+∞g are proper, lower semicontinuous, and convex func-
tions; f is uniformly continuous on bounded sets; and ∇f
is bounded on bounded sets. The following is our algorithm.

Algorithm 4. The new modified forward-backward splitting
algorithm (NMFBS)

Initialization: given σ > 0, θ > 0, δ ∈ ð0, 1Þ, and θ1 > 0.
Iterative step: let k0 = k1 ∈H and calculate kn+1 as

follows:

(a) (b)

Figure 4: The blurred RGB image of Fig(a) and Fig(b) for motion blur specified with the motion length of 15 pixels and motion orientation
θ = 15.

(a) (b)

Figure 2: The blurred RGB images of Fig(a) and Fig(b) for out-of-focus blur matrices with radius r = 7.

(a) (b)

Figure 3: The blurred RGB image of Fig(a) and Fig(b) for Gaussian blur of the filter size ½7 × 7� with standard deviation σ = 15.

3Computational and Mathematical Methods



Step 1. Compute the inertial step:

xn = kn + θn kn − kn−1
À Á

: ð15Þ

Step 2. Compute:

yn = proxαng xn − αn∇f xnð Þð Þ + αn ∇f xnð Þ−∇f proxαng xn − αn∇f xnð Þð Þ
� �� �

,

ð16Þ

where αn = σθmn and mn is the smallest number such
that

α2n ∇f xnð Þ−∇f proxαng xn − αn∇f xnð Þð Þ
� � 2

�

+ ∇f ynð Þ−∇f proxαng yn − αn∇f ynð Þð Þ
� � 2

�

≤ δ2 xn − proxαng xn − αn∇f xnð Þð Þ
 2

�

+ yn − proxαng yn − αn∇f ynð Þð Þ
 2

�
:

ð17Þ

Step 3. Compute the kn+1 step:

kn+1 = proxαng yn − αn∇f ynð Þð Þ + αn ∇f ynð Þ−∇f proxαng yn − αn∇f ynð Þð Þ
� �� �

:

ð18Þ

Set n≔ n + 1 and return to Step 1.

Following the proof as in [24], we can show the follow-
ing lemma.

Lemma 1. The linesearch (17) has a finite step.

Theorem 2. Suppose that αn ≥ α for some α > 0, θn ≥ 0, and
∑∞

n=1θn < +∞. Then, ðknÞ generated by Algorithm 4 converges
weakly to a minimizer of f + g.

Proof. Let k∗ ∈ argminð f + gÞ, and set pn = proxαngðxn − αn
∇f ðxnÞÞ. Then, we obtain

yn = pn + αn ∇f xnð Þ−∇f pnð Þð Þ: ð19Þ

Moreover, we have

xn − pn − αn∇f xnð Þ ∈ αn∂g pnð Þ: ð20Þ

Using (19), we see that

αn∇f xnð Þ = yn − pn + αn∇f pnð ÞÞ: ð21Þ

Table 2: The results of deblurred images for each algorithm.

Blur types Methods
Fig(a) Fig(b)

PSNR SSIM PSNR SSIM

Out-of-focus blur (disk) with radius r = 7 (see Figure 2)

FISTA-
BT

34.1671 0.8951 44.6086 0.9855

FISTA-
CN

36.3911 0.9327 45.8992 0.9888

NAGA 35.6176 0.9222 45.4853 0.9878

NMFBS 40.1968 0.9728 47.3828 0.9916

Gaussian blur of the filter size 5 × 5½ � with standard deviation σ = 5 (see Figure 3)

FISTA-
BT

34.8432 0.9631 45.8546 0.9906

FISTA-
CN

36.5138 0.9735 47.0315 0.9926

NAGA 35.9527 0.9703 46.6534 0.9920

NMFBS 38.9891 0.9836 48.4820 0.9946

Motion blur specified with the motion length of 45 pixels and motion orientation θ = 45 (see
Figure 4)

FISTA-
BT

40.5480 0.9548 48.6089 0.9940

FISTA-
CN

44.0301 0.9782 50.0219 0.9955

NAGA 42.7566 0.9709 49.6478 0.9952

NMFBS 50.5468 0.9949 51.3704 0.9967

Figure 5: The blurred image of Fig(a) by out of focussing and the
restored images for FISTA-BT (PSNR: 34.1671, SSIM: 0.89951),
FISTA-CN (PSNR: 36.3911, SSIM: 0.9327), NAGA (PSNR:
35.6176 SSIM: 0.9222), and NMFBS (PSNR: 40.1968, SSIM:
0.9728), respectively.
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Combining (20) and (21), we have

xn − yn − αn∇f pnð ÞÞ ∈ αn∂g pnð Þ: ð22Þ

Now, set rn = proxαngðyn − αn∇f ðynÞÞ. Then, we obtain

kn+1 = rn + αn ∇f ynð Þ−∇f rnð Þð Þ: ð23Þ

Also, we have

yn − kn+1 − αn∇f rnð ÞÁ ∈ αn∂g rnð Þ: ð24Þ

Since k∗ ∈ argminð f + gÞ, we obtain −αn∇f ðk∗Þ ∈ αn∂ð
k∗Þ. Thus, by (22), (24), and the monotonicity of ∂g, we have

xn − yn − αn ∇f pnð Þ−∇f k∗ð Þð Þ, pn − k∗h i ≥ 0,
yn − kn+1 − αn ∇f rnð Þ−∇f k∗ð Þð Þ, rn − k∗

 �

≥ 0:
ð25Þ

So, we have hxn − yn, pn − k∗i ≥ 0 and hyn − kn+1, rn − k∗
i ≥ 0 by the monotonicity of ∇f . Thus, we have

xn − yn, pn − ynh i + xn − yn, yn − k∗h i ≥ 0, ð26Þ

yn − kn+1, rn − kn+1

 �

+ yn − kn+1, kn+1 − k∗

 �

≥ 0: ð27Þ

We note that kx ± yk2 = kxk2 ± 2hx, yi + kyk2 for all x, y

∈H: Using (26), we have

2 xn − yn, pn − ynh i + xn − yn, yn − k∗h ið Þ
= xn − k∗k k2 − yn − k∗k k2 + yn − pnk k2 − xn − pnk k2:

ð28Þ

Using (27), we have

2 yn − kn+1, rn − kn+1

 �

+ yn − kn+1, kn+1 − k∗

 �À Á

= yn − k∗k k2 − kn+1 − k∗
 2 + kn+1 − rn

 2 − yn − rnk k2:
ð29Þ

From (26), (27), (28), and (29), we obtain

kn+1 − k∗
 2 ≤ xn − k∗k k2 + yn − pnk k2 − xn − pnk k2 + kn+1 − rn

 2 − yn − rnk k2:
ð30Þ
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Figure 6: Graphs of PSNR and SSIM for Fig(a) by out of focussing, respectively.

Figure 7: The blurred image of Fig(b) by motion blurring and the
restored images for FISTA-BT (PSNR: 48.6089, SSIM: 0.9940),
FISTA-CN (PSNR: 50.0219, SSIM: 0.9955), NAGA (PSNR:
49.6478 SSIM: 0.9952), and NMFBS (PSNR: 51.3704, SSIM:
0.9967), respectively.
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Using (17), (19), (23), and (30), we obtain

kn+1 − k∗
 2 ≤ xn − k∗k k2 + pn + αn ∇f xnð Þ−∇f pnð Þð Þk

− pnk2 − xn − pnk k2 + rn + αn ∇f ynð Þ−∇f rnð Þð Þ − rnk k2
− yn − rnk k2 = xn − k∗k k2

+ α2n ∇f xnð Þ−∇f pnð Þk k2 + ∇f ynð Þ−∇f rnð Þk k2
� �

− xn − pnk k2 − yn − rnk k2 ≤ xn − k∗k k2

+ δ2 xn − pnk k2 + yn − rnk k2
� �

− xn − pnk k2 − yn − rnk k2

= xn − k∗k k2 − 1 − δ2
À Á

xn − pnk k2 − 1 − δ2
À Á

yn − rnk k2:
ð31Þ

Next, we will show that limn⟶∞kkn − k∗k exists. From
(31), we see that

kn+1 − k∗
  ≤ xn − k∗k k = kn − k∗k k + θn kn − kn−1

 
≤ kn − k∗k k + θn kn − k∗k k + kn−1 − k∗

 À Á
= 1 + θnð Þ kn − k∗k k + θn kn−1 − k∗

 :
ð32Þ

By Lemma 5 in [1], we have

kn+1 − k∗
  ≤ K ·

Yn
j=1

1 + 2θj
À Á

, ð33Þ

where K =max fkk1 − k∗k, kk2 − k∗kg. Since ∑∞
n=1θn<+∞,

we have ðknÞ which is bounded. Thus, ∑∞
n=1θnkkn − kn−1k<

+∞: By Lemma 1 in [25] and (32), we have limn⟶∞kkn −

k∗k that exists. From (31), we see that

kn+1 − k∗
 2 ≤ xn − k∗k k2 − 1 − δ2

À Á
xn − pnk k2

− 1 − δ2
À Á

yn − rnk k2 = kn + θn kn − kn−1
À Á

− k∗
 2

− 1 − δ2
À Á

xn − pnk k2 − 1 − δ2
À Á

yn − rnk k2 = kn − k∗k k2

+ 2θn kn − k∗k k kn − kn−1
  + θ2n kn − kn−1

 2
− 1 − δ2
À Á

xn − pnk k2 − 1 − δ2
À Á

yn − rnk k2:
ð34Þ

Noting limn⟶∞θnkkn − kn−1k = 0, limn⟶∞kkn − k∗k
exists and δ ∈ ð0, 1Þ, we have

lim
n⟶∞

xn − pnk k = 0, ð35Þ

lim
n⟶∞

yn − rnk k = 0: ð36Þ

Since ∇f is uniformly continuous on bounded sets, we
have

lim
n⟶∞

∇f xnð Þ−∇f pnð Þk k = 0, ð37Þ

lim
n⟶∞

∇f ynð Þ−∇f rnð Þk k = 0: ð38Þ

By definition of xn, it is easy to see that limn⟶∞kxn −
knk = 0. Then,

pn − knk k ≤ xn − pnk k + xn − knk k⟶ 0 as n⟶∞: ð39Þ
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Figure 8: Graphs of PSNR and SSIM for Fig(b) by motion blurring, respectively.
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From (35), (36), (37), and (39), we obtain

rn − knk k ≤ rn − ynk k + yn − pnk k + pn − knk k = rn − ynk k
+ pn + αn ∇f xnð Þ−∇f pnð Þð Þ − pnk k + pn − knk k = rn − ynk k
+ αn ∇f xnð Þ−∇f pnð Þk k + pn − knk k⟶ 0 as n⟶∞:

ð40Þ

By the boundedness of ðknÞ, we assume that �k is a weak
limit point of ðknÞ; i.e., there is a subsequence ðkniÞ of ðknÞ
such that kni ⇀ �k. Since limi⟶∞krni − knik = 0, we also
obtain rni ⇀ �k as i⟶∞. Using (6), we obtain

It follows that

yni − rni

αni
+∇f rnið Þ−∇f ynið Þ ∈ ∇f rnið Þ + ∂g rnið Þ ⊆ ∂ f + gð Þ rnið Þ:

ð42Þ

By passing i⟶∞ and using (36) and (38), we have 0
∈ ∇f ð�kÞ + ∂gð�kÞ by Fact 2.2 in [22]. Hence, by Theorem
5.5 in [26], we can conclude that ðknÞ converges weakly to
a point in argminð f + gÞ. We thus complete the proof.

Remark 3. The condition that αn ≥ α > 0 for some α can be
dropedd in case ∇f is Lipschitz continuous on H since it is
bounded below from 0 (see Proposition 4.4,4.11 [22]).

Remark 4. In the main theorem, we use the linesearch tech-
nique to calculate our step size at each iteration unlike the
result of [4, 5, 16, 17]. It is worth mentioning here also that
choice of the step size in our algorithm does not depend on
the Lipschitz condition of the gradient function. Our pro-
posed algorithms can be applied in image recovery which
are more applicable than those of [4, 5, 16, 17].

3. Numerical Experiments

Medical imaging plays a crucial role in modern medicine and
image data which are found in various clinical specialties, for
routine diagnostics in X-ray imaging, monitoring intraoperative
progress during surgical procedures and guidance and diagnosis
in ailing. In practice, the degradations are unavoidable because
the medical imaging systems limit the intensity of the incident
radiation to protect the patient’s health. So how to improve
image quality is a good choice for medical analysis. Image pro-
cessing mainly consists of image deblurring, image denoising,
and image inpainting which is a branch that usually can be
employed optimization techniques to solve it.

The image restoration problem can be explained as fol-
lows:

b = Ak +w, ð43Þ

where b ∈ℝm×1 is the observed image, A ∈ℝm×n is the blur-

ring matrix, k ∈ℝn×1 is an original image, and w is additive
noise. To solve problem (43), we aim to approximate the
original image by transforming (43) to the following LASSO
problem [27]:

min
k

1
2 b − Akk k22 + λ kk k1

� �
, ð44Þ

where k·k1 is ℓ1-norm. In general, (44) can be formulated in a
general form by estimating the minimizer of sum of two func-
tions when f ðkÞ = 1/2kb − Akk22 and gðkÞ = λkkk1. We next
present our algorithm (NMFBS) for LASSO problem with λ
= 10−7 and also compare its efficiency with FISTA-BT [21],
FISTA-CN [22], and NAGA [23]. All computational experi-
ments were written in Matlab 2020b and performed on a 64-
bit MacBook Pro Chip Apple M1 and 8GB of RAM.

Let k be the original images size 448 × 2993 and 386 ×
608 × 3, respectively. These are shown in Figure 1. Tomeasure
the quality of restored images, we use the peak signal-to-noise
ratio (PSNR) in decibel (dB) [28] and the structural similarity
index metric (SSIM) [29]. The iteration numbers for all algo-
rithms is 1200th.

All parameters are chosen as in Table 1. The initial points
k0 = k1 are vectors of ones with the size of original images for
all algorithms. The blurred images are shown in Figures 2–4.
The parameter θn of FISTA-BT, FISTA-CN, and NAGA is
defined as in Algorithm 1.

The numerical results are reported in Table 2 and
Figures 5–8.

From Table 2, we see that numerical experiments of
NMFBS are better than those of FISTA-BT, FISTA-CN, and
NAGA in terms of PSNR and SSIM for all blur types.

We next provide some experiments of the recovered
images for two cases to illustrate the convergence behavior of
all algorithms in comparison. We plot the number of itera-
tions versus PSNR and SSIM in Figures 6 and 8.

4. Conclusion

We have introduced the modified forward-backward algo-
rithm for solving the convex minimization problem of the
sum of two functions in a real Hilbert space. The proposed

yni − rni

αni
−∇f ynið Þ =

yni − proxαni g yni − αni∇f ynið ÞÀ Á
− αni∇f ynið Þ

αni
∈ ∂g yni − αni∇f ynið ÞÀ Á

: ð41Þ
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algorithm does not need to compute the Lipschitz constant
of the gradient of functions. We have proved that the
sequence generated by the algorithm weakly converges to a
minimizer under some mild conditions. Our result can be
applied effectively to solve image recovery as shown in
numerical experiments. The comparative experiments
showed that the proposed algorithm has a better efficiency
than FISTA-BT [21], FISTA-CN [22], and NAGA [23] in
terms of PSNR and SSIM for all blur types.
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