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The compressors used in today’s natural gas production industry have an essential role in maintaining the production line
operational. Each of the compressors’ components has routine maintenance tasks to avoid sudden failures. Hence, the
significant advantages and benefits of performing preventative maintenance tasks in time are decreasing equipment downtime,
saving additional costs, and improving the safety and reliability of the whole system. In this paper, anomaly classification and
detection methods based on a neural network hybrid model named Long Short-Term Memory (LSTM)-Autoencoder (AE) is
proposed to detect anomalies in sequence pattern of audio data, collected by multiple sound sensors deployed at different
components of each compressor system for predictive maintenance. In research methodology, this paper has conducted
experiments that employed different RNN architectures such as GRU, LSTM, Stacked LSTM, and Stacked GRU with various
functions to create a baseline for model evaluation. Each architecture used audio signals dataset received from the compressor
system for experiments to consider each neural network model’s performance. According to performance results, an optimal
model for anomaly detection with the best performance scores has been proposed in this research. Experiments combined one-
dimensional raw audio signal features using SC and Mel spectrogram features were fed to deep learning models to evaluate
performance. Hence, such hybrid methods can effectively detect normal and anomaly audio signals collected from a
compressor system, increasing the compressor system’s reliability and the sustainability of the gas production line. The
combination of multiple-resource features in the proposed hybrid model showed a 100% score in all four-evaluation metrics
such as accuracy, precision, recall, and F1 in LSTM-based autoencoder in both test and train results.

1. Introduction

Natural gas compressors are mainly used for providing pres-
sure to transport gas in pipelines. The compression system
interlocks upstream gas production and downstream con-
sumer use by pressuring natural gas in channels. The com-
pressors used in today’s natural gas production industry
have an essential role in maintaining the production line
operational. Each compressor unit consists of multiple com-
ponents and subsystems: an engine or electric motor, a com-
pressor system, crankcase, valve body, one or numerous
compression cylinders, cooling system, turbo unit, fan, and
water pump. The existence of such components depends
on the nature of the compressor. Each subsystem consists

of noise pollution contributed by the whole system of each
compressor [1]. Each of these components has routine
maintenance tasks to avoid sudden failures. Since the instal-
lation cost for a compressor is high, loss of the compression
system can be costly due to repair costs and lost production
economic effect [2]. Hence, the significant advantages and
benefits of performing preventative maintenance tasks in
time are decreasing equipment downtime, saving additional
costs, and improving the safety and reliability of the whole
system [3]. There are several approaches to conduct the pre-
ventive maintenance tasks in oil and gas organizations for
compressor systems, such as time-based and periodic main-
tenance to check compressors in regular time intervals to
perform troubleshooting and avoid potential failures.
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However, predictive maintenance could be a solution since
such components could also face unexpected or unscheduled
downtime due to faults that negatively affect gas production.
Such a method is based on predicting future failures of such
components before occurrence. This approach works with
real-time conditions of compressor systems and could
reduce costs and unexpected downtime [2]. Each mainte-
nance task is conducted for increasing production line reli-
ability; hence, it is mandatory to keep the efficiency and
functionality of gas production lines, which depends on the
reliability of each of the components and systems, and com-
pressors are part of it [4]. The technicians’ original and cur-
rent solution for predictive maintenance tasks consists of
traditional approaches. It means that current predictive
maintenance tasks use traditional human-based inspection
methods and need experienced technicians to listen to com-
pressor sounds and noises by the human ear to inspect the
defects manually. Afterward, the technician would report
required information of inspection and examination such
as the timestamp of the event, the type of identified failure
if found, and the timestamp of any conducted maintenance
task. However, such a method consists of several disadvan-
tages [5].

For instance, conducting such a traditional inspection
method is very time-consuming, inaccurate, and challenging
considering that the decibel level of a compressor sound
could be louder than a jet engine, making it difficult for tech-
nicians to find defects properly. Additionally, the distance of
reaching the component is usually far away from the reach
of the technicians since the location of compressors and
pumping stations is generally out of town. Hence, it needs
to introduce an efficient automated approach for diagnosing
defects and classifying normal abnormalities appropriately
to solve such challenges [6, 7]. Therefore, this research paper
aims to develop an automated system to accurately detect
and classify normal audio signals and anomaly audio signals
for midstream compressor systems. If such methods could
classify and detect anomalies accurately, it would signifi-
cantly reduce the risk of any sudden failure and loss in the
production line at last.

Hence, this research paper has been organized as follows:
Related studies for conducting the literature review and
research contribution are mentioned in the next section.
Basic definitions are reviewed in Section 3, methodology
has been presented in Section 4, Section 5 shows the exper-
imental results and discussion and the outcomes and would
present the conclusions and future work suggested at last.

2. Related Studies

There is an in-depth literature review for the methods men-
tioned in similar studies based on statistical, machine learn-
ing–based supervised learning, and other deep learning–
based unsupervised approaches for anomaly detection. For
instance, there are several methods for such classifications,
such as traditional statistical methods, which would be con-
sidered non-neural network methods. Those methods
include K-means clustering, random forest, and machine
learning and deep learning methods for anomaly detection

[6–8] and system prognostic [9], prediction [10], classifica-
tion [11], and system reliability improvement [7]. For
instance, random forest (RF) is a supervised learning algo-
rithm in which several decision trees would be constructed
while training is in progress [12]. RF would take the classes’
mean to predict the trees as the output. RF would be used for
nonlinear regression tasks [13]. As a research example, in
Munir et al., several methods and modeling approaches have
been mentioned to detect and classify anomalies, which is
considered statistical modeling for conducting anomaly clas-
sification process [14]. For instance, K nearest neighbor
(KNN) method is one of the most commonly used
distance-based methods for anomaly detection. In KNN,
for every data point in each dataset, K nearest neighbors
would be considered to conduct classification tasks [14,
15]. In other words, according to these points, abnormalities
in a sequence of time series data could be detected and clas-
sified. As presented in several works of literature, a
histogram-based outlier score (HBOS) would also be used
as a traditional anomaly detection method using an abnor-
mality score for outlier detection [15, 16]. In this method,
first, a histogram for the features would be generated, and
then the data set instances would be multiplied to the
inversed height of the bins of all features. HBOS is a statisti-
cally unsupervised method based on histograms. The advan-
tage of using such a method is that it is less computationally
expensive than distance-based and clustering-based anomaly
detection [16]. In other research, such as Liu et al., isolation
forest has been used for outlier detection. Isolation forest is
based on density and distance measures. In other words, this
approach would isolate normal instances from anomalies.
This method would use a binary tree called isolation tree
to conduct the anomaly detection task and isolate the abnor-
mal instances [17]. Another method for anomaly detection
would be extreme gradient boosting outlier detection
(EGBOD). This method is semi-supervised learning for con-
ducting anomaly detection tasks. Extreme gradient boosting
is an extension of the gradient boosting algorithm method.
This algorithm is defined to reduce the error caused by devi-
ation from generalization [18]. This algorithm could be used
for classification and regression modeling problems [13].
Another classification method is support vector machine.
SVM was proposed as anomaly detection and classification
method. SVM is the supervised learning method that has
usage in classification models. For instance, one-class SVM
is an unsupervised algorithm that aims to find the maximum
margin hyperplane that best separates the data from the cen-
ter [19]. Other traditional algorithms could be used for per-
forming classification tasks effectively. Another example is
the Naïve Bayes algorithm. Such an algorithm is basically
could be used for supervised learning. Naïve Bayes [20]
can solve classification problems. It could perform fast clas-
sification and quick predictions. Naïve Bayes would predict
the probability of different classes based on various attri-
butes which have been identified. A Naïve Bayes algorithm
could be used in classification problems that consist of sev-
eral classes [15, 20]. On the other hand, tree-based classifica-
tion techniques such as decision trees and random forests
[13, 21] are simple and very popular methods in data mining
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problems. They can map nonlinear relationships effectively
and efficiently [22, 23]. For instance, in the decision tree,
each leaf node is assigned a label according to dataset classes.
There are also nonterminal nodes, consisting of the root
node and other internal nodes. They contain test conditions
for separating instances with different characteristics [15,
23]. Both traditional machine learning and deep learning
methods [6, 9] have advantages. However, according to this
project specification, scope, and dataset, and because of high
accuracy, efficiency, and reliability compared to traditional
methods and other machine learning algorithms, deep learn-
ing–based anomaly detection methods have been proposed
in this research. Furthermore, deep learning technology
has grown significantly in the past few years and has
achieved many impressive impacts in various research areas.
Such areas include artificial intelligence, computer vision,
deep medicine [24], pattern recognition, predictive modeling
[25], and image and signal processing [26], which are widely
used in different areas such as healthcare, energy industry,
automation, and manufacturing. Various deep learning and
machine learning models have been used to conduct similar
tasks in similar research studies for anomaly detection and
classification. For example, Kavitha et al. used support vec-
tor regression (SVR) for classification. SVR would be used
for supervised learning. The problems which SVR could
address are regarding classification and regression. The pro-
cess would be like a support vector machine (SVM) with
some changes. In SVR, the appropriate line for fitting the
model would be defined based on acceptable predefined
residuals [27]. In another example from the deep learning-
based model for anomaly detection, DeepAnT is proposed
[14, 28]. This model is an unsupervised anomaly detection
method used in time series data. This method consists of
two modules. The first module is a predictor for the time
series data, while the value instances are fed into the anom-
aly detector module. This module could detect normal and
anomalies. The predictor module is based on a convolutional
neural network (CNN). Additional to that, FuseAD was
introduced based on DNN and statistical methods for unsu-
pervised anomaly detection consisting of two modules. The
first module is the forecasting modules used ARIMA [29],
and the forecast output would feed into the CNN module
along with time series data. CNN is appropriate for analyz-
ing imagery data and has high capability in the feature
extraction process [30]. The output of these modules would
be augmented by a summation layer at last [14, 28]. ARIMA
model, which has been used in the mentioned method, is
used to forecast and analyze time series data in linear form.
The autoregressive integrated moving average model is an
extended model from the ARMA that would use lagged
observation to predict observation in time series data.
ARIMA [31] is one of the most effective models in machine
learning for forecasting time series data and basically would
perform regression in previous time steps to predict the next
instance [25].

As mentioned regarding CNN models, before applying
the proposed method in this research phase, ResNet50 has
been used in two datasets collected from compressors as
the first phase of this project published previously [30, 32].

In the mentioned study, the ResNet50 convolutional neural
network model extracted high-level features from the input
data [30, 33]. ResNet50 consists of 50 different layers,
including different layers such as max pooling, convolution,
and fully connected layers. A ResNet50 is defined as a pre-
trained network that used ImageNet database. This database
consists of more than 14 million images in a wide range of
categories [34, 35]. In the CNN architecture which has used
ResNet50 as a deep learning layer [34], Mel-frequency Ceps-
tral coefficients (MFCC) have been computed using the
input audio signals which created a two-dimensional matrix
of features. On the other hand, SC features are obtained
from the input audio signals. As the next step, for extracting
high-level deep features from MFCC, a pretrained deep
learning neural network based on ResNet50 was used. Then,
both deep MFCC features and SC features are fed to a prin-
cipal component analysis (PCA) unit for the final step as fea-
ture extraction and reducing the dimensions. The extracted
MFCC and SC features are combined to train a support vec-
tor machine (SVM) classifier in which could conduct normal
and anomaly audio signal classification tasks. As mentioned
in this study, MFCC [36] would be defined as one of the
familiar data representations from the audio signal which
could be used for further processing and feature extraction
[30, 32]. In such a feature extraction method, the spectrum
of the input audio signal after fast Fourier transform (FFT)
is going to be filtered by Mel filters. This would create Mel
spectrum, and as the next step, the Cepstral analysis is car-
ried out to the logarithm of the Mel spectrum. At last, Ceps-
tral coefficients earned by the mentioned process are defined
as Mel-frequency Cepstral coefficients (MFCC) [37, 38].
Additional to that, PCA has also been mentioned as part of
the method. PCA would be used in data compression and
dimension reduction. PCA process could keep important
information of the data and can convert the data from a
higher-dimensional space into a lower-dimensional space.
This process could reduce the size and dimensions. A 2-
fold cross-validation used to evaluate the performance using
datasets for ResNet50 architecture [28, 30]. The mentioned
model has been summarized in Figure 1 [30].

In the conducted experiments, two datasets consisting of
2343 raw audio signals in dataset 1 with 156 anomaly audio
signals in the OGG format and 7853 audio signals with 1085
anomaly audio signals in dataset 2 have been used for the
classification and detection task experiments. Both datasets
were very unbalanced. There are many more normal sam-
ples than anomaly samples in the dataset. The output of
the PCA feature set contains combined deep MFCC features
extracted by the ResNet50 model and the SC features. This
feature set was then fed to train SVM classifier to classify
the audio signals into normal and anomaly classes as men-
tioned in the method. In the mentioned research [30, 32],
experiments demonstrated that combined deep MFCC fea-
tures and SC features achieved the best performance for nor-
mal and anomalies classification for all four-evaluation
metrics used in the experiments named precision, recall,
accuracy, and F1 [39].

Along with using the mentioned methods and models in
anomaly detection, there are also hybrid models based on
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deep learning for similar research questions. For example,
the CNN-LSTM [40, 41] is one of the most used hybrid
machine learning models to increase performance, and the
capability to make better predictions. LSTM-based model
[42] could extract required information in sequence patterns
and time series data by its gated architecture [43]. On the
other hand, CNN can extract important features by reducing
noise and filtering algorithms [30, 44]. Additionally, Convo-
lutional LSTM is a sequential model, based on LSTM. Its
internal layers are replaced with convolutional layers and
would be able to extract the best features to feed the classifier
for better performance in the classification task. As another
example, stacked autoencoder (SAE) has been proposed in
similar research for unsupervised learning. SAE includes
layers such as input, output, and hidden layers in its neural
network architecture. In SAE, encoder and decoder would
conduct the process of training. In this model, the main
steps are including training the input data by autoencoder
and feeding the next layer for training until training of the
network would be completed, and at last, backpropagation
algorithm would be used for minimizing the cost function.
Then, layers weights would be updated by training set to
conduct fine tuning [45]. The advantages of the hybrid
models in neural networks are the capability of such models
to overcome the shortcomings of massive and high-
dimensional datasets [46]. According to considered similar
literature, the hybrid deep learning neural network model
to classify and detect anomalies could be an appropriate
model and a baseline for predicting mechanical component
failures in this paper [9].

2.1. Research Contribution. In comparison to similar litera-
ture mentioned, in this research project, sound sensors (e.g.,
smart microphones) have been widely used in the time series
data collection process. Multiple sound sensors are deployed
at different components of a compressor system which can
be controlled by the Internet of Things (IoT) techniques to
collect and transfer the auditory data in a specific period for
storing in a database. As the next step, advanced data process-
ing and mentioned deep learning model have been used for
audio classification of normal and anomaly signals. The
defined deep learning network model needs to be trained on
each individual component using normal and abnormal
sound signals for anomaly detection and classification [2, 6].
Therefore, in this paper, the main contributions are men-
tioned as the following points:

(i) This study proposes a different hybrid neural network
method for applying to collected audio signals to
detect anomalies and classify them accurately. There-
fore, according to the research problem mentioned in
this paper, LSTM-Autoencoder architecture [45, 46]
is designed to analyze one-dimensional raw audio sig-
nals. In another word, audio signal features consisting
of Mel spectrogram and SC features would be
extracted from raw data for feeding the network to
be trained and using that for anomaly detection in
test data to evaluate the performance of the proposed
method as well as comparing that with other architec-
tures [31, 32]. Audio raw data collected from com-
pressors audio sensors would be used to conduct
experiments on the mentioned model to see whether
they could classify the normal and anomaly effec-
tively by using appropriate functions, configuration,
and classification method and presenting the result
at last and evaluate it with validation dataset to assure
that the model is well fitted without any overfitting
[17, 33]

(ii) The proposed hybrid model has been compared
with baseline models such as GRU, Stacked GRU,
LSTM, and Stacked LSTM to assure that the model
performs better than other RNN-based models with
different hyperparameters and functions in the
same experiments

(iii) This study highlights the importance of this
research area and bolds the importance of the appli-
cation of deep learning methods in anomaly detec-
tion for time series data in predictive maintenance
(PdM). PdM would reduce maintenance costs and
to have sustainable operational components such
as compressors. The core of PdM is to predict the
next failure which could lead to conducting mainte-
nance tasks that can be scheduled before it happens
[31]. Such methods are basically based on statistical
calculation for estimating the time to failure based
on the maintenance data; however, this paper pro-
posed deep learning–based approach which is more
accurate

(iv) In the previous study mentioned in related studies
section for anomaly detection, we have used
ResNet-50 with pretrained network and employed

Input signals

MFCC (2D)

SC (1D)

ResNet50

PCA SVM

Normal

Anomaly

Figure 1: The deep learning architecture based on ResNet50 for anomaly detection [30].
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MFCC and SC as feature sets for anomaly detection
with smaller datasets [30]. This research is a com-
plementary study in which has in-depth study in
different RNN variant architectures as baseline
models and proposed a hybrid LSTM-AE for anom-
aly detection as best-scored model at last. This study
used bigger dataset and employed Mel spectrogram
and SC as feature sets for training the model to eval-
uate the performance of different RNN models,
hyperparameters, and layers in anomaly detection
and classification of unseen data using audio signals.
Additionally in the previous study, the MFCC fea-
tures have been used in ResNet50 and then com-
bined with SC feature. PCA applied for
dimensionality reduction and SVM employed for
classification task. However, in this study, both
Mel Spectrogram and SC features fed directly to
the network, and in LSTM-AE, the dimension
reduction and information gain have been proc-
essed within the network and last layer with Soft-
Max layer conduct the classification task

(v) In this study, a hybrid deep learning architecture
model based on LSTM-AE has been proposed for
the analysis of operational data such as audio signals
from the working compressor which could be the
basis for increasing the reliability of operational
components of compressor systems in a more effi-
cient approach. Such methods could be more accu-
rate, faster in analysis, and more effective for having
a more sustainable production line according to
performance analysis results in this paper [37, 47].

Therefore, the importance of the application of
using the deep learning method could be high-
lighted in this research rather than using other sim-
ilar approaches. Time and computational cost
analysis have been presented as well for the pro-
posed method

3. Definitions and Notations

This section would describe the terms, features, and func-
tions that have been used in the paper.

3.1. Features: Spectral Centroid and Mel Spectrogram. Spec-
tral centroid (SC) [38] is regarding the brightness of the
sound. In another word, SC would show where the midpoint
of mass of the spectrum is in the audio signal [48]. In the
other hand, in Mel spectrogram, the frequency of the signal
would be converted to log scale and amplitudes which could
show the spectrogram. Afterward, the frequency domain
would be mapped to the Mel scale to shape the Mel spectro-
gram at last [49, 50].

3.2. Recurrent Neural Network (RNN). Applying deep learn-
ing methods on time series data has been widely used in
many areas such as fault detection in manufacturing
machines [51, 52]. RNN has a neural network architecture
in which it would use time series data for prediction and
remembering important information. There are some most
used and common RNN cells such as LSTM and GRU [47,
53]. GRU is very similar to LSTM architecture with less
complexity and computational time [53, 54].

Step (1)
Literature review

Defining baseline models to
compare with the proposed

hybrid model

Step (2)
Input data processing

Defining labels and conducting
feature extraction from input raw

audio signals and data split to
train validation and test set

Step (3)
Design baseline

models for experiments

Defining baseline models,
training the models, and testing
them in anomaly detection and

classification task based on
extracted features

-Binary class labels:
Normal and anomaly
-Features: SC, mel
spectrogram
-Data split: 80 % train
10% validation and 10%
test 

-Baseline models
employed as: GRU,
stacked GRU, LSTM,
and stacked LSTM 

-Define deep learning
models based on RNN

Step (4)
Proposed hybrid model

for experiments

Step (5)
Experiment results and

models evaluation

Present the hybrid deep
learning-based model for

anomaly detection classification
based on LSTM-AE

-Output: Detect and
classify anomaly and
normal classes as output
in the test dataset based
on the trained model

-Best model: Best
architecture is LSTM-
autoencoder with 100%
accuracy and F1 score

Evaluate the models in
experiments and compare them
with the proposed hybrid model

with evaluation metrics

Steps Process Outcome

Figure 2: Comprehensive methodology flowchart: represent step by step methodology process, the architectures of baseline and proposed
hybrid model, the conducted tasks on input data and output, and the experiment result (created by authors).
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3.3. Deep Learning Models’ Functions. Different functions
and layers in the model have been used in this paper for
achieving better performance and tuning [55].

3.4. Activation Functions. Sigmoid function has the sigmoid
curve characteristic where gðxÞ is the Sigmoid function
and e is Euler’s number and the output would be between
0 to 1 which makes it a good choice for prediction [56]:

g xð Þ = 1
1 + e−x

: ð1Þ

SoftMax function would generalize the logistic regres-
sion which would be used in classification task for multiple
classes where S is softmax, z⟶ is defined as input vector
and ezi is standard exponential function applying on the
input vector, n is also defined as a number of classes, and
ez j is a standard exponential function which performed on
output vector [57, 58]:

S z
!� �

i
= expzi
∑n

j=1expz j
: ð2Þ

3.5. Loss Functions. Categorical cross entropy would be used
as loss function in conducting classification in multiple clas-
ses where W is the model parameters such as weights of the
neural network, n is defined as the number of data points, yi
is true labels, and pi is the predicted labels [59, 60]:

L wð Þ = −
1
n
〠
n

i=1
yi log pið Þ + 1 − yið Þ log 1 − pið Þ½ �: ð3Þ

The difference between categorical cross entropy and
sparse categorical cross entropy [57] loss functions is regard-
ing the format of true labels. For instance, if you use integers
in true labels, we can use sparse categorical entropy. Addi-
tionally, mean squared error (MSE) would be able to mea-

sure the average of the squares of the errors where among
data points in true and predicted labels [61].

4. Methodology

In this section, the proposed method for conducting classifi-
cation and detection tasks as well as baseline methods has
been presented for giving an overview of the performance
of the experiments. The suggested method is based on
LSTM-Autoencoders, and baseline methods are based on
other recurrent neural networks such as GRU, LSTM,
Stacked LSTM, and Stacked GRU which have similar core
architecture as the proposed method to show the qualifica-
tion and efficiency of LSTM-based autoencoder. Figure 2
shows the step-by-step process in the methodology. The
methodology section is then followed by a description of
the proposed hybrid model and baseline models architecture
in detail.

4.1. LSTM-Based Autoencoders’ Anomaly Detection. LTSM-
based autoencoder is a neural network architecture that uses
the autoencoder architecture for encoding and decoding a
sequence of input data. The encoder-decoder process per-
forms by the LSTM network in LSTM-AE. For a better
understanding of the model, we would describe each part
of the model such as autoencoder and LSTM separately as
follows.

4.2. Long Short-Term Memory (LSTM). RNN cannot memo-
rize important information from a sequence of data; there-
fore, an extension of RNN named LSTM could be used.
Such network architecture could process an entire sequence
of data. Such architecture could have longer memory rather
than RNN. LSTM consists of feedback connections which
mean the entire sequence data, as well as a single data point,
could be processed by the network. And each cell unit of the
network could be updated each time. LSTM has been used
for part of the experiments of audio data anomaly detection

LSTM LSTM

Encoder DecoderCompressed features

LSTM-autoencoder

OutputInput

Figure 3: LSTM-AE model: the architecture shows the structure of the network for encoding and decoding the input sequence for
classification (created by authors).
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and classification in this research. As it has been mentioned,
each cell could remember the past sequence of data and
combine the information with the current input sequence.
LSTM cell would consist of three gates which are named
input gate, output gate, and forget gate. In these gates, the
functionality of the network has mathematical representa-
tions which are presented in the following equations.

An LSTM network input gate would be responsible for
deciding about the information which needs to be transferred
to the cell. The following equations which have been defined
previously and in related studies would describe its mathemat-
ical process starts with describing the input gate [53]:

it = σ Wi ∗ ht−1, xt½ �ð Þ + bi: ð4Þ

Forget gate would decide about keeping the required infor-
mation from the previous memory state. The mathematical
equation of this process has been mentioned as follows:

f t = σ Wi ∗ ht−1, xt½ �ð Þ + bf : ð5Þ

The information in each cell would be updated by update
gate in which the following equations show its mathematical
process:

~Ct = tanh Wc ∗ ht−1, xt½ �ð Þ + bc, ð6Þ

Ct = f t ∗ ct−1 + it ∗~ct: ð7Þ

The previous time step in the hidden layer would be
updated by the output gate. This gate would also update the
output of the given data as well. The following equations rep-
resent the process:

ot = σ Wo ∗ ht−1, xt½ �ð Þ + bo, ð8Þ

ht = ot ∗ tanh ctð Þ, ð9Þ
where xt represents the input of the cell, while ht−1, ht and

ct−1, ct would describe the hidden states and the cell states. The
rest of the mentioned variables would describe trainable
weights and biases which would be used in the LSTM model
[47, 53].

4.3. Autoencoder. AE consists of two modules: encoder and
decoder. The data would be fed to the encoder which would
learn the underlying features of a process. These features are
basically in a reduced dimension. The decoder on the other
hand would recreate the original data from these underlying
features. The output would have reduced noise and dimen-
sions. Basically, an autoencoder could effectively compress
features from high-dimensional data. Employing AE is very
popular in anomaly detection problems since AE could sig-
nificantly increase the accuracy of abnormalities detection
which other methods such as PCA would fail to conduct
[39]. Another advantage of using AEs is that it is easy to
train and does not require computational complexity which
other methods like kernel PCA face. Autoencoder
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Figure 4: Anomaly detection and classification architecture using LSTM-AE: the figure shows the features’ encode and decode process for
the 2-class classification of detected anomalies (created by authors).
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Figure 5: Anomaly detection architecture using GRU/Stacked GRU: the figure specifies the process of employing GRU/Stacked GRU
architecture for conducting the anomaly detection and classification task (created by authors).
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Figure 6: Anomaly detection architecture using LSTM/Stacked LSTM: the figure specifies the process of employing LSTM/Stacked LSTM
architecture for conducting the anomaly detection and classification task (created by authors).
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architecture could handle large-scale data and conduct fea-
ture selection which made it an appropriate choice for
applying to this research work domain [46, 62].

4.4. LSTM-Autoencoder. Based on mentioned advantages for
LSTM and autoencoders, therefore, LSTM-based autoenco-
ders [46, 63] are defined as a main proposed hybrid model
which could effectively conduct feature selection among
fed features based on information importance, anomaly
detection, and classification task in audio data. Figure 3 gives
an overview of the defined hybrid deep neural network
architecture [15].

To clarify the process, original one-dimensional auditory
data would be used for extracting spectrum centroid (SC)
features to feed the model as input to the LSTM-based AE
for training, which can maintain information in the state
temporarily for a long number of time steps. Mel spectro-
gram features created using auditory data would be also used
as feed input to the LSTM-AE. Such features have been
selected based on using combined deep features in similar
research which showed the best performance in the same
work domain for anomaly detection [30]. The semi-
supervised training will be applied to train the model. The
process steps overview would be mentioned as Figure 4.

4.5. Anomaly Detection Using GRU and Stacked GRU. GRU
is the extended model from RNN which is less complex than
LSTM and consists of two gates for using the information in
a gated recurrent unit. To train the GRU, original one-
dimensional auditory data would be used for extracting
spectrum centroid (SC) features to feed the model as input
to the GRU. On the other side, Mel spectrogram features
created using auditory data would be also used as input to
the GRU layers. The semi-supervised training will be applied
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Figure 7: SC data representation for normal and anomaly: The figure would show the difference between normal and anomalies in using the
SC feature (created by authors).
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Table 1: Model parameters for LSTM-AE architecture (created by
authors).

Model hyperparameters and configuration
Model architecture LSTM-Autoencoder

Number of classes 2

Number of layers 8

Batch size 128

Number of epochs 50

Number of units 50

Dropout rate 0.1

Total number of trainable parameters 93,004
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to train the model. The same process would be applied to
conduct experiments in Stacked GRU model architecture.
In a stacked GRU, there are multiple GRU layers which
are called stacking. The main reason for defining such a

model is the ability to conduct greater complexity in exper-
iments, and increasing the layer numbers would increase
the ability to conduct anomaly detection and classification
more accurately. The process overview would be mentioned
as Figure 5.

4.6. Anomaly Detection Using LSTM and Stacked LSTM. To
train the LSTM model in this model, original one-
dimensional auditory data would be used for extracting
spectrum centroid (SC) features to be used as input to the
LSTM model which can maintain temporal information
from data in each cell for a longer number of time steps
and has three gates and more complexity than GRU net-
works. Mel spectrogram features that have been extracted
by using auditory data would be also used as feed input to
the LSTM network. The semi-supervised training will be
applied to train the model. The process would be also
applied to the Stacked LSTM design as well. Stacked LSTM
models are deep networks with multiple LSTM hidden layers
which have been connected. In such model architecture, the
output of an LSTM hidden layer will be fed into the next of
the LSTM layer as the input. These stacked layers design
would improve the learning capability of neural networks
and fit the model performance more effectively [64]. The
process for both LSTM and Stacked LSTM is mentioned in
Figure 6.

5. Experimental Study

According to proposed deep learning methodologies, this
study has used a dataset from the Turbo component of the
selected compressor. Turbo is one of the most important com-
ponents of each compressor system, and its full functionality
would be crucial for the production line to be operational. This
section would explain the details of the dataset which has been

Table 2: Model dimensions and operations overview for LSTM-AE architecture (created by authors).

Operation Data Dimensions Weights (N) Weights (%)

Input ##### 2 259

LSTM LLLLL — — 62,000 66.7%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Repeat vector — — 0 0.0%

##### 259 50

LSTM LLLLL — — 20,200 21.7%

tanh ##### 259 50

Dense ||| — — 0 0.0%

##### 259 50

Time distributed — — 102 0.1. %

##### 259 2

LSTM LLLLL — — 10,600 11.4%

tanh ##### 50

Dense XXXXX — — 102 0.1%

SoftMax ##### 2

Table 3: Model parameters and configurations for GRU network
(created by authors).

Model Hyperparameters and configuration
Model architecture GRU

Number of classes 2

Number of layers 3

Batch size 128

Number of epochs 50

Number of units 50

Dropout rate 0.1

Total number of trainable parameters 46,752

Table 4: Model dimensions and operations for GRU employing
Sigmoid layer (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

GRU LLLLL — — 46,650 99.8%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.2%

Sigmoid ##### 2
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used in experiments on different mentioned models in meth-
odology as well as each experiment specification.

5.1. Experimental Data. The dataset specification and details
which have been used in this research are listed as follows.

5.2. Dataset’s Specification. The following dataset collected by
Well Checked Systems International from the Turbo compo-
nent of the selected compressor system has been used for
experiments in the proposed anomaly detection methodology.

(i) Dataset: This dataset has a total of 12,190 raw audio
signals collected from the Turbo component system
of the selected compressor in a specific period as time
series data with two class labels as normal and anom-
alies. There are 8559 normal audio signals and 3631
anomaly audio signals. Each signal is 3 seconds long
and saved in the OGG format. This is an unbalanced
dataset which means that there are many more nor-
mal samples than anomaly samples

The normal data has been defined based on the normal
working conditions of the Turbo component of the com-
pressor system. The sounds of normal condition of the
Turbo component have been used for labeling the normal
class. However, on the other hand, the anomalies were the
cases that consist of a noise in the working condition audio
signals. In this research, two classes of normal and anomaly
are defined to detect and classify anomalies; however, the
fault reasons and root of the anomaly could be checked by
technicians during conducting maintenance task.

To give an overview of data feature representation, the
following figures were created to show the anomaly and nor-
mal difference in two samples of audio signals in each class.
Hence, the selected features represented as SC and Mel Spec-
trogram are as follows.

5.3. Spectral Centroid Representation. The data representa-
tion as a generated image for normal and anomaly sample
data from original audio signals for SC is mentioned in
Figure 7. The difference between normal and anomaly sig-
nals is clear in the log power spectrum and SC
representation.

5.4. Mel Spectrogram Representation. The data representa-
tion as an image for normal and anomaly samples from
the original audio dataset for Mel Spectrogram differences
in Mel frequency spectrogram is shown in Figure 8.

Table 5: Model dimensions and operations for GRU network
employing SoftMax layer (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

GRU LLLLL — — 46,650 99.8%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.2%

SoftMax ##### 2

Table 6: Model parameters for Stacked GRU architecture (created
by authors).

Model Hyperparameters and configuration
Model architecture Stacked GRU

Number of classes 2

Number of layers 6

Batch size 128

Number of epochs 50

Number of units 50

Dropout rate 0.1

Total number of trainable parameters 77,352

Table 7: Model dimensions and operations overview based on
Stacked GRU (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

GRU LLLLL — — 46,650 60.3%

tanh ##### 2 50

Dropout ||| — — 0 0.0%

##### 2 50

GRU LLLLL — — 15,300 19.8%

tanh ##### 2 50

Dropout ||| — — 0 0.0%

##### 2 50

GRU LLLLL — — 15,300 19.8%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.1%

SoftMax ##### 2

Table 8: LSTM model parameters and configurations (created by
authors).

Model Hyperparameters and configuration
Model architecture LSTM

Number of classes 2

Number of layers 3

Batch size 128

Number of epochs 50

Number of units 50

Dropout rate 0.1

Total number of trainable parameters 62,102
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5.5. Experiments. Experiment specification and detailed view
of steps in the proposed method as well as baseline models
have been mentioned in this section.

5.6. Experiment Specification Using LSTM Auto-Encoder. In
this research, the network would be trained by 80% of
the dataset consisting of both normal and anomaly audio
signal extracted features. The remaining data were used
for validation and testing. Each of them consists of 10%
of the remained data in the shuffled form. SC and Mel
spectrogram features have been extracted and have 259
dimensions to feed the LSTM-Autoencoder. In this
research, the network consists of 50 units. The designed
network input shape consists of several units, several fea-
tures, and data dimensions.

SoftMax [57] and Sigmoid function have been used as acti-
vation functions in the output layer in different experiments.
Such functions would work based on the probability distribu-
tion of the output to predict the result label. This function has
been used for the detection of normal and anomalies, and the
final used confusion matrix would show the performance of
the network in the test and train dataset at last.

However, to create an optimal model, different functions
such as sparse categorical cross entropy for loss function and
various activation functions have been tested, and the Adam
optimization algorithm for training the deep learning model
has been employed to change the required attributes for
reducing the losses of the model. The result of experiments
on train and test datasets has been presented in the next
section.

There are several approaches to validate the model such
as splitting the dataset into train, test, and validation. By
considering the model loss and accuracy in the train and val-
idation dataset, the model could be evaluated against overfit-
ting and underfitting. The dropout technique has been also
employed for avoiding overfitting by dropping out some of
the units in the network by a defined rate.

The plots for each experiment’s accuracy and loss and
interpretation have been added to each result section for
the LSTM model. The audio signal classification and anom-
aly detection using the LSTM-AE network program was
implemented using Python. Additional to that, Keras,
NumPy, Pandas, and TensorFlow library packages have
been used for implementing the program and building the
neural network model. The experiments have been con-

ducted in a MacBook Pro laptop with 2.4GHz 8-Core Intel
Core i9, 32GB of Memory, and AMD Radeon Pro 5500M
4GB for experiments processing.

The model hyperparameters and configuration, as well
as model operations and dimensions detailed view, have
been mentioned in Tables 1 and 2 for the conducted
experiments.

Table 9: Model dimensions and operations overview for LSTM
employing Sigmoid layer (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

LSTM LLLLL — — 62,000 99.8%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.2%

Sigmoid ##### 2

Table 10: Model dimensions’ overview and operations for LSTM
employing SoftMax layer (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

LSTM LLLLL — — 62,000 99.8%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.2%

SoftMax ##### 2

Table 11: Stacked LSTM model parameters and configuration
(created by authors).

Model hyperparameters and configuration
Model architecture Stacked LSTM

Number of classes 2

Number of layers 6

Batch size 128

Number of epochs 50

Number of units 50

Dropout rate 0.1

Total number of trainable parameters 102,502

Table 12: Model dimensions and operations view for stacked
LSTM employing SoftMax layer (created by authors).

Operation Data Dimensions
Weights
(N)

Weights
(%)

Input ##### 2 259

LSTM LLLLL — — 62,200 60.5%

tanh ##### 2 50

Dropout ||| — — 0 0.0%

##### 2 50

LSTM LLLLL — — 20,200 19.7%

tanh ##### 2 50

Dropout ||| — — 0 0.0%

##### 2 50

LSTM LLLLL — — 20,200 19.7%

tanh ##### 50

Dropout ||| — — 0 0.0%

##### 50

Dense XXXXX — — 102 0.1%

SoftMax ##### 2

12 Computational and Mathematical Methods



5.7. Experiment Specification Using GRU. The method used
extracted Mel spectrogram features and SC features to train
GRU network, and different loss functions such as mean
square error and activation function such as sigmoid and
SoftMax have been tested for this model. To be able to create
a baseline to show the efficiency of the proposed hybrid
model based on LSTM-AE, the experiment specification
process would remain the same as mentioned for LSTM-
AE. The model hyperparameters and configuration, as well
as model operations and dimension detailed view, has been
mentioned in Tables 3–5.

5.8. Experiment Specification Using Stacked GRU. The
method used extracted Mel spectrogram features and SC fea-
tures to train Stacked GRU to be able to create a baseline to
show the efficiency of proposed hybrid model based on
LSTM-AE; the experiment specification process would be
remained the same as mentioned for LSTM-AE. The model
hyperparameters and configuration as well as model opera-
tions and dimension detailed view have been mentioned in
Tables 6 and 7.

5.9. Experiment Specification Using LSTM. The method used
extracted Mel spectrogram features and SC features to train
the LSTM network. To be able to create a baseline to show
the efficiency of the proposed hybrid model based on
LSTM-AE, the experiment specification process would
remain the same as mentioned for LSTM-AE. The model
hyperparameters and configuration, as well as model opera-
tions and dimension detailed view, have been mentioned in
Tables 8–10.

5.10. Experiment Specification Using Stacked LSTM. The
method used extracted Mel spectrogram features and SC fea-
tures to train Stacked LSTM network. To be able to create a
baseline to show the efficiency of the proposed hybrid model
based on LSTM-AE, the experiment specification process
would remain the same as mentioned for LSTM-AE.

The model hyperparameters and configuration as well as
model operations and dimension detailed view have been
mentioned in Tables 11 and 12.

5.11. Evaluation Metrics. Four evaluation metrics have been
defined for evaluating the anomaly detection performance in
each of the experiments as well as the proposed LSTM-
Autoencoder network for anomaly classification and detec-
tion in train and test experiments. The accuracy, precision,
recall, and F1 have been used as evaluation metrics [65]
which have been defined in the following equations [47]:

Accuracy = TP + TN
TotalNumber of Samples

, ð10Þ

Precision = TP
TP + FP

, ð11Þ

Recall = TP
TP + FN

, ð12Þ

F1 = 2 × Precison × Recall
Precision + Recall

: ð13Þ

In the mentioned evaluation metrics, TP would be con-
sidered the number of true positives, TN is describing the

Table 13: Performance results on train dataset (created by authors).

Model architecture Loss function
Activation
Function

Optimizer Accuracy Precision Recall F1

GRU Mean square error SoftMax Adam 89% 88% 55% 67%

GRU-1 Sparse categorical cross entropy Sigmoid Adam 99% 100% 99% 99%

GRU-2 Sparse categorical cross entropy SoftMax Adam 99% 99% 99% 99%

Stacked GRU Sparse categorical cross entropy SoftMax Adam 99% 99% 99% 99%

LSTM Sparse categorical cross entropy Sigmoid Adam 99% 100% 97% 98%

LSTM-1 Sparse categorical cross entropy SoftMax Adam 99% 100% 99% 99%

Stacked LSTM Sparse categorical cross entropy SoftMax Adam 99% 100% 99% 99%

LSTM- Autoencoder Sparse categorical cross entropy SoftMax Adam 100% 100% 100% 100%

Table 14: LSTM-AE result on test dataset performance with baseline model comparison (created by authors).

Model architecture Loss function Activation function Optimizer Accuracy Precision Recall F1

GRU Mean square error SoftMax Adam 87% 87% 52% 65%

GRU-1 Sparse categorical cross entropy Sigmoid Adam 99% 100% 98% 99%

GRU-2 Sparse categorical cross entropy SoftMax Adam 99% 99% 99% 99%

Stacked GRU Sparse categorical cross entropy SoftMax Adam 99% 98% 100% 99%

LSTM Sparse categorical cross entropy Sigmoid Adam 97% 100% 97% 98%

LSTM-1 Sparse categorical cross entropy SoftMax Adam 99% 100% 98% 99%

Stacked LSTM Sparse categorical cross entropy SoftMax Adam 99% 100% 99% 99%

LSTM- Autoencoder Sparse categorical cross entropy SoftMax Adam 100% 100% 100% 100%
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number of true negatives, FP is describing the number of
false positives, and FN is defined as the number of false neg-
atives. F1 would be a combination of two metrics as Precisi
on and Recall and measures the overall performance of the
experiments. In such metrics, if both Precision and Recall
are reaching 1, then F1 would reach 1 as well [39, 65]. Since
the dataset is imbalanced, hence, using all evaluation metrics
is required to see if the model is well fitted based on TP, TN,
FN, and FP performances. According to the dataset used in
this research, using only one metric like accuracy is not suf-
ficient. Therefore, the F1 score is a reasonable metric for an
evaluation model based on precision and recall. The lower
number of TN and FN could show that the model performs
better, and a higher F1 score assures the well-fitting of the
employed model [66]. Therefore, using all the four-
evaluation metrics could give a better overview of model
performance as presented in the results.

5.12. Experiments Results and Discussion. According to per-
formance metrics explained in the previous section, the
result of the following experiment has been extracted from
different model parameters and configuration which has
been presented in the tables as follows for both test and train
performance.

5.13. Experiment Results on Train and Test Data. Train data-
set performance in different model architectures, as well as
various activation and loss functions applying to the men-
tioned dataset, has been mentioned in Table 13.

The result of performance for LSTM-AE in test dataset
as well as other model’s architectures with varied activa-
tion and loss functions applied on the mentioned dataset
by the trained model has been mentioned in Table 14
for showing the best-scored model summary in all evalua-
tion metrics.
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5.14. Model Accuracy. The following plots (Figures 9(a)–
9(g)) show the model accuracy for the models with accept-
able performance.

5.15. Model Loss. The following plots Figures 10(a)–10(g)
show the model loss for the models with proper results to
compare the loss output:

6. Discussion

Several experiments were conducted based on different
models for parameter optimization, configuration, and
architecture revision such as defining the number of units,
layers, number of epochs, dropout rate, and the loss and
activation function for the classification layer. As mentioned,
such a procedure for tuning the model is an empirical pro-
cess, and the results are the best-achieved score results for
each proposed architecture. LSTM-AE, as a proposed model
in this paper, showed the best performance among all the
models based on RNN architecture. Although stacked net-
works based on GRU and LSTM have more trainable
instances, however, using LSTM-based autoencoder could
increase the performance of evaluation metrics with less
trainable parameters. For instance, although Stacked LSTM
has more parameters (e.g., 102,502 parameters) than all
other models, however, it does not show the best perfor-
mance as adding autoencoder does. This means selecting
the right architecture as well as the right parameters could
improve the performance. Figure 11 shows the differences
between models in terms of trainable parameter numbers
based on their architecture.

Additionally, as mentioned in the result section, there
are both train and test summary tables. The reason behind
presenting each table is to present a comparison between test
and train to ensure its ability to classify the detected labels
correctly without any overfitting or underfitting issue. As it
is clear in the table, different configurations have different

performances in evaluation metrics. For instance, using the
mean square error loss function has the least performance
in the GRU model, and the sparse categorical entropy has
the best performance in all models as well as LSTM-AE
which achieved the optimal performance in both train and
test which reached 100% for all the evaluation metrics.
LSTM-AE performance showed that it could be a proper
model to be generalized on unseen data anomaly detection
and classification.

Additionally, in the result sections model, accuracy, and
model loss have been presented in different plots. Model loss
shows a good fit. Since based on the definition of a good fit,
training and validation loss shall decrease to a point of sta-
bility in the plot with a minimal gap. For instance, final loss
values between validation and trained instances should reach
near zero. On the other hand, model accuracy plots could be
used to see the performance of the model as well as consid-
ering whether the model consists of any sort of overfitting or
underfitting which in this case the performance for the
LSTM-AE showed very well fit. However, GRU-1 and
GRU-2 accuracy plots show that these models are not per-
forming as well as LSTM-AE, since in GRU-1 and GRU-2
the validation and train curves are divergent at last.

Computational time and model comparison has been
also mentioned in Table 15 which shows the computation
time. For such a component with a need for continuous
condition monitoring and accurate failure detection, the
LSTM-AE computation time would be reasonable due to
the high performance of the model, although other models
could perform faster. Such computation time is calculated
excluding the time for feature extraction time in 50
epochs. The GRU and LSTM-based models with different
hyperparameters and configurations have the same com-
putation time and hence categorized as LSTM and GRU
in Table 15.

Figure 12 shows an overview of the computational train
time.
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Figure 13 could give a better overview which highlights
the fact that adding AE to the LSTM architecture has an
impact on the improvement of performance in an audio
dataset in this paper. This model could be generalized for a
larger dataset in time series data as the nature of the AE
for handling complex datasets.

There is also a need to highlight the fact that the applica-
tion of deep learning models is performing better in the
larger data set and could give better performance in compar-
ison to other learning algorithms such as statistical methods
or machine learning algorithms for conducting a similar
task. As shown in Figure 14 [67], the accuracy of the
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Figure 12: Model train time comparison: time comparison of training for all the employed networks which highlights the computations
time (created by authors).

Table 15: Computational time comparison among employed models (created by authors).

Total train time (s) Avg. epoch time (s) (in 50 epochs)

GRU 52 1.04

LSTM 52 1.04

Stacked LSTM 56 1.12

Stacked GRU 55 1.1

LSTM-AE 801 16.02

0

20,000

40,000

60,000

80,000

100,000

120,000

GRU Stacked GRU LSTM Stacked LSTM LSTM-AE

Trainable parameter numbers

Figure 11: Trainable parameters in different models: the figure shows the comparison view for trainable parameters in all the employed
deep learning networks based on their architecture (created by authors).
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performance of deep learning methods increases in larger
datasets which is the reason behind employing deep learning
models for the current research challenge for anomaly detec-
tion in compressors audio signals [67].

At last, to mention the importance of using deep learn-
ing models in the predictive maintenance of such systems,
there was a similar research project which has employed
an LSTM-based encoder-decoder for anomaly detection. In
Pankaj et al., a different number of hidden layers and hyper-
parameters as well as functions for the purpose of anomaly
detection are employed for a time series dataset consisting
of the Space shuttle, engine, and ECG multisensor data to
consider anomalies based on computing likelihood of anom-
alies [68]. Additionally, Yu et al. also analyzed different
RNN-based variants such as PLSTM and BiLSTM for classi-
fication based on SVM and estimated the remained useful
life of the machines. This research has employed a random
search for hyperparameter tuning and bidirectional RNN
autoencoders performed better than unidirectional RNN-
based autoencoders [69].

To summarize, in our research, we have employed
LSTM-Autoencoders with 8 hidden layers which have been
fed by Mel spectrogram and SC features extracted from
audio signals from the compressor system Turbo component
for the task of anomaly detection and classification with
SoftMax function. We have also created a baseline of com-

parison of anomaly detection performance with other RNN
variants, and the proposed hybrid model reached a 100%
score for all four evaluation metrics. We have also conducted
empirical experiments employing different functions and
parameters to find the best model configuration for the pro-
posed network.

7. Conclusion

In this research, we have used deep learning neural network
models for anomaly detection and classification instead of
statistical, machine learning-based, or non-neural network
methods which are traditionally used in reliability analysis
and predictive maintenance (PdM) analysis and system
health and condition monitoring. This paper proposed a
hybrid deep learning method for extracting high-level fea-
tures for feeding the network and a feed-forward neural net-
work in which each cell could remember the important
features for the prediction of the output based on LSTM-
Autoencoder architecture by minimizing the reconstruction
error. The proposed hybrid deep learning–based methods in
this research can detect and classify the normal and anomaly
audio signals collected from a compressor system effectively.
The model has been compared with other baseline neural
network architectures based on RNN such as GRU, LSTM,
Stacked GRU, and Stacked LSTM. After conducting experi-
ments with different hyperparameters and model configura-
tions, the best performance was based on adding an
autoencoder to the LSTM network as a hybrid model. Such
a method could be proposed for increasing the reliability of
the compressor systems with the ability to detect defects in
time.

In the proposed model Mel Spectrogram and SC have
been used as features for feeding the network for training.
The combination of multiple-resource features and hybrid
models showed a 100% score in all four-evaluation metrics
such as accuracy, precision, recall, and F1 in the LSTM-
based autoencoder in both test and train results as the
best-scored model.

0% 20% 40% 60% 80% 100% 120%
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GRU-1

GRU-2

Stacked LSTM

Stacked GRU

LSTM

LSTM-1

LSTM-Autoencoder

F1
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Models performance on test

Figure 13: Model performance comparison: this figure shows the overview of all the employed models’ performance in the test set (created
by authors).

Deep learning methods

Most of other learning
algorithmsPe

rfo
rm
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Amount of data

Figure 14: Learning curve comparison: the figure shows the
performance difference for large dataset between other algorithms
and deep learning method [67].
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This paper could also highlight the fact that employing
the deep learning method in predictive maintenance tasks
could maintain the safety of technicians and staff by avoid-
ing any dangerous risk of failures for the compressor system
components that could harm them. Additionally, it could
reduce the risk of failures of the compressor’s system which
could increase system reliability at last by in-time anomaly
detection.

8. Future Work

Using more balanced datasets as well as increasing dataset
size could be a baseline for future research. Additional to
that using autoencoder along with LSTM enables the capa-
bility to define reconstruction error which could be used as
a baseline for defining a threshold for anomaly detectors to
generalize and detect unseen anomalies. Alongside applying
AE, variational autoencoder could be also used for anomaly
detection combined with RNN-based networks. VAE in
comparison to AE is working with distribution and recon-
structing the probabilities from input data which could be
used as a baseline for anomaly detection in low probabilities.
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