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The purpose of this article is to explore different types of solutions for the Kadomtsev-Petviashvili-modified Kadomtsev-
Petviashvili (KP-mKP) equation which is termed as KP-Gardner equation, extensively used to model strong nonlinear internal
waves in (1 + 2)-dimensions on the stratified ocean shelf. This evolution equation is also used to describe weakly nonlinear
shallow-water wave and dispersive interracial waves traveling in a mildly rotating channel with slowly varying topography.
Introducing Liu’s approach regarding the complete discrimination system for polynomial and the trial equation technique, a
set of new solutions to the KP-mKP equation containing Jacobi elliptic function have been derived. It is found that these
analytical solutions numerically exhibit different nonlinear structures such as solitary waves, shock waves, and periodic wave
profiles. The reliability and effectiveness are confirmed from the numerical graphs of the solutions. Finally, the existence and
validity of the various topological structures of the solutions are confirmed from the phase portrait of the dynamical system.
Based on this investigation, it is confirmed that the method is not only suited for obtaining the classification of the solutions
but also for qualitative analysis, which means that it can also be extended to other fields of application.

1. Introduction

Nonlinear evolution equations (NLEEs) are the real treasure of
the modern scientific world because various complex physical
phenomena that appeared in the natural system are well
described by NLEEs and so, these evolutions are applied to
almost all branches of science such as physics, chemistry, biol-
ogy, astronomy, plasma dynamics, water-wave phenomena,
and ocean engineering [1–6]. Among the various NLEEs the
Korteweg de Vries (KdV) is the basic and most popular equa-
tion discovered by Diederik Johannes Korteweg and his pupil
Gustav De Vries to describe shallow-water waves. It is also
found that weakly nonlinear KdV-like theories play a crucial
role in describing many important features of unsteady inter-

nal waves in shallow water as well as in ocean water. Some
ocean wave investigations especially, the Coastal Ocean Probe
Experiment during 1995 in the Oregon Bay [7] shows that
although the KdV framework is well approved for a wide
range of parameters there is some parametric domain where
the KdV model miserably fails. Actually, if symmetrical strat-
ification appears then the coefficients of the nonlinear term in
the KdV equation incorporated in long internal solitary wave
modeling vanishes. Thus, the extension of small quadratic
approximation of nonlinearity in the KdV model to higher-
order nonlinearity by incorporating cubic nonlinear terms
becomes important in many applications. For the first time,
Miura addressed the Gardner equation about a century ago
by expanding the KdV equation [8, 9]. The Gardner equation
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adopts the same type of behaviors as the standard KdV equa-
tion; however, the former claim the validity to the wider para-
metric domain for internal wave motion in a particular
environment. The extension of the parametric domain for
modeling of internal wave motion is found in [10–15]. But
the KdV as well as the Gardner model can be used to study
the theory of soliton in one dimension only. To overcome
the restriction for studying wave dynamics in absolutely one-
dimensional ZK and KP model arise. So, to study soliton the-
ory in a two-dimension system KP equation is a widely used
model [16–18]. However, as with the KdV model, there are
situations in which the nonlinear coefficient of the KP equa-
tion disappears, at which point it will result in a singularity
of infinite amplitude, which is unrealistic. Soliton in finite-
amplitude requires strong nonlinearity, which is achieved by
incorporating dual nonlinearities into the KP model. The
KP-mKP equation is developed to provide soliton in finite-
amplitude. In this article, we intend to study the KP-mKP
equation in the following form:

∂
∂x

∂v
∂τ

+ Pv
∂v
∂x

+Qv2
∂v
∂x

+ R
∂3v
∂x3

" #
+ S

∂2v
∂y2

= 0: ð1Þ

This equation contains quadratic and cubic nonlinear terms
along with a third-order dispersive term. Different types of
complex physical phenomena in a diverse field, such as strong
nonlinear internal waves on the ocean shelf in two dimension
[19] and propagation of dust acoustic waves in plasma environ-
ment [20], are well described by the KP-mKP model.

Aslanova et al. [21] studied the propagating characteristic
of dispersive shock waves through the cylindrical Gardner
equation, which is derived from the ð2 + 1Þ-dimensional KP-
mKP equation by using a similarity reduction transformation.
Boateng et al. [22] derived some trigonometric and hyperbolic
trigonometric analytical solution of ð2 + 1Þ-dimensional KP-
mKP equation employing the modified extended direct alge-
braic method. Shakeel and Mohyud-Din [23] had constructed
hyperbolic, trigonometric, and rational functions from the
KP-mKP equation using the ðG′/G, 1/GÞ method and found
that some of the results in their investigation become identical
with the results published earlier when some parameters take
certain values. Jawad et al. [19] obtained several forms of the
solution, such as soliton solutions and hyperbolic solutions,
etc. to the KP-mKP equation by employing improved ðG′/G
Þ expansion method considering the tanh-coth hypothesis.
They also reported the constraint conditions for the existence
of the solutions. Liu et al. [24] analyzed the phase portrait of
the KP-mKPmodel utilizing the bifurcation theory of dynam-
ical systems, and a class of exact traveling wave solutions such
as solitary solution, periodic solution, kink (antikink) solution,
and breaking wave solution, are derived for the said equation.
Wazwaz obtained multiple singular solutions and multisoli-
tary solutions for the KP-mKP equation utilizing Hirota’s
bilinear approach and exhibited the variety of the solutions
from a numerical standpoint [25].

The investigations of exact and approximate solutions of
nonlinear evolution equation is an important research topic
in nonlinear science because solutions not only determines

the behavior of an equation but also helps to understand
the underlying nonlinear phenomena properly, where the
equation use as a model. To achieve this goal, some excellent
numerical investigations on the study of NLEEs are found in
[26–30]. Several physicists and applied mathematician discov-
ered many analytical techniques such as inverse scattering
method [31], Jacobian elliptic functionmethod [32, 33], bilinear
transformation method [34, 35], tanh method [36], extended
tanh method [37, 38], Adomian decomposition method
[39–41], Reduction perturbation method [42, 43], homotopy
perturbation method [44, 45], sine-cosine method [46, 47],
variational iteration method [48, 49], homogeneous balance
method [50, 51], multiple exp-function method [52, 53], and
Fan’s algebraic method [54, 55]. In order to explore all the exact
travelling wave solutions for a nonlinear system, Liu introduced
a new approach which is termed as complete discrimination
system for polynomial method (CDSPM) [56, 57]. It is found
that if a NLEE can be turned into an integral form then all pos-
sible exact solutions can be derived by this CDSPM [58].
Recently, this method has been used successively for solving
many NLEEs [59–62]. Fan et al. applied this method to find
all possible exact travelling wave solutions to the generalized
Pochhammer-Chree equation [63]. Cao et al. employed this
CDSPM to find all exact travelling wave solutions to the variable
coefficient Gardner equation [64]. The tanh-coth method is
used to acquire solitary and shock solutions to several nonlinear
evolution equations by Wazwaz et al. in [5]. By using inverse
scattering and the Hopscotch method, Hirota was able to arrive
at analytical and numerical solutions to the KdV equation [4].
Based on aWeiss-Tabor-Carnevale approach, Kudryashov con-
structs solitary, shock, and Jacobi elliptic function solutions to
the Kuramoto-Sivashinsky equations [3]. A detailed study of
solitary and shock wave solutions of various nonlinear evolu-
tion equations has been conducted using Backlund transforma-
tion and inverse scaling inin [1, 2]. Compared to other existing
techniques, the highest advantage of Liu’s approach is that the
original equation can be transformed into an integral form,
from which all single traveling wave solutions may be derived,
including the shock solution, solitary solution, and periodic
solution containing the Jacobian elliptic function solution, that
is very hard to be acquired by other technique.

In this article, the CDSPM is applied to the KP-mKP equa-
tion and the exact solutions are obtained. Initially, the KP-
mKP equation was reduced to an ODE by adopting a traveling
wave transformation. Further, we have employed the change
of the variable and introduced CDSPM to obtain the corre-
sponding integrals. Thus, we get the classification of all single
traveling wave solutions to the KP-mKP equation. As a
general rule, this technique can be applied only to determining
exact solutions; however, it can also be applied to qualitative
analysis of solutions. Additionally, the paper presents dynamic
results, including bifurcation points and critical conditions.
The remaining part of this article is constructed as follows. A
brief introduction on the CDSPM is presented in Section 2.
In Section 3, the original KP-mKP equation is converted into
the ordinary differential equation and then solve it using the
idea of the CDSPM. In Section 4, the KP-mKP equation is
given as a concrete example to further display the powerful-
ness of this method in qualitative and quantitative analyses,
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especially classifying the equilibrium points and showing the
bifurcation phenomena. Finally, some conclusions are drawn
in Section 5.

2. Discrimination System

We consider a general nonlinear partial differential equation
with the unknown v = vðx, y, τÞ as

N v, vτ, vx , vxx, vτx, vxxx, vyy ⋯
� �

= 0: ð2Þ

Now, combining the real variables x, y, and τ, we intro-
duce a new variable ζ such that

v x, y, τð Þ = ϕ ζð Þ, ζ = k1x + k2y − cτ, ð3Þ

where k1, k2 are constant and c stands for expressing the
speed of the traveling wave and Equation (2) is transformed
into an ordinary differential equation (ODE) as

M ϕ, ϕ′, ϕ′ ′, ϕ′ ′ ′,⋯
� �

= 0, ð4Þ

whereM is a polynomial in ϕ and its derivatives and the
symbol (′) denotes derivative with respect to ζ. After inte-
grating (4), we can express

ϕ′
� �2

=G ϕð Þ, ð5Þ

where GðϕÞ may be polynomial or other kind of rational or
irrational function. Then, we can write (5) into the integral
form as

± ζ − ζ0ð Þ =
ð

dϕffiffiffiffiffiffiffiffiffiffi
G ϕð Þp , ð6Þ

where ζ0 is an integral constant. Several significant results
are achieved by the above described procedure.

3. All Travelling Wave Solutions to KP-
mKP Equation

In this section, we investigate all travelling wave solutions of
constant coefficient KP-mKP Equation (1). Substituting the
transform (3) in Equation (1), we have

−ck1ϕ′ ′ + Pk21 ϕ′
� �2

+ ϕϕ′ ′
� �

+Qk21 ϕ2ϕ′ ′ + 2ϕ ϕ′
� �2� �

+ Rk41ϕ′ ′ ′ ′ + Sk22ϕ′ ′ = 0,
ð7Þ

integrating and taking integrating constant to be zero, we
have

−ck1ϕ′ + Pk21ϕϕ′ +Qk21ϕ
2ϕ′ + Rk41ϕ′ ′ ′ + Sk22ϕ′ = 0, ð8Þ

again integrating, we have

−ck1ϕ + 1
2 Pk

2
1ϕ

2 + 1
3Qk

2
1ϕ

3 + Rk41ϕ′ ′ + Sk22ϕ = 1
2 c1, ð9Þ

where c1 is an integrating constant. Multiplying both sides
by 2ϕ′ and then integrating, we have

−ck1ϕ
2 + 1

3 Pk
2
1ϕ

3 + 1
6Qk

2
1ϕ

4 + Rk41ϕ′
2 + Sk22ϕ

2 = c1ϕ + c2,

ð10Þ

where c2 is an integrating constant. The above equation can
be written as

ϕ′
� �2

= 1
Rk41

−
1
6Qk

2
1ϕ

4 −
1
3Pk

2
1ϕ

3 + ck1 − Sk22
� �

ϕ2 + c1ϕ + c2

	 

,

ð11Þ

ϕ′
� �2

= α4ϕ
4 + α3ϕ

3 + α2ϕ
2 + α1ϕ + α0,

⇒
ð12Þ

± ζ − ζ0ð Þ =
ð

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α4ϕ

4 + α3ϕ
3 + α2ϕ

2 + α1ϕ + α0
p , ð13Þ

where α4 = −Q/6Rk21, α3 = −P/3Rk21, α2 = ðck1 − Sk22Þ/Rk41, α1
= c1/Rk41, and α0 = c2/Rk41.

For α4 > 0, let Ψ = ðα4Þ1/4ðϕ + ðα3/4α4ÞÞ and ζ1 = ðα4Þ1/4ζ
, then (12) changes to

Ψ2
ζ1
=Ψ4 + pΨ2 + qΨ + r, ð14Þ

and (13) becomes

± ζ1 − ζ0ð Þ =
ð

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ4 + pΨ2 + qΨ + r

p , ð15Þ

where p = −ð3α23/8α4
ffiffiffiffiffi
α4

p Þ + ðα2/ ffiffiffiffiffi
α4

p Þ, q = ðα43/8α24
ffiffiffiffiffi
α44

p Þ −
ðα3α2/2α4 ffiffiffiffiffi

α44
p Þ + ðα1/ ffiffiffiffiffi

α44
p Þ, and r = α0 − ð3α43/256α34Þ + ðα23

α2/16α24Þ − ð3α3α1/4α4Þ .
For α4 < 0, let Ψ = ð−α4Þ1/4ðϕ + ðα3/4α4ÞÞ and ζ1 =

ð−α4Þ1/4ζ, then (12) changes to

Ψ2
ζ1
= − Ψ4 + pΨ2 + qΨ + r
� �

, ð16Þ

and (13) becomes

± ζ1 − ζ0ð Þ =
ð

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− Ψ4 + pΨ2 + qΨ + rð Þ

p , ð17Þ

where p = ð3α23/8α4
ffiffiffiffiffiffiffiffi−α4

p Þ − ðα2/ ffiffiffiffiffiffiffiffi−α4
p Þ, q = −ðα43/8α24

ffiffiffiffiffiffiffiffi−α44
p Þ

+ ðα3α2/2α4 ffiffiffiffiffiffiffiffi−α44
p Þ − ðα1/ ffiffiffiffiffiffiffiffi−α44

p Þ, and r = −α0 + ð3α43/256α34Þ
− ðα23α2/16α24Þ + ð3α3α1/4α4Þ.
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Let HðΨÞ =Ψ4 + pΨ2 + qΨ + r, then its complete dis-
crimination system can be expressed as [65]

Again, to make the study effective and reliable, it is very
necessary to find the stable and unstable regions of the solu-
tion for different values of discriminant quantities of the
polynomialHðΨÞ . The stable and unstable parametric zones
of the system are given in Table 1 [66].

According to the complete discrimination system for the
polynomial of order four has total nine cases and to obtain
solution of (17) and (13), we discussed all the cases sepa-
rately as follows:

Case1. When D4 = 0, D3 = 0, and D2 = 0, HðΨÞ has only
one root zero of multiplicity four. Then, HðΨÞ becomes

H Ψð Þ =Ψ4, ð19Þ

for α4 > 0, from (15), we have

ζ1 − ζ0 =
ð
dΨ

Ψ2 = −Ψ−1, ð20Þ

where ζ0 is an integral constant. So, the solutions of Equa-
tion (12) are of the form

ϕ ζð Þ = ∓α−1/44 α1/44 ζ − ζ0
� �−1 − α3

4α4
, ð21Þ

which is a rational function solution. For example, when P
= 3,Q = 6, R = −1, S = 11/8, c1 = 0, c2 = 0, k1 = 1, k2 = 1, c = 1
, and ζ0 = 0, then, we get rational function solution of (1) as
(see Figure 1(a))

v x, y, τð Þ = − x + y − τð Þ−1 − 1
4 : ð22Þ

Case2. When D4 = 0, D3 = 0, D2 > 0, and E2 = 0, HðΨÞ
has two real roots of multiplicities three and one. Then, HðΨÞ
can be written in the following form as

H Ψð Þ = Ψ − r1ð Þ3 Ψ − r2ð Þ, ð23Þ

therefore, when α4 > 0 from (15), we have

±ζ1 − ζ0 =
ð

dΨ

Ψ − r1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − r1ð Þ Ψ − r2ð Þp = 2

r2 − r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − r2
Ψ − r1

s
,

ð24Þ

whenΨ > r1,Ψ > r2 orΨ < r1,Ψ < r2, the solution of (15) is of
the form

Ψ = 4 r1 − r2ð Þ
r2 − r1ð Þ2 ζ1 − ζ0ð Þ2 − 4

+ r1,

ϕ ζð Þ = ±α−1/44
4 r1 − r2ð Þ

r2 − r1ð Þ2 α1/44 ζ − ζ0
� �2 − 4

+ r1

" #
−

α3
4α4

:

ð25Þ

When P = 12,Q = 6, R = −1, S = 1, c1 = 24, c2 = 72, k1 = 1, k2
= 1, c = 1, and ζ0 = 0, then r1 = 1 and r2 = −3, we get rational
function solution of (1) as (see Figure 1(b))

v x, y, τð Þ = 4
4 x + y − τð Þ2 − 1

: ð26Þ

When α4 < 0 from (17), we have

±ζ1 − ζ0 =
ð

dΨ

Ψ − r1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − r1ð Þ Ψ − r2ð Þp = 2

r1 − r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −Ψ

Ψ − r1

s
:

ð27Þ

WhenΨ > r1,Ψ < r2 orΨ < r1,Ψ > r2, the solution of (17) is of
the form

Ψ = 4 r1 − r2ð Þ
− r2 − r1ð Þ2 ζ1 − ζ0ð Þ2 − 4

+ r1,

ϕ ζð Þ = ± −α4ð Þ−1
4

4 r1 − r2ð Þ
− r2 − r1ð Þ2 −α4ð Þ1/4ζ − ζ0

� �2 − 4
+ r1

" #
−

α3
4α4

:

ð28Þ

Case3. When D4 = 0, D3 = 0, and D2 < 0, HðΨÞ has a pair
of complex conjugate roots of multiplicities two. Then, HðΨÞ
can be expressed as in the following form as

H Ψð Þ = Ψ − γð Þ2 + δ2
� �2, ð29Þ

where δ > 0, if α4 > 0 then from (15), we obtain

ζ1 − ζ0 =
ð

dΨ

Ψ − γð Þ2 + δ2
= 1
δ
arctan Ψ − γ

δ
, ð30Þ

then, we get

Ψ = δ tan δ ζ1 − ζ0ð Þð Þ + γ: ð31Þ

D1 = 4,D2 = −p,D3 = −2p3 + 8pr − 9q2,D4 = −p3q2 + 4p4r + 36pq2r − 32p2r2 − 27
4 q4 + 64r3,

E2 = 9p2 − 32pr:
ð18Þ
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We obtain solution as

ϕ ζð Þ = ±α−1/44 δ tan δ α1/44 ζ − ζ0
� �� �

+ γ −
α3
4α4

: ð32Þ

When P = 12,Q = 6, R = −1, S = 5, c1 = 4, c2 = 7, k1 = 1, k2 = 1
, c = 1, and ζ0 = 0, then γ = 0 and δ = 2, we get solution of orig-
inal Equation (1) as (see Figure 1(c))

v x, y, τð Þ = 2 tan 2 x + y − τð Þð Þ − 1: ð33Þ

Case4. When D4 > 0, D3 > 0, and D2 > 0, then HðΨÞ has
four distinct real roots. In this case, we write

H Ψð Þ = Ψ − r1ð Þ Ψ − r2ð Þ Ψ − r3ð Þ Ψ − r4ð Þ, ð34Þ

where r1, r2, r3, and r4 are all real numbers and let r1 > r2 >
r3 > r4. When a4 > 0, if Ψ > r1 or Ψ < r4, then we take the fol-
lowing transformation:

Ψ = r2 r1 − r4ð Þ sin2θ − r1 r2 − r4ð Þ
r1 − r4ð Þ sin2θ − r2 − r4ð Þ , ð35Þ

if r3 <Ψ < r2, then we take the following transformation:

Ψ = r4 r2 − r3ð Þ sin2θ − r3 r2 − r4ð Þ
r2 − r3ð Þ sin2θ − r2 − r4ð Þ : ð36Þ

Combining (35) or (36) with (15), we get

ζ1 − ζ0 =
ð

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − r1ð Þ Ψ − r2ð Þ Ψ − r3ð Þ Ψ − r4ð Þp = 2

r1 − r3ð Þ r2 − r4ð Þ
ð

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2 sin2θ

p ,

ð37Þ

where m2 = ðr1 − r4Þðr2 − r3Þ/ðr1 − r3Þðr2 − r4Þ, also from the
definition of jacobi elliptic sine function, we get

sin θ = sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3ð Þ r2 − r4ð Þp

2 ζ1 − ζ0ð Þ,m
 !

: ð38Þ

Combining (38) with (35), we obtain solution of (15) as

Ψ =
r2 r1 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
ζ1 − ζ0ð Þ,m

� �
− r1 r2 − r4ð Þ

r1 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3ð Þ r2 − r4ð Þp

/2
� �

ζ1 − ζ0ð Þ,m
� �

− r2 − r4ð Þ
,

ð39Þ

and we can get elliptic function double solutions of Equation
(12) as

Combining (38) with (37), we obtain solution of (15) as

Table 1: Stable and unstable region.

Stable region Relative unstable region Absolute unstable region

Di < 0 ∪Di > 0 ∪ E2 > 0 Di = 0 ∪ E2 = 0 \ 0,0,0ð Þ 0,0,0ð Þ
i = 1,2,3,4 i = 1,2,3,4 i = 1,2,3,4

ϕ ζð Þ =
α−1/44 r2 r1 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
α1/44 ζ − ζ0
� �

,m
� �

− r1 r2 − r4ð Þ
h i
r1 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
α1/44 ζ − ζ0
� �

,m
� �

− r2 − r4ð Þ
−

α3
4α4

: ð40Þ

Ψ =
r4 r2 − r3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
ζ1 − ζ0ð Þ,m

� �
− r3 r2 − r4ð Þ

r2 − r3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3ð Þ r2 − r4ð Þp

/2
� �

ζ1 − ζ0ð Þ,m
� �

− r2 − r4ð Þ
, ð41Þ
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Figure 1: Continued.
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and solutions of (12) as

The expressions (40) and (42) are elliptic functions dou-
ble periodic solutions. For instance, when P = 0,Q = 6, R =
−1, S = 4, c1 = 0, c2 = −4, k1 = 1, k2 = 1, c = 1, and ζ0 = 0, then
r1 = 2, r2 = 1, r3 = −1, and r4 = −2. So if Ψ > r1 or Ψ < r4, we
get the elliptic function solution of (1) as (see Figure 1(d))

v x, y, τð Þ = 4sn2 3/2ð Þ x + y − τð Þ, 8/9ð Þ − 6
4sn2 3/2 x + y − τð Þ, 8/9ð Þ − 3 : ð43Þ

For α4 < 0, if r1 >Ψ > r2, then we consider the following
transformation:

Ψ = r3 r1 − r2ð Þ sin2θ − r2 r1 − r3ð Þ
r1 − r2ð Þ sin2θ − r1 − r3ð Þ , ð44Þ

and if r4 <Ψ < r3, then we consider the following transfor-
mation:

Ψ = r1 r3 − r4ð Þ sin2θ − r4 r3 − r1ð Þ
r3 − r4ð Þ sin2θ − r3 − r1ð Þ : ð45Þ

Similarly from (17), we have
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Figure 1: (a) 3D plot of (22), when P = 3,Q = 6, R = −1, S = 11/8, c1 = 0, c2 = 0, k1 = 1, k2 = 1, c = 1, and ζ0 = 0. (b) 3D plot of (26), when P
= 12,Q = 6, R = −1, S = 1, c1 = 4, c2 = 7, k1 = 1, k2 = 1, c = 1, and ζ0 = 0. (c) 3D plot of (33) when P = 12,Q = 6, R = −1, S = 5, c1 = 24, c2 = 72,
k1 = 1, k2 = 1, c = 1, and ζ0 = 0. (d) 3D plot of (43), when P = 0,Q = 6, R = −1, S = 4, c1 = −10, c2 = −34, k1 = 1, k2 = 1, c = 1, and ζ0 = 0. (e) 3D
plot of (63), when P = −12,Q = −6, R = 1, S = −10, c1 = 64, c2 = 104, k1 = 1, k2 = 1, c = 1, ζ0 = 0. (f) 3D plot of (69), when P = 12,Q = 6, R = −
1, S = −12, c1 = 64, c2 = 104, k1 = 1, k2 = 1, c = 1, and ζ0 = 0. (g) 3D plot of (75) when P = 12,Q = 6, R = −1, S = 9, c1 = 24, c2 = 72, k1 = 1, k2 =
1, c = 1, and ζ0 = 0. (h) 3D plot of (82) when P = 12,Q = 6, R = −1, S = 13/2, c1 = 21, c2 = 1047/16, k1 = 1, k2 = 1, c = 1, and ζ0 = 0.

ϕ ζð Þ =
α−1/44 r4 r2 − r3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
α1/44 ζ − ζ0
� �

,m
� �

− r3 r2 − r4ð Þ
h i
r2 − r3ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
α1/44 ζ − ζ0
� �

,m
� �

− r2 − r4ð Þ
−

α3
4α4

: ð42Þ
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where m2 = ðr1 − r2Þðr3 − r4Þ/ðr1 − r3Þðr2 − r4Þ.
Case5. When D4 < 0 and D2D3 ≥ 0, HðΨÞ has ca pair of

complex conjugate roots and two distinct real roots. Then,
HðΨÞ can be presented as

H Ψð Þ = Ψ − r1ð Þ Ψ − r2ð Þ Ψ − γð Þ2 + δ2
� �

, ð47Þ

where r1, r2, γ and δ are numbers also r1 > r2 and δ > 0. We
consider the following transformation:

Ψ = e1 cos θ + e2
e3 cos θ + e4

, ð48Þ

where

e1 =
1
2 r1 + r2ð Þe3 −

1
2 r1 − r2ð Þe4,

e2 =
1
2 r1 + r2ð Þe4 −

1
2 r1 − r2ð Þe3,

e3 = r1 − γ −
δ

f
,

e4 = r1 − γ − δf ,

f = g ±
ffiffiffiffiffiffiffiffiffiffiffiffi
g2 + 1

p
,

g = δ2 + r1 − γð Þ r2 − γð Þ
δ r1 − r2ð Þ :

ð49Þ

Using (15) and the transformation (48), we get

ζ1 − ζ0 =
ð

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
± Ψ − r1ð Þ Ψ − r2ð Þ Ψ − γð Þ2 + δ2

� �q
= 2f mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∓2f δ r1 − r2ð Þp ð
dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2 sin2θ
p ,

ð50Þ

where m2 = 1/ð1 + f 2Þ. Using (50) and the Jacobi elliptic
cosine function, we obtain

cos θ = cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2f δ r1 − r2ð Þp

2f m ζ1 − ζ0ð Þ,m
 !

: ð51Þ

Now, combining (50) and (50), we gain solution of (15)
as

Ψ =
e1cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2f δ r1 − r2ð Þp

/2f m
� �

ζ1 − ζ0ð Þ,m
� �

+ e2

e3cn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2f δ r1 − r2ð Þp

/2f m
� �

ζ1 − ζ0ð Þ,m
� �

+ e4
: ð52Þ

Therefore, the solution of (12) is

ϕ ζð Þ =
α−1/44 e1cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2f δ r1 − r2ð Þp

/2f m
� �

α1/44 ζ − ζ0
� �

,m
� �

+ e2
h i
e3cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∓2f δ r1 − r2ð Þp

/2f m
� �

a1/44 ζ − ζ0
� �

,m
� �

+ e4
−

α3
4α4

,

ð53Þ

which is a Jacobi elliptic function double periodic solution.
Particularly, When P = −24,Q = −12, R = 2, S = −5, c1 = 52,
c2 = 148, k1 = 1, k2 = 1, c = 1, and ζ0 = 0, then r1 = 2, r2 = −2,
γ = 0, δ = 1, f = 1/2, e1 = −3, e2 = 0, e3 = 0, e4 = 3/2, and m =
4/5, then we obtain jacobi elliptic function solution of (1) as

v x, y, τð Þ = −2cn 5
2 x + y − τð Þ, 45
� �

− 1: ð54Þ

Case6. When D4 > 0 and D2D3 ≤ 0, then HðΨÞ has two
pairs of complex conjugate roots and this case we write
HðΨÞ as

H Ψð Þ = Ψ − γ1ð Þ2 + δ21
� �

Ψ − γ2ð Þ2 + δ22
� �

, ð55Þ

where γ1, γ2, δ1, and δ2 are real numbers and δ1 ≥ δ2 > 0.

Ψ =
r3 r1 − r2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
ζ1 − ζ0ð Þ, m

� �
− r2 r1 − r3ð Þ

r1 − r2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3ð Þ r2 − r4ð Þp

/2
� �

ζ1 − ζ0ð Þ, m
� �

− r1 − r3ð Þ
,

ϕ ζð Þ =
−α4ð Þ−1/4 r3 r1 − r2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
−α4ð Þ1/4ζ − ζ0

� �
,m

� �
− r2 r1 − r3ð Þ

h i
r1 − r2ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
−α4ð Þ1/4ζ − ζ0

� �
,m

� �
− r1 − r3ð Þ

−
α3
4α4

,

Ψ =
r1 r3 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
ζ1 − ζ0ð Þ,m

� �
− r4 r3 − r1ð Þ

r3 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3ð Þ r2 − r4ð Þp

/2
� �

ζ1 − ζ0ð Þ,m
� �

− r3 − r1ð Þ
,

ϕ ζð Þ =
−α4ð Þ−1/4 r1 r3 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
−α4ð Þ1/4ζ − ζ0

� �
,m

� �
− r4 r3 − r1ð Þ

h i
r3 − r4ð Þsn2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r3ð Þ r2 − r4ð Þp
/2

� �
−α4ð Þ1/4ζ − ζ0

� �
,m

� �
− r3 − r1ð Þ

−
α3
4α4

,

ð46Þ
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For a4 > 0, we take the following transformation:

Ψ = e1 tan θ + e2
e3 tan θ + e4

, ð56Þ

where

e1 = γ1e3 + δ1e4,
e2 = γ1e4 − δ1e3,

e3 = −δ1 −
δ2
f
,

e4 = γ1 − γ2,

f = g +
ffiffiffiffiffiffiffiffiffiffiffiffi
g2 − 1

p
,

g = γ1 − γ2ð Þ2 + δ21 + δ22
2δ1δ2

:

ð57Þ

Then, from (15), we get

ζ1 − ζ0 =
ð

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − γ1ð Þ2 + δ21

� �
Ψ − γ2ð Þ2 + δ22

� �q
= e23 + e24

δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e23 + e24
� �

f 2e23 + e24
� �q ð

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2 sin2θ

p ,
ð58Þ

where m = ð f 2 − 1Þ/f 2. By using (58) and the definition of
jacobi elliptic functions [67], we get

sin θ = sn
δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e23 + e24
� �

f 2e23 + e24
� �q

e23 + e24
ζ1 − ζ0ð Þ,m

0
@

1
A, ð59Þ

cos θ = cn
δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e23 + e24
� �

f 2e23 + e24
� �q

e23 + e24
ζ1 − ζ0ð Þ,m

0
@

1
A:

ð60Þ
Combining (59) and (60) with (56), we have elliptic

function double periodic solution as

Ψ = e1sn ξ ζ1 − ζ0ð Þ,mð Þ + e2cn ξ ζ1 − ζ0ð Þ,mð Þ
e3sn ξ ζ1 − ζ0ð Þ,mð Þ + e4cn ξ ζ1 − ζ0ð Þ,mð Þ ,

ϕ ζð Þ = α−1/44 e1sn ξ a1/44 ζ − ζ0
� �

,m
� �

+ e2cn ξ α1/44 ζ − ζ0
� �

,m
� �� �

e3sn ξ a1/44 ζ − ζ0
� �

,m
� �

+ e4cn ξα1/44 ζ − ζ0
� �

,mÞ
−

α3
4α4

,

ð61Þ

where

ξ =
δ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e23 + e24
� �

f 2e23 + e24
� �q

e23 + e24
: ð62Þ

For example, when P = −12,Q = −6, R = 1, S = −10, c1
= −10, c2 = −34, k1 = 1, k2 = 1, c = 1, and ζ0 = 0, then γ1 = 0,

δ1 = 2, γ2 = 0, δ2 = 1, f = 2, e1 = 0, e2 = 5, e3 = −5/4, e4 = 0,
and ζ = 2, then we obtain the Jacobi elliptic function solu-
tion of (1) as (see Figure 1(e))

v x, y, τð Þ = −
2cn 2 x + y − τð Þ, 3/4�ð Þ
sn 2 x + y − τð Þ, 3/4ð Þ −

1
4 : ð63Þ

Case7. When D4 = 0, D3 > 0, and D2 > 0, HðΨÞ has a
real root of multiplicities two and two single real roots.
Then, HðΨÞ is of the following form:

H Ψð Þ = Ψ − r1ð Þ2 Ψ − r2ð Þ Ψ − r3ð Þ, ð64Þ

where r1, r2, and r3 are real numbers and r2 > r3, r1 = −
ðr2 + r3Þ/2. When Ψ > r2, r2 > r1 > r3, we obtain the solu-
tion of (15) and (12), respectively, as

Ψ = 2 r1 − r2ð Þ r1 − r3ð Þ
± r2 − r3ð Þ sin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− r1 − r2ð Þ r1 − r3ð Þp
ζ1 − ζ0ð Þ

h i
− 2r1 − r2 − r3ð Þ

,

ð65Þ

ϕ ζð Þ = 2α−1/44 r1 − r2ð Þ r1 − r3ð Þ
± r2 − r3ð Þ sin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− r1 − r2ð Þ r1 − r3ð Þp
α1/44 ζ − ζ0
� �h i

− 2r1 − r2 − r3ð Þ
−

α3
4α4

:

ð66Þ
When r1 > r2 or r1 < r3, we obtain the solution of (15)
and (12), respectively, as

Ψ = 2 r1 − r2ð Þ r1 − r3ð Þ
r2 − r3ð Þ cosh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r2ð Þ r1 − r3ð Þp
ζ1 − ζ0ð Þ

h i
− 2r1 − r2 − r3ð Þ

,

ð67Þ

ϕ ζð Þ = 2α−1/44 r1 − r2ð Þ r1 − r3ð Þ
r2 − r3ð Þ cosh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r1 − r2ð Þ r1 − r3ð Þp
α1/44 ζ − ζ0
� �h i

− 2r1 − r2 − r3ð Þ
−

α3
4α4

:

ð68Þ
The expressions (66) and (68) are solitary wave solu-

tions. For instance, when P = 12,Q = 6, R = −1, S = −12, c1
= 64, c2 = 104, k1 = 1, k2 = 1, c = 1, and ζ0 = 0, then r1 = −3,
r2 = 4, and r3 = 2, we can get solitary solution of (1) as
(see Figure 1(f))

u x, y, τð Þ = 35
cosh

ffiffiffiffiffi
35

p
x + y − τð Þ

h i
+ 6

− 1: ð69Þ

Case8. When D4 = 0, D3D2 < 0, HðΨÞ has a pair of
complex conjugate roots and a real root of multiplicity
two. Then, we can write HðΨÞ as

H Ψð Þ = Ψ − r1ð Þ2 Ψ − γð Þ2 + δ2
� �

, ð70Þ

where r1, γ and δ all are real numbers and δ ≠ 0. Then,
from (15), we have
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±ζ1 − ζ0 =
ð

dΨ

Ψ − r1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − γð Þ2 + δ2

q

= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q ln
ξ1Ψ + ξ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ − γð Þ2 + δ2

q
Ψ − r1


,

ð71Þ

where

ξ1 =
r1 − 2γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q ,

ξ2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q
−

r1 r1 − 2γð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q :

ð72Þ

Then, the solution of (15)

Ψ =
e±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1−γð Þ2+δ2

p
ζ1−ζ0ð Þ − ξ1

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q
2 − ξ1ð Þ

e±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1−γð Þ2+δ2

p
ζ1−ζ0ð Þ − ξ1

� �2
− 1

,

ð73Þ

hence,

ϕ ζð Þ =
α−1/44 e±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1−γð Þ2+δ2

p
α1/44 ζ−ζ0ð Þ − ξ1

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − γð Þ2 + δ2

q
2 − ξ1ð Þ

	 


e±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1−γð Þ2+δ2

p
α1/44 ζ−ζ0ð Þ − ξ1

� �2
− 1

−
α3
4α4

:

ð74Þ

For instance, when P = 12,Q = 6, R = −1, S = 9, c1 = 24, c2
= 72, k1 = 1, k2 = 1, c = 1, and ζ0 = 0, then r1 = 1, γ = −1, and
δ = 2, we can obtain solution of (1) as (see Figure 1(g))

v x, y, τð Þ =
e±2

ffiffi
2

p
x+y−τð Þ − 3/2

ffiffiffi
2

p� �
+ 2

ffiffiffi
2

p
2 − 3/2

ffiffiffi
2

p� �
e±2

ffiffi
2

p
x+y−τð Þ − 3/2

ffiffiffi
2

p� �2
− 1

− 1:

ð75Þ

Case9. When D4 = 0, D3 = 0, D2 > 0, and E2 > 0, HðΨÞ
has two real roots of multiplicity two. Then, we can express
HðΨÞ as follows:

H Ψð Þ = Ψ − r1ð Þ2 Ψ − r2ð Þ2, ð76Þ

where r1 and r2 are real numbers and r1 > r2. Therefore,
from (15), we have

±ζ1 − ζ0 =
ð

dΨ
Ψ − r1ð Þ Ψ − r2ð Þ = 1

r1 − r2
ln Ψ − r1

Ψ − r2


: ð77Þ

When Ψ > r1 or Ψ < r2, the solution of (15)

Ψ = r2 − r1
e r1−r2ð Þ ζ1−ζ0ð Þ−1 + r2 =

r2 − r1
2 coth r1 − r2ð Þ ζ1 − ζ0ð Þ

2 − 1
	 


+ r2,

ð78Þ

and solution of (12) is given by

ϕ ζð Þ = α−1/44
r2 − r1

2 coth r1 − r2ð Þ α1/44 ζ − ζ0
� �
2 − 1

	 

+ r2

	 

−

α3
4α4

:

ð79Þ

When r1 >Ψ > r2, the solution of (15)

Ψ = r2 − r1
−e r1−r2ð Þ ζ1−ζ0ð Þ−1 + r2 =

r2 − r1
2 tanh r1 − r2ð Þ ζ1 − ζ0ð Þ

2 − 1
	 


+ r2,

ð80Þ

and of (12)

ϕ ζð Þ = α−1/44
r2 − r1

2 tanh r1 − r2ð Þ α1/44 ζ − ζ0
� �
2 − 1

	 

+ r2

	 

−

α3
4α4

:

ð81Þ

So for this case, we have obtain hyperbolic solution (81)
and (79) of (12). For instance, when P = 12,Q = 6, R = −1,
S = 13/2, c1 = 21, c2 = 1047/16, k1 = 1, k2 = 1, c = 1, and ζ0 = 0,
then r1 = 1/2, r2 = −1/2 and −1 <Ψ < 1, we get shock wave
solution of Equation (1) as (see Figure 1(h))

v x, y, τð Þ = −
1
2 tanh 1

2 x + y − τð Þ
	 


− 1: ð82Þ

4. Dynamic Properties

Now, we observe the dynamical properties of KP-mKP
Equation (1) through the CDSPM. Analyzing the phase por-
traits of the dynamic system [68, 69], it is observed that the
topological structures of the solution profiles are changed
due to the variations of the parameters involved in the
system. Thus, the CDSPM is not only effective for acquiring
various types of solutions but also could be utilized to
conduct the qualitative analysis of the solutions. Applying
the theory of dynamical system [68, 69], Equation (9) is
stated equivalently to the following system:

dϕ
dζ

= z,

dz
dζ

= 1
Rk41

1
2 c1 + ck1 − Sk22

� �
ϕ −

1
2 Pk

2
1ϕ

2 −
1
3Qk

2
1ϕ

3
	 


,

ð83Þ

and it is equivalent to
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dϕ
dζ

= z,

dz
dζ

= β3ϕ
3 + β2ϕ

2 + β1ϕ + β0,
ð84Þ

where β3 = −Q/3Rk21, β2 = −P/2Rk21, β1 = ðck1 − Sk22Þ/Rk41,
and β0 = c1/2Rk41.

The existence of a homoclinic orbit in phase portrait in
general corresponds to a solitary wave profile whereas the
kink (antikink) wave solution is recognized by a heteroclinic
orbit. Again, a periodic orbit confirms the presence of a peri-
odic traveling wave solution. Varying the values of different
parameters β0, β1, β2, and β3 involved in the system, we
determine all homoclinic orbits, heteroclinic orbits, and
periodic orbits of (84). Thus, the existence of solitary waves,
kink (or antikink) waves, and periodic waves of Equation (1)
are confirmed. The Hamiltonian function corresponding to
the dynamical system (84) is defined as

H2 ϕ, zð Þ = z2

2 −
β3
4 ϕ4 + β2

3 ϕ3 + β1
2 ϕ2 + β0ϕ + c2

� �
, ð85Þ

which satisfies

∂H2
∂z

= dϕ
dζ

,

∂H2
∂ϕ

= −
dz
dζ

:

ð86Þ

Now, we call Mða, 0Þ as the coefficient matrix of the
system (84) and denote J as the determinant of Mða, 0Þ at
the equilibrium point ða, 0Þ. We take T = traceðMða, 0ÞÞ
and N = T2 − 4J .

Let LðϕÞ = β3ϕ
3 + β2ϕ

2 + β1ϕ + β0, whose complete
discrimination system is as follows:

Δ = β2
2β

2
1 − 27β2

3β
2
0 − 4β3

1β3 − 4β3
2β0 − 18β3β2β1β0: ð87Þ

Case 1.When Δ = 0, LðϕÞ has a single real root together with
another real root of multiplicity two, then

L ϕð Þ = β3 ϕ − a1ð Þ2 ϕ − a2ð Þ, ð88Þ

then, the ða, 0Þ and ðb, 0Þ are the equilibrium points of the
system (84). For example when β3 = −2, β2 = 0, β1 = 6, and
β0 = 4, we have a1 = −1 and a2 = 2. For the equilibrium point
ð2, 0Þ, we have J = 18 > 0, T = 0 and N = −72 < 0, so ð2, 0Þ is a
center. Thus, it is confirmed that there exist a family of peri-
odic orbits about ð2, 0Þ. And at the equilibrium point ð−1, 0Þ
, we have J = 0, T = 0, so ð−1, 0Þ is a cusp (see Figure 2(a)).

Case 2. When Δ > 0, LðϕÞ has three distinct single real root,
then

L ϕð Þ = β3 ϕ − a1ð Þ ϕ − a2ð Þ ϕ − a3ð Þ, ð89Þ

then ða1 − 0Þ, ða2 − 0Þ and ða3 − 0Þ become the three equilib-
rium points of the system. In particular when β3 = −2, β2
= 6, β1 = −4, and β0 = 0, we have a1 = 0, a2 = 1, and a3 = 2.
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Figure 2: Phase portrait of dynamical dynamical system (83) in ðϕ, dϕ/dζ = zÞ-plane: (a) when β3 = −2, β2 = 0, β1 = 6, and β0 = 4; (b) for
β3 = −2, β2 = 6, β1 = −4, and β0 = 0; (c) when β3 = 1, β2 = −3, β1 = −1, and β0 = 3; and (d) when β3 = −2, β2 = 4, β1 = −2, and β0 = 4.
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At the equilibrium point ð0, 0Þ, we find J = 4 > 0, T = 0, and
N = −16 < 0; thus, naturally ð0, 0Þ becomes a center. On the
other hand, at ð1, 0Þ, we have J = −2 < 0, T = 0, and N = 8 > 0
, so ð1, 0Þ becomes a saddle point. On the another equilib-
rium point ð2, 0Þ, we compute J = 4 > 0, T = 0 and N = −16
< 0, so ð2, 0Þ is a center. Moreover, a couple of homoclinic
orbits to ð1, 0Þ encircling the centers ð0, 0Þ and ð2, 0Þ on
both sides of the saddle point ð1, 0Þ are found (see
Figure 2(b)).

But, if β3 = 1, β2 = −3, β1 = −1 and β0 = 3, we acquire a1
= 1, a2 = 3, and a3 = −1. The equilibrium point ð1, 0Þ becomes
a center, as we see J > 0, T = 0,N < 0. Again, at the equilib-
rium point ð3, 0Þ, we get J < 0, N > 0, and at ð−1, 0Þ, we find
J < 0, N > 0, for the same values of the parameter. Thus,
ð3, 0Þ and ð−1, 0Þ become saddle. And a pair of nonlinear
heteroclinic orbits are observed joining two saddle points ð3, 0Þ
and ð−1, 0Þ enfolding the center ð1, 0Þ (see Figure 2(c)).

Case 3. When Δ < 0, LðϕÞ contains a real root as well as a
pair of conjugate complex root, then

L ϕð Þ = β3 ϕ − a1ð Þ ϕ − γð Þ2 + δ2
� �

: ð90Þ

Thus, ða, 0Þ is the only equilibrium point of the system
and when β3 = −2, β2 = 4, β1 = −2 and β0 = 4, we find a1 =
2. In that case, we have J = 10 > 0, T = 0, and N = −40 < 0,
and thus, the point ð2, 0Þ becomes a center. Then, a family
of periodic orbits exist near about ð2, 0Þ (see Figure 2(d)).

From the above analysis, we observe that the CDSPM
might be possibly utilized to analyze the characteristic of
the equilibrium points, and hence, the topological properties
of the solution of the original equation could also be studied.
Thus, we claim that if an equation is possibly presented in an
integral form similar to (9); then, different characteristics of
the said equation may be determined by the corresponding
complete discrimination.

5. Conclusion

In this present investigation, employing the idea of the
CDSPM, special kinds of exact analytical solutions for the
KP-mKP equation are derived. Various wave features, such
as solitary wave solution (Figure 1(f)), kink wave solution
(Figure 1(h)), shock wave solution (Figures 1(a) and 1(g)),
rational function solution (Figure 1(b)), exponential solution
(Figure 1(g)), singular wave solution (Figure 1(c)), hyper-
bolic wave solution (Figure 1(f)), and periodic wave solution
(Figures 1(d) and 1(e)) are explored from the KP-mKP
equation. All these types of solutions in a combined manner
could be scarcely acquired by any other technique as they
include Jacobian elliptic functions. In particular, the existing
popular method fail miserably in many cases to find any
finite amplitude periodic solution for the evolution equation.
In addition, we can also find stable ranges of the parameters
involved in the equation. The qualitative properties of these
solutions are analyzed through the numerical graphs which
also show some new identities on Jacobian elliptic functions.
Moreover, this article also demonstrates the strength of
CDSPM in qualitative and quantitative analyses, by finding

the critical domain for bifurcation and changing the type
of solution, classifying the equilibrium points, and examin-
ing the phase portrait of topological characteristic. Based
on this above analysis, the method can be applied not only
to classify the solutions but also can be used for qualitative
analysis, which opens the door to further promotion of the
method. This result confirms the effectiveness and conse-
quence of the CDSPM in solving evolution equations and
the solutions obtained in this article could be realized
through the significant applications in different scientific
and engineering fields such as fluid dynamics, atmospheric
phenomena, plasma science matter, and elastic media.

Nomenclature

P: Coefficient of quadratic nonlinear term of KP-mKP
equation

Q: Coefficient of cubic nonlinear term of KP-mKP
equation

R: Coefficient of dispersion term of KP-mKP equation
ζ0: Integrating constant
ci: Integrating constant, i = 1, 2
αi: Coefficient of ϕi in biquadratic polynomial of ϕ for i

= 0, ::, 4
βi: Coefficient of ϕi in in cubic polynomial of ϕ for i = 0

, 1, 2, 3
p: Coefficient of Ψ2 in biquadratic polynomial of Ψ
q: Coefficient of Ψ in polynomial of HðΨÞ
r: Coefficient of Ψ0 in biquadratic polynomial of Ψ
ri: Real roots of the polynomial HðΨÞ for i = 1,2,3,4
δ, γ: Real numbers
ai: Real roots of LðϕÞ for i = 1,2,3.
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