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In this paper, we provide two new generalized Gauss-Seidel (NGGS) iteration methods for solving absolute value equations Ax
− ∣x ∣ = b, where A ∈ Rn×n, b ∈ Rn, and x ∈ Rn are unknown solution vectors. Also, convergence results are established under
mild assumptions. Eventually, numerical results prove the credibility of our approaches.

1. Introduction

Consider the absolute value equation (AVE):

Ax − ∣x∣ = b, ð1Þ

where A ∈ Rn×n, ∣x ∣ = ð∣x1∣,∣x2∣,⋯ ,∣xn ∣ ÞT , and b ∈ Rn. A
more general structure of the AVE is

Ax + B∣x∣ = b, ð2Þ

where B ∈ Rn×n, B ≠ 0: When B = −I, where I denotes the
identity matrix, then Eq. (2) reduces to the special form
(1). The AVEs are significant nondifferentiable and nonlin-
ear problems that appear in optimization, e.g., linear pro-
gramming, journal bearings, convex quadratic
programming, linear complementarity problems (LCPs),
and network prices [1–13].

The numerical techniques for AVEs have received a lot
of attention in recent years, and several approaches have
been suggested, such as Li [14] proposed the preconditioned
AOR iterative technique to determine AVE (1) and estab-
lished the novel convergence results of the suggested
scheme. To solve the AVE (1), Ke and Ma [15] introduced
an SOR-like approach. Chen et al. [16] studied the concept
of [15] extensively and presented an optimal parameter

SOR-like approach. Huang and Hu [17] reformulated the
AVE system as a standard LCP without any premise and
showed some convexity and existence outcomes for deter-
mining AVE (1). Fakharzadeh and Shams [18] recom-
mended the mixed-type splitting (MTS) iterative scheme
for determining AVE (1) and established the novel conver-
gence properties. Zhang et al. [19] developed a novel algo-
rithm that transformed the AVE problem into an
optimization problem associated with convexity. Caccetta
et al. [20] examined a smoothing Newton technique for
determining (1) and showed that the technique is globally
convergent when ∥A−1∥<1. Saheya et al. [11] investigated
smoothing type techniques for determining (1) and showed
that their techniques have global and local quadratic conver-
gence. Gu et al. [21] proposed the nonlinear CSCS-like
approach as well as the Picard-CSCS approach in order to
determine (1), which concerns the Toeplitz matrix. Wu
and Li [22] developed a special shift splitting technique to
determine AVE (1) and demonstrated the novel convergence
outcomes for the approach. Edalatpour et al. [23] established
the generalized Gauss-Seidel (GGS) techniques for deter-
mining (1) and analyzed its convergence properties and
others; see [24–35] and the references therein.

This article describes two new iterative approaches to
determine AVEs. The main contributions we made to the
article are as follows:
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(i) We extend the GGS technique [23] to the general
case. To achieve this goal, we impose two additional
parameters (λ and Ω) that can accelerate the conver-
gence procedure.

(ii) A variety of novel conditions are used to investigate
the convergence properties of the newly developed
methods.

The remainder of this paper is organized in the following
manner. In Section 2, we present some notations and a
lemma that will be used throughout the remainder of this
study. In Section 3, we propose the NGGS procedures and
discuss their convergence. We demonstrate the efficiency
of these algorithms in Section 4 by providing numerical
examples. In the last section, we make concluding remarks.

2. Preliminaries

Here we briefly examine some of the notations and concepts
used in this article.

Let A = ðaijÞ ∈ Rn×n, we indicate the norm and absolute
value as kAk∞ and ∣A ∣ = ð∣aij ∣ Þ, respectively. The matrix
A ∈ Rn×n is called an Z-matrix if aij ≤ 0 for i ≠ j and an M
-matrix if it is a nonsingular Z-matrix and with A−1 ≥ 0:

Lemma 1. [36]. Suppose x and ∈Rn, then kx − zk∞ ≥
kjxj − jzjk∞.

3. NGGS Iteration Methods

Here, we examine the suggested methods (NGGS method I
and NGGS method II) for determining AVE (1).

3.1. NGGS Method I for AVE. Recalling that the AVE (1) has
the following form,

Ax − ∣x ∣ = b:

Multiplying λ, then we get

λAx − λ∣x∣ = λb: ð3Þ

Let

A =DA − LA −UA = Ω +DA − LAð Þ − Ω +UAð Þ, ð4Þ

where DA = diag ðAÞ,LA, and UA are strictly lower and upper
triangular parts of A, respectively. Furthermore, Ω =ΨI,
where 0 ≤Ψ ≤ 1 and I denote the identity matrix. Using (3)
and (4), the NGGS Method I is suggested as

Ω +DA − λLAð Þx − λ xj j = 1 − λð Þ Ω +DAð Þ + λ Ω +UAð Þ½ �x + λb:

ð5Þ

Using the iterative scheme, so (5) can be written as

Ω +DA − λLAð Þxi+1 − λ xi+1
�� �� = 1 − λð Þ Ω +DAð Þ + λ Ω +UAð Þ½ �xi + λb,

ð6Þ

where i = 0, 1, 2,⋯, and 0 < λ ≤ 1 (see Appendix). Note
that if λ = 1 and Ω = 0, then Eq. (6) reduces to the GGS
method [23].

The next step in the analysis is to verify the convergence
of NGGS method I by using the following theorem.

Theorem 2. Suppose that AVE (1) is solvable, let the diagonal
values of A > 1 and DA − LA − I matrix be the strictly row
wise diagonally dominant. If

∥ Ω +DA − λLAð Þ−1 1 − λð Þ Ω +DAð Þ + λ Ω +UAð Þ½ �∥∞ < 1 − λ∥ Ω +DA − λLAð Þ−1∥∞,

ð7Þ

then the sequence fxig of the NGGS method I converges to the
unique solution x⋆ of AVE (1).

Proof. We will prove first ∥ðΩ +DA − λLAÞ−1∥∞ < 1. Clearly,
if we put LA = 0, then ∥ðΩ +DA − λLAÞ−1∥∞ = ∥ðΩ +DAÞ−1
∥∞ < 1. If we assume that LA ≠ 0, we get

0 ≤ ∣λLA ∣ t < ðΩ +DA − IÞt,if we take
∣λLA ∣ t < ðΩ +DA − IÞt:

Taking both side by ðΩ +DAÞ−1, we get
ðΩ +DAÞ−1 ∣ λLA ∣ t < ðΩ +DAÞ−1ððΩ +DAÞ − IÞt,
∣λðΩ +DAÞ−1LA ∣ t < ðI − ðΩ +DAÞ−1Þt,
∣λðΩ +DAÞ−1LA ∣ t < t − ðΩ +DAÞ−1t,
ðΩ +DAÞ−1t < t − ∣λðΩ +DAÞ−1LA ∣ t,

Ω +DAð Þ−1t < 1−∣Q ∣ð Þt, ð8Þ

where Q = λðΩ +DAÞ−1LA and t = ð1, 1,⋯, 1ÞT . Also, we
have

Table 1: Numerical results for Example 4 with Ψ = 0:3 and λ =
0:95:

Methods n 1000 2000 3000 4000

SLM

Itr 18 18 18 18

Time 3.0156 13.1249 33.9104 65.1345

RSV
6.92e–
07

6.93e–
07

6.93e–
07

6.94e–
07

SM

Iter 14 14 14 14

Time 2.8128 9.0954 17.3028 29.1644

RSV 8.91e-07 8.92e-07 8.93e-07 8.93e-07

NGGS method I

Itr 10 10 10 10

Time 2.4630 7.6228 14.6325 23.0959

RSV 9.70e-07
6.85e–
07

5.60e–
07

4.85e–
07

NGGS method II

Itr 6 6 6 6

Time 1.1322 2.7342 4.0845 7.7877

RSV 3.70e-06 3.68e-07 3.69e-07 3.69e-07
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Table 2: Numerical results for Example 5 with Ψ = 0:2 and λ = 0:98.

Methods n 64 256 1024 4096

AOR

Itr 14 14 15 35

Time 0.3483 1.9788 2.3871 5.8097

RSV 5.215e-07 6.293e-07 6.548e-07 8.741e-07

MTS

Itr 14 14 15 25

Time 0.3168 1.0952 1.9647 2.2194

RSV 4.310e-07 5.468e-07 5.069e-07 9.384e-07

NGGS method I

Itr 12 13 13 14

Time 0.2131 0.5285 1.8553 2.0033

RSV 8.80e-07 7.32e-07 9.49e-07 4.11e-07

NGGS method II

Itr 5 5 5 5

Time 0.1475 0.4187 1.3582 1.9283

RSV 1.26e-07 1.40e-07 1.45e-07 1.47e-07

Table 3: Numerical results for Example 6 with Ψ = 0:2 and λ = 0:98.

Methods n 100 400 900 1600 4900

AOR

Itr 97 190 336 706 384

Time 0.4721 2.8203 3.2174 6.3887 9.2344

RSV 9.80e-07 9.61e-07 9.73e-07 9.84e-07 9.36e-07

MTS

Itr 88 157 250 386 342

Time 0.4041 1.7953 3.0219 5.7626 8.8965

RSV 8.91e-07 9.65e-07 9.18e-07 9.56e-07 9.89e-07

NGGS method I

Itr 39 59 76 92 112

Time 0.2309 0.4250 1.9633 2.5413 3.4387

RSV 8.39e-07 8.90e-07 9.32e-07 9.31e-07 7.42e-07

NGGS method II

Itr 22 33 43 52 88

Time 0.1486 0.2537 0.9255 1.3671 1.7898

RSV 5.09e-07 7.45e-07 7.63e-07 9.17e-07 8.90e-07

Table 4: Numerical results for Example 7 with Ψ = 0:3 and λ = 0:95.

Methods n 1000 2000 3000 4000 5000

SA

Itr 13 13 14 14 14

Time 3.9928 8.8680 24.4031 51.3946 73.3394

RSV 6.04e-07 8.54e-07 2.33e-07 2.69e-07 3.01e-07

SOR

Itr 12 13 13 13 13

Time 1.5136 3.3817 6.1262 7.1715 9.5261

RSV 9.45e-08 2.69e-08 3.29e-08 3.80e-08 4.25e-07

NGGS method I

Itr 10 10 10 10 10

Time 1.3911 2.9736 3.6003 5.9112 7.7228

RSV 5.77e–07 5.78e–07 5.78e–07 5.78e–07 5.78e–07

NGGS method II

Itr 5 6 6 6 6

Time 0.2753 0.9910 1.3985 2.3515 2.9527

RSV 7.15e–07 1.67e–08 2.04e–08 2.62e–08 3.81e–07

3Computational and Mathematical Methods



0 ≤ jðI −QÞ−1j = jI +Q +Q2 +Q3+⋯+Qn−1j,

≤ I+∣Q∣+ Qj j2 + Qj j3+⋯+ Qj jn−1� �
= I−∣Q ∣ð Þ−1: ð9Þ

Thus, from (8) and (9), we get
jðΩ +DA − λLAÞ−1jt = jðI −QÞ−1ðΩ +DAÞ−1jt ≤ jðI −

QÞ−1jjðΩ +DAÞ−1jt,
<ðI−∣Q ∣ Þ−1ðI−∣Q ∣ Þt = t:

So, we obtain
∥ðΩ +DA − λLAÞ−1∥∞ < 1:

Uniqueness: Let x⋆ and z⋆ be two different solutions of
the AVE (1). Using (5), we get

x⋆ = λ Ω +DA − λLAð Þ−1∣x⋆∣ + Ω +DA − λLAð Þ−1 1 − λð Þ Ω +DAð Þð½
+ λ Ω +UAð ÞÞx⋆ + λb�,

ð10Þ

z⋆ = λ Ω +DA − λLAð Þ−1∣z⋆∣ + Ω +DA − λLAð Þ−1 1 − λð Þ Ω +DAð Þð½
+ λ Ω +UAð ÞÞz⋆ + λb�:

ð11Þ
From (10) and (11), we get

x⋆ − z⋆ =λðΩ +DA − λLAÞ−1ð∣x⋆∣−∣z⋆ ∣ Þ + ðDA − λLA
Þ−1 ðð1 − λÞðΩ +DAÞ + λðΩ +UAÞÞðx⋆ − z⋆Þ:

Based on Lemma 1 and Eq. (7), the above equation can
be expressed as follows:

∥x⋆ − z⋆∥∞ ≤ λ∥ðΩ +DA − λLAÞ−1∥∞∥∣x⋆∣ − ∣z⋆∣∥∞ +
 ∥ðΩ +DA − λLAÞ−1ðð1 − λÞðΩ +DAÞ + λðΩ +UAÞÞ∥∞∥x⋆

− z⋆∥∞,
<λ∥ðΩ +DA − λLAÞ−1∥∞∥x⋆ − z⋆∥∞ + ð1 − λ∥ðΩ +DA

− λLAÞ−1∥∞Þ∥x⋆ − z⋆∥∞,
∥x⋆ − z⋆∥∞ − λ∥ðΩ +DA − λLAÞ−1∥∞∥x⋆ − z⋆∥∞ < ð1

− λ∥ ðΩ +DA − λLAÞ−1∥∞Þ∥x⋆ − z⋆∥∞,
ð1 − λ∥ðΩ +DA − λLAÞ−1∥∞Þ∥x⋆ − z⋆∥∞ < ð1 − λ∥ðΩ

+DA − λLAÞ−1∥∞Þ∥x⋆ − z⋆∥∞,
∥x⋆ − z⋆∥∞ < ∥x⋆ − z⋆∥∞,which is a contradiction.

Thus, x⋆ = z⋆.

Convergence: We will consider x⋆ as the unique solution
to AVE (1). Consequently, from (10) and

xi+1 = λðΩ +DA − λLAÞ−1∣xi+1∣ + ðΩ +D − λLAÞ−1½ðð1
− λÞðΩ +DAÞ + λðΩ +UAÞÞxi + λb�, we deduce

xi+1 − x⋆ =λðΩ +DA − λLAÞ−1ð∣xi+1∣−∣x⋆ ∣ Þ + ðΩ +DA

− λLAÞ−1½ðð1 − λÞðΩ +DAÞ + λðΩ +UAÞÞðxi − xåÞ�:
By taking infinity norm and Lemma 1, we have

∥xi+1 − x⋆∥∞ − λ∥ðΩ +DA − λLAÞ−1∥∞∥xi+1 − x⋆∥∞
≤ ∥ðΩ +DA − λLAÞ−1ðð1 − λÞðΩ +DAÞ + λðΩ +UAÞÞ∥∞∥

xi − x⋆∥∞,and since ∥ðΩ +DA − λLAÞ−1∥∞ < 1, it follows that
∥xi+1 − x⋆∥∞ ≤ ∥ ðΩ +DA − λLAÞ−1ðð1 − λÞðΩ +DAÞ

+ λðΩ +UAÞÞ∥∞/1 − λ∥ðΩ +DA − λLAÞ−1∥∞∥xi − x⋆∥∞:
According to the inequality above, the presented

approach converges to the solution when condition (7) is
met.

3.2. NGGS Method II for AVE. In this section, we describe
the NGGS method II. Based on (3) and (4), we can express
the suggested method for determining AVE (1) as follows
(see Appendix):

ðΩ +DA − λLAÞxi +1 − λ∣xi+1∣ = ½ð1 − λÞðΩ +DAÞ + λð
Ω +UAÞ�xi+1 + λb, i = 0, 1, 2,⋯:

In the following, we will examine the convergence results
for NGGS method II.

Theorem 3. Suppose that AVE (1) is solvable, let the diagonal
values of A > 1 and DA − LA − I be row diagonally dominant,
and then the sequence of the NGGS method II converges to
the unique solution x⋆ of AVE (1).

Proof. The uniqueness can be inferred directly from Theo-
rem 2. For convergence, consider

xi+1 − x⋆ = λðΩ +DA − λLAÞ−1jxi+1j + ðΩ +DA − λ LA
Þ−1 ½ðð1 − λÞðΩ +DAÞ + λðΩ +UAÞÞxi+1 + λb� − ðλ
ðΩ +DA − λLAÞ−1jx⋆j + ðΩ +DA − λLAÞ−1½ðð1 − λÞðΩ +DAÞ
+ λðΩ +UAÞÞx⋆ + λb�Þ,

ðΩ +DA − λLAÞðxi+1 − x⋆Þ = λð∣xi+1∣−∣x⋆ ∣ Þ + ðð1 − λÞ
ðΩ +DAÞ + λðΩ +UAÞÞðxi+1 − x⋆Þ,

λðDA − LA −UAÞxi+1 − λ jxi+1j = λðDA − LA −UAÞx⋆
− λjx⋆j,

DA − LA −UAð Þxi+1 − ∣xi+1∣ = DA − LA −UAð Þx⋆ − ∣x⋆∣:
ð12Þ

From (4) and (12), we have
Axi+1 − ∣xi+1∣ = Ax⋆ − ∣x⋆∣
Axi+1 − ∣xi+1 ∣ = b:

Therefore, xi+1 solves the system of AVE (1).

4. Numerical Tests

Here, four examples are provided to illustrate the perfor-
mance of the novel approaches from three different
perspectives:

(i) The number of iterations (indicated by “Itr”)

(ii) The computational time (s) (exposed by “Time”)

(iii) The residual error (represented by “RSV”)

Here, “RSV” is defined by
RSV≔ ∥Axi − ∣xi∣ − b∥2/∥b∥2 ≤ 10−6:

All numerical tests were conducted on a personal com-
puter with 1.80GHz CPU (Intel(R) Core (TM) i5-3337U)
and 4GB of memory using MATLAB (2016a). In addition,
the zero vector is the initial vector for Example 4

Example 4. Let

A = tridiagð−1, 4,−1Þ ∈ Rn×n:

Calculate b = Ax⋆ − ∣x⋆ ∣ ∈Rn with x⋆ =
ðx1, x2, x3,⋯, xnÞT ∈ Rn such that xi = ð−1Þi. Here, the
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proposed methods are compared to two existing methods:
the SOR-like optimal parameters technique shown in [16]
(expressed by SLM using ω = 0:825) and the shift splitting
iteration approach described in [22] (represented by SM).
The results are provided in Table 1.

Table 1 presents the solution x⋆ for various values of n.
The result of this comparison shows that our proposed tech-
niques are more efficient than SLM and SM approaches in
terms of “Itr” and “Time.”

Example 5. Consider A =M + 4I ∈ Rn×n and b = Ax⋆ − ∣x⋆ ∣
∈Rn with

M = tridiagð−In,Hn,−InÞ ∈ Rn×n, x⋆ = ð−1, 1,−1, 1,⋯ ,
−1, 1ÞT ∈ Rn,where Hn = tridiagð−1, 4,−1Þ ∈ Rv×v, I ∈ Rv×v,
being a unit matrix and n = v2: For Examples 5 and 6, use
the same stopping criterion and initial guess mentioned in
[18]. The recommended methods are compared with the
AOR approach [14] and the mixed-type splitting (MTS) iter-
ative technique [18]. The outcomes are summarized in
Table 2.

In Table 2, we present the numeric outcomes of the AOR
method, MTS method, NGGS method I, and NGGS method
II, respectively. Our results indicate that the proposed
methods are more effective than both AOR and MTS
approaches.

Example 6. Consider A =M + I ∈ Rn×n and b = Ax⋆ − ∣x⋆ ∣ ∈
Rn with

M = tridiagð−1:5In,Hn,−0:5InÞ ∈ Rn×n, x⋆ = ð1, 2, 1, 2,
⋯ ÞT ∈ Rn,where Hn = tridiagð−1:5,4,−0:5Þ ∈ Rv×v and n =
v2: The findings are summarized in Table 3.

Table 3 presents the solution x⋆ for various values of n.
The result of this comparison shows that our proposed tech-
niques are more efficient than AOR and MTS approaches in
terms of “Itr” and “Time.”

Example 7. Let
A = tridiagð−1, 8,−1Þ ∈ Rn×n, x⋆ = ðð−1Þh, h = 1, 2,⋯,

nÞT ∈ Rnand b = Ax⋆ − ∣x⋆ ∣ ∈Rn. Applying the same stop-
ping criteria and initial guess as given in [37], we compare
the novel approaches with the technique shown in [37]
(expressed by SA using ω = 1:0455) and the SOR-like tech-
nique presented in [15] (denoted by SOR).

Table 4 shows that all tested techniques can quickly
compute AVE (1). However, we see that the “Itr” and
“Time” of the proposed approaches are less than the other
known approaches. In conclusion, we find that the proposed
approaches are feasible and useful for AVEs.

5. Conclusions

In this work, two novel NGGS approaches are presented for
the purpose of determining AVEs, and their convergence
properties are discussed in detail. Then, numerical experi-
ments are used to demonstrate their effectiveness. Ulti-
mately, the numerical tests show that the recommended

procedures are more efficient in iteration steps and comput-
ing time than the existing methods.

Appendix

Here, we describe the implementation of the novel methods.
From Ax − ∣x ∣ = b, we have

x = A−1 xj j + bð Þ: ðA:1Þ

Thus, we can approximate xi+1 as follows:

 xi+1 ≈ A−1 xi
�� �� + b
� �

: ðA:2Þ

This approach is known as the Picard approach [9]. Our
next discussion concerns the algorithm for NGGS Method I.

Algorithm for the NGGS Method I is as follows:

(1) Select the parameters Ψ and λ, an initial guess x0 ∈
Rn, and put i = 0

(2) Compute

yi = xi+1 ≈ A−1 xi
�� �� + b
� �

: ðA:3Þ

(3) Calculate

xi+1 = λ Ω +DA − λLAð Þ−1 yi
�� �� + Ω +DA − λLAð Þ−1 1 − λð Þ Ω +DAð Þð½

+ λ Ω +UAð ÞÞxi + λb�:
ðA:4Þ

(4) If xi+1 = xi, then end. Otherwise, put i = i + 1 and go
to step 2

Similar considerations apply to the NGGS Method II.
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